mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163895 Approved by: https://github.com/lezcano
965 lines
41 KiB
Python
965 lines
41 KiB
Python
# Owner(s): ["module: linear algebra"]
|
|
|
|
import contextlib
|
|
import unittest
|
|
from itertools import product
|
|
from functools import partial
|
|
|
|
import torch
|
|
|
|
from torch.quantization._quantized_conversions import (
|
|
pack_int4_to_int8,
|
|
quantized_weight_reorder_for_mixed_dtypes_linear_cutlass,
|
|
)
|
|
|
|
from torch.testing import make_tensor
|
|
from torch.testing._internal.common_cuda import (
|
|
PLATFORM_SUPPORTS_BF16,
|
|
SM53OrLater,
|
|
SM80OrLater,
|
|
SM90OrLater,
|
|
SM100OrLater,
|
|
xfailIfSM120OrLater,
|
|
_get_torch_cuda_version,
|
|
)
|
|
from torch.testing._internal.common_device_type import (
|
|
dtypes,
|
|
instantiate_device_type_tests,
|
|
onlyCUDA,
|
|
tol as xtol,
|
|
toleranceOverride,
|
|
)
|
|
|
|
from torch.testing._internal.common_utils import (
|
|
IS_JETSON,
|
|
IS_WINDOWS,
|
|
parametrize,
|
|
run_tests,
|
|
skipIfRocm,
|
|
skipIfRocmVersionLessThan,
|
|
TEST_CUDA,
|
|
TEST_WITH_ROCM,
|
|
TestCase,
|
|
decorateIf,
|
|
)
|
|
|
|
from torch._inductor.test_case import TestCase as InductorTestCase
|
|
|
|
_IS_SM8X = False
|
|
if TEST_CUDA:
|
|
_IS_SM8X = torch.cuda.get_device_capability(0)[0] == 8
|
|
|
|
# Protects against includes accidentally setting the default dtype
|
|
assert torch.get_default_dtype() is torch.float32
|
|
|
|
def xfailIfSM100OrLaterAndCondition(condition_fn):
|
|
"""
|
|
Conditionally xfail tests on SM100+ based on a condition function.
|
|
The condition function receives the test parameters dict and returns True to xfail.
|
|
"""
|
|
return decorateIf(
|
|
unittest.expectedFailure,
|
|
lambda params: SM100OrLater and condition_fn(params)
|
|
)
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def blas_library_context(backend):
|
|
prev_backend = torch.backends.cuda.preferred_blas_library()
|
|
torch.backends.cuda.preferred_blas_library(backend)
|
|
try:
|
|
yield
|
|
finally:
|
|
torch.backends.cuda.preferred_blas_library(prev_backend)
|
|
|
|
class TestMatmulCuda(InductorTestCase):
|
|
def setUp(self):
|
|
super().setUp()
|
|
torch.backends.cuda.matmul.allow_tf32 = False
|
|
|
|
def tearDown(self):
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
super().tearDown()
|
|
|
|
def cublas_addmm(self, size: int, dtype: torch.dtype, reduced_precision: bool = False, fp16_accumulate: bool = False):
|
|
#
|
|
# Check for catastrophic cuBLAS inaccuracy by measuring the deviation between
|
|
# results from the CUDA invocation of torch.addmm and the CPU invocation
|
|
# (which does not use CUDA backend).
|
|
#
|
|
# Get dims
|
|
n, m, p = (size + 1, size, size + 2)
|
|
# Disable reduced precision reductions in BFloat16 to bypass some kernels
|
|
# which fail the threshold check
|
|
orig_bf16 = torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction
|
|
orig_fp16 = torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction
|
|
orig_fp16_accumulate = torch.backends.cuda.matmul.allow_fp16_accumulation
|
|
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = reduced_precision
|
|
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = reduced_precision
|
|
torch.backends.cuda.matmul.allow_fp16_accumulation = fp16_accumulate
|
|
# Make random tensors on CPU (seed set on common_utils.py import)
|
|
# (Not using numpy because it does not support bfloat16)
|
|
make_arg = partial(make_tensor, dtype=dtype, device="cpu")
|
|
m_beta = make_arg(1)
|
|
m_input = make_arg((n, p))
|
|
m_1 = make_arg((n, m))
|
|
m_2 = make_arg((m, p))
|
|
# scale to abate overflows in fp16 accum
|
|
if fp16_accumulate:
|
|
m_1 = m_1 / 100
|
|
m_2 = m_2 / 100
|
|
# *(B)FLOAT16 Special Handling*
|
|
# Backend does not tensorize float16 on CPU,
|
|
# and bloat16 may present accuracy issues,
|
|
# so convert to float32 for these cases
|
|
# (but keep same for other types, e.g. float32 and int*)
|
|
if dtype == torch.float16 or dtype == torch.bfloat16:
|
|
m_beta = m_beta.to(dtype=torch.float32)
|
|
m_input = m_input.to(dtype=torch.float32)
|
|
m_1 = m_1.to(dtype=torch.float32)
|
|
m_2 = m_2.to(dtype=torch.float32)
|
|
# Get CPU result
|
|
res_cpu = torch.addmm(m_input, m_1, m_2, beta=m_beta.item())
|
|
# *(B)FLOAT16 Special Handling*``
|
|
# Convert back to (b)float16
|
|
if dtype == torch.float16 or dtype == torch.bfloat16:
|
|
m_beta = m_beta.to(dtype=dtype)
|
|
m_input = m_input.to(dtype=dtype)
|
|
m_1 = m_1.to(dtype=dtype)
|
|
m_2 = m_2.to(dtype=dtype)
|
|
res_cpu = res_cpu.to(dtype=dtype)
|
|
# Move arg tensors to CUDA
|
|
m_beta = m_beta.to("cuda")
|
|
m_input = m_input.to("cuda")
|
|
m_1 = m_1.to("cuda")
|
|
m_2 = m_2.to("cuda")
|
|
# Get CUDA result
|
|
res_cuda = torch.addmm(m_input, m_1, m_2, beta=m_beta.item())
|
|
# Move to CPU for comparison
|
|
res_cuda = res_cuda.to("cpu")
|
|
# Compare
|
|
self.assertEqual(res_cpu, res_cuda)
|
|
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = orig_bf16
|
|
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = orig_fp16
|
|
torch.backends.cuda.matmul.allow_fp16_accumulation = orig_fp16_accumulate
|
|
|
|
@onlyCUDA
|
|
@skipIfRocmVersionLessThan((5, 2))
|
|
# imported 'tol' as 'xtol' to avoid aliasing in code above
|
|
@toleranceOverride({torch.float16: xtol(atol=1e-1, rtol=1e-1),
|
|
torch.bfloat16: xtol(atol=1e-1, rtol=1e-1),
|
|
torch.float32: xtol(atol=1e-1, rtol=1e-1)})
|
|
@dtypes(torch.float16, torch.bfloat16, torch.float32)
|
|
@parametrize("size", [100, 1000, 10000])
|
|
@parametrize("backend", ["cublas", "cublaslt"])
|
|
def test_cublas_addmm(self, size: int, dtype: torch.dtype, backend):
|
|
with blas_library_context(backend):
|
|
self.cublas_addmm(size, dtype, False)
|
|
|
|
@onlyCUDA
|
|
@xfailIfSM100OrLaterAndCondition(lambda params: params.get('dtype') == torch.bfloat16 and params.get('size') == 10000)
|
|
@skipIfRocmVersionLessThan((5, 2))
|
|
# imported 'tol' as 'xtol' to avoid aliasing in code above
|
|
@toleranceOverride({torch.float16: xtol(atol=7e-1, rtol=2e-1),
|
|
torch.bfloat16: xtol(atol=1e1, rtol=2e-1)})
|
|
@dtypes(torch.float16, torch.bfloat16)
|
|
@parametrize("size", [100, 1000, 10000])
|
|
@parametrize("backend", ["cublas", "cublaslt"])
|
|
def test_cublas_addmm_reduced_precision(self, size: int, dtype: torch.dtype, backend):
|
|
with blas_library_context(backend):
|
|
self.cublas_addmm(size, dtype, True)
|
|
|
|
@onlyCUDA
|
|
@skipIfRocmVersionLessThan((5, 2))
|
|
@dtypes(torch.float16)
|
|
# m == 4 chooses OUTPUT_TYPE reduction on H200
|
|
# m == 8 chooses OUTPUT_TYPE reduction on A100
|
|
@parametrize("small_size", [4, 8])
|
|
@parametrize("size", [32768])
|
|
@parametrize("backend", ["cublaslt", "cublas"])
|
|
def test_cublas_addmm_no_reduced_precision(self, small_size: int, size: int, dtype: torch.dtype, backend):
|
|
with blas_library_context(backend):
|
|
torch.backends.cuda.preferred_blas_library(backend)
|
|
orig_precision = torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction
|
|
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
|
|
m1 = torch.full((small_size, size), 65504.0, dtype=dtype, device='cuda')
|
|
m2 = torch.ones((size, small_size), dtype=dtype, device='cuda')
|
|
m2[size // 2:, :] = -1.0
|
|
b = torch.zeros((small_size,), dtype=dtype, device='cuda')
|
|
out = torch.addmm(b, m1, m2, beta=1.0)
|
|
self.assertEqual(out.sum().item(), 0.0)
|
|
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = orig_precision
|
|
|
|
@onlyCUDA
|
|
@skipIfRocmVersionLessThan((5, 2))
|
|
# imported 'tol' as 'xtol' to avoid aliasing in code above
|
|
@toleranceOverride({torch.float16: xtol(atol=7e-1, rtol=2e-1),
|
|
torch.bfloat16: xtol(atol=1e1, rtol=2e-1)})
|
|
@dtypes(torch.float16, torch.bfloat16)
|
|
@parametrize("size", [100, 1000, 10000])
|
|
@parametrize("backend", ["cublas", "cublaslt"])
|
|
def test_cublas_addmm_reduced_precision_fp16_accumulate(self, size: int, dtype: torch.dtype, backend):
|
|
with blas_library_context(backend):
|
|
self.cublas_addmm(size, dtype, False, True)
|
|
|
|
@onlyCUDA
|
|
def test_cublas_and_lt_reduced_precision_fp16_accumulate(self):
|
|
orig_fp16_accumulate = torch.backends.cuda.matmul.allow_fp16_accumulation
|
|
torch.backends.cuda.matmul.allow_fp16_accumulation = True
|
|
x = torch.rand(32, 512, 512, device='cuda', dtype=torch.half)
|
|
w = torch.rand(512, 512, device='cuda', dtype=torch.half)
|
|
b = torch.rand(512, device='cuda', dtype=torch.half)
|
|
out = torch.nn.functional.linear(x, w, b)
|
|
out_cpu = torch.nn.functional.linear(x.cpu(), w.cpu(), b.cpu())
|
|
self.assertEqual(out, out_cpu, atol=5e-3, rtol=8e-3)
|
|
|
|
a = torch.rand(16, 128, 128, device='cuda', dtype=torch.half)
|
|
b = torch.rand(16, 128, 128, device='cuda', dtype=torch.half)
|
|
c = torch.rand(16, 128, 128, device='cuda', dtype=torch.half)
|
|
out = torch.baddbmm(a, b, c)
|
|
out_cpu = torch.baddbmm(a.cpu(), b.cpu(), c.cpu())
|
|
self.assertEqual(out, out_cpu, atol=1e-3, rtol=5e-3)
|
|
torch.backends.cuda.matmul.allow_fp16_accumulation = orig_fp16_accumulate
|
|
|
|
@onlyCUDA
|
|
@toleranceOverride({torch.float16: xtol(atol=1e-3, rtol=2e-3)})
|
|
@dtypes(torch.float16)
|
|
def test_cublas_addmm_alignment(self, dtype):
|
|
device = 'cuda'
|
|
# perturb X, A, or B alignment
|
|
for idx in range(0, 3):
|
|
for offset in range(1, 3):
|
|
offsets = [0, 0, 0]
|
|
offsets[idx] = offset
|
|
x_offset, a_offset, b_offset = offsets
|
|
A = torch.rand((5120 * 2560 + a_offset), requires_grad=True, dtype=dtype, device=device)
|
|
A = A[a_offset:].reshape(5120, 2560)
|
|
X = torch.rand((26 * 2560 + x_offset), requires_grad=True, dtype=dtype, device=device)
|
|
X = X[x_offset:].reshape(26, 1, 2560)
|
|
B = torch.rand((5120 + b_offset), requires_grad=True, dtype=dtype, device=device)
|
|
B = B[b_offset:].reshape(5120)
|
|
out = torch.nn.functional.linear(X, A, B)
|
|
self.assertEqual(out, torch.matmul(X, A.transpose(1, 0)) + B)
|
|
|
|
@onlyCUDA
|
|
@unittest.skipIf(IS_JETSON, "Too large for Jetson")
|
|
@toleranceOverride({torch.float32: xtol(atol=1e-5, rtol=1.1e-5)})
|
|
@dtypes(*([torch.float32, torch.float16] +
|
|
[torch.bfloat16] if TEST_WITH_ROCM or SM53OrLater else []))
|
|
@parametrize(
|
|
"batch_size, N, M, P",
|
|
[(2, 100, 100, 100),
|
|
(2, 1000, 1000, 1000),
|
|
(1, 10000, 1000, 10000),
|
|
(1, 10000, 10000, 10000)],
|
|
name_fn=lambda batch_size, N, M, P: f"{batch_size}_{N}_{M}_{P}",
|
|
)
|
|
@skipIfRocm
|
|
def test_cublas_baddbmm_large_input(self, device, batch_size, N, M, P, dtype):
|
|
cpu_dtype = dtype
|
|
if dtype == torch.float16 or dtype == torch.bfloat16:
|
|
cpu_dtype = torch.float32
|
|
|
|
M1 = torch.rand((N, M), device=device, dtype=dtype)
|
|
M2 = torch.rand((M, P), device=device, dtype=dtype)
|
|
A = torch.rand((N, P), device=device, dtype=dtype)
|
|
|
|
def _convert_to_cpu(t):
|
|
return t.to(device='cpu', dtype=cpu_dtype)
|
|
M1_cpu, M2_cpu, A_cpu = map(_convert_to_cpu, [M1, M2, A])
|
|
|
|
# linear
|
|
out1_cpu = torch.nn.functional.linear(M1_cpu, M2_cpu.t(), A_cpu).to(dtype=dtype)
|
|
out1_gpu = torch.nn.functional.linear(M1, M2.t(), A).cpu()
|
|
self.assertEqual(out1_cpu, out1_gpu)
|
|
# test multiply the identity matrix
|
|
if N == M and M == P:
|
|
M2_eye = torch.eye(N, device=device, dtype=dtype)
|
|
out1_eye_gpu = torch.nn.functional.linear(M1, M2_eye.t(), torch.zeros_like(A))
|
|
self.assertEqual(M1_cpu.to(dtype=dtype), out1_eye_gpu.cpu())
|
|
|
|
# baddbmm
|
|
def _expand_to_batch(t: torch.Tensor):
|
|
return t.expand((batch_size, ) + t.size())
|
|
alpha, beta = 1.0, 1.0
|
|
M1, M2, A, M1_cpu, M2_cpu, A_cpu = map(_expand_to_batch, [M1, M2, A, M1_cpu, M2_cpu, A_cpu])
|
|
|
|
out2_cpu = torch.baddbmm(A_cpu, M1_cpu, M2_cpu, beta=beta, alpha=alpha).to(dtype=dtype)
|
|
out2_gpu = torch.baddbmm(A, M1, M2, beta=beta, alpha=alpha).cpu()
|
|
self.assertEqual(out2_cpu, out2_gpu)
|
|
# test multiply the identity matrix
|
|
if N == M and M == P:
|
|
M2_eye = torch.eye(N, device=device, dtype=dtype).expand(batch_size, N, N)
|
|
out2_eye_gpu = torch.baddbmm(torch.zeros_like(A), M1, M2_eye, beta=beta, alpha=alpha)
|
|
self.assertEqual(M1_cpu.to(dtype=dtype), out2_eye_gpu.cpu())
|
|
|
|
# cross comparison
|
|
self.assertEqual(out1_gpu, out2_gpu[0])
|
|
|
|
def grouped_mm_helper(self, alist, blist, gOlist, agradlist, bgradlist, outlist):
|
|
for a, b, gO, agrad, bgrad, out in zip(alist, blist, gOlist, agradlist, bgradlist, outlist):
|
|
a = a.clone().detach().requires_grad_()
|
|
b = b.clone().detach().requires_grad_()
|
|
out_ref = torch.mm(a, b.t())
|
|
out_ref.backward(gO)
|
|
self.assertEqual(out, out_ref)
|
|
if agrad is not None:
|
|
self.assertEqual(agrad, a.grad)
|
|
self.assertEqual(bgrad, b.grad)
|
|
|
|
@xfailIfSM120OrLater
|
|
@unittest.skipIf(not SM80OrLater, "Grouped gemm supported only on SM80 or greater")
|
|
@parametrize("strided", [False, True])
|
|
@parametrize("a_row_major", [False, True])
|
|
@parametrize("b_row_major", [False, True])
|
|
@dtypes(torch.bfloat16, torch.float32, torch.float16)
|
|
def test_grouped_gemm_2d_2d(self, strided, a_row_major, b_row_major, dtype):
|
|
device = "cuda"
|
|
m, n, k, n_groups = 16, 32, 64, 4
|
|
if a_row_major:
|
|
a = torch.randn(m, k * n_groups + k * int(strided), device=device, dtype=dtype)[:, :k * n_groups]
|
|
else:
|
|
a = torch.randn(k * n_groups + k * int(strided), m, device=device, dtype=dtype).t()[:, :k * n_groups]
|
|
|
|
if b_row_major:
|
|
b = torch.randn(n, k * n_groups + k * int(strided), device=device, dtype=dtype)[:, :k * n_groups]
|
|
else:
|
|
b = torch.randn(k * n_groups + k * int(strided), n, device=device, dtype=dtype).t()[:, :k * n_groups]
|
|
|
|
a.requires_grad_(True)
|
|
b.requires_grad_(True)
|
|
offs = torch.arange(k, n_groups * k + 1, k, device=device, dtype=torch.int32)
|
|
|
|
f = torch._grouped_mm
|
|
out = f(a, b.t(), offs=offs, out_dtype=dtype)
|
|
gO = torch.rand_like(out)
|
|
out.backward(gO)
|
|
offs_cpu = offs.cpu()
|
|
alist, blist, agradlist, bgradlist = [], [], [], []
|
|
start = 0
|
|
for i in range(n_groups):
|
|
alist.append(a[:, start:offs_cpu[i]])
|
|
blist.append(b[:, start:offs_cpu[i]])
|
|
agradlist.append(a.grad[:, start:offs_cpu[i]])
|
|
bgradlist.append(b.grad[:, start:offs_cpu[i]])
|
|
start = offs_cpu[i]
|
|
self.grouped_mm_helper(alist, blist, gO, agradlist, bgradlist, out)
|
|
|
|
@xfailIfSM120OrLater
|
|
@unittest.skipIf(not SM80OrLater, "Grouped gemm supported only on SM80 or greater")
|
|
@parametrize("strided", [False, True])
|
|
@parametrize("a_row_major", [False, True])
|
|
@parametrize("b_row_major", [False, True])
|
|
@dtypes(torch.bfloat16, torch.float32, torch.float16)
|
|
def test_grouped_gemm_2d_3d(self, strided, a_row_major, b_row_major, dtype):
|
|
device = "cuda"
|
|
s_int = int(strided)
|
|
m, n, k, n_groups = 16, 32, 64, 4
|
|
if a_row_major:
|
|
a = torch.randn(m * n_groups, k * (1 + s_int), device=device, dtype=dtype)[:, :k]
|
|
else:
|
|
a = torch.randn(k, (m + 2 * s_int) * n_groups, device=device, dtype=dtype).t()[:m * n_groups, :]
|
|
|
|
if b_row_major:
|
|
b = torch.randn(n_groups * (1 + s_int), n, k * (1 + s_int), device=device, dtype=dtype)[::(1 + s_int), :, :k]
|
|
else:
|
|
b = torch.randn(n_groups * (1 + s_int), k * (1 + s_int), n, device=device,
|
|
dtype=dtype).transpose(-2, -1)[::(1 + s_int), :, :k]
|
|
|
|
a.requires_grad_(True)
|
|
b.requires_grad_(True)
|
|
|
|
a_contig = a if a_row_major else a.t()
|
|
self.assertTrue(a_contig.is_contiguous() is not strided)
|
|
b_contig = b if b_row_major else b.transpose(-2, -1)
|
|
self.assertTrue(b_contig.is_contiguous() is not strided)
|
|
for check_zero_size in (False, True):
|
|
if check_zero_size and n_groups <= 1:
|
|
continue
|
|
|
|
a.grad = None
|
|
b.grad = None
|
|
offs = torch.arange(m, n_groups * m + 1, m, device=device, dtype=torch.int32)
|
|
if check_zero_size:
|
|
offs[0] = offs[1]
|
|
|
|
f = torch._grouped_mm
|
|
out = f(a, b.transpose(-2, -1), offs=offs, out_dtype=dtype)
|
|
gO = torch.rand_like(out)
|
|
if not check_zero_size:
|
|
out.backward(gO)
|
|
offs_cpu = offs.cpu()
|
|
alist, agradlist, gOlist, outlist = [], [], [], []
|
|
bgradlist = [None] * n_groups if check_zero_size else b.grad
|
|
start = 0
|
|
for i in range(n_groups):
|
|
alist.append(a[start:offs_cpu[i]])
|
|
agradlist.append(None if check_zero_size else a.grad[start:offs_cpu[i]])
|
|
outlist.append(out[start:offs_cpu[i]])
|
|
gOlist.append(gO[start:offs_cpu[i]])
|
|
start = offs_cpu[i]
|
|
self.grouped_mm_helper(alist, b, gOlist, agradlist, bgradlist, outlist)
|
|
|
|
|
|
@xfailIfSM120OrLater
|
|
@unittest.skipIf(not SM80OrLater, "Grouped gemm supported only on SM80 or greater")
|
|
@parametrize("strided", [False, True])
|
|
@parametrize("a_row_major", [False, True])
|
|
@parametrize("b_row_major", [False, True])
|
|
@dtypes(torch.bfloat16, torch.float32, torch.float16)
|
|
def test_grouped_gemm_3d_3d(self, strided, a_row_major, b_row_major, dtype):
|
|
device = "cuda"
|
|
s_int = int(strided)
|
|
m, n, k, n_groups = 16, 32, 64, 4
|
|
if a_row_major:
|
|
a = torch.randn(n_groups * (1 + s_int), m, k * (1 + s_int), device=device, dtype=dtype)[::(1 + s_int), :, :k]
|
|
else:
|
|
a = torch.randn(n_groups * (1 + s_int), k * (1 + s_int), m, device=device,
|
|
dtype=dtype).transpose(-2, -1)[::(1 + s_int), :, :k]
|
|
if b_row_major:
|
|
b = torch.randn(n_groups * (1 + s_int), n, k * (1 + s_int), device=device, dtype=dtype)[::(1 + s_int), :, :k]
|
|
else:
|
|
b = torch.randn(n_groups * (1 + s_int), k * (1 + s_int), n, device=device,
|
|
dtype=dtype).transpose(-2, -1)[::(1 + s_int), :, :k]
|
|
a.requires_grad_(True)
|
|
b.requires_grad_(True)
|
|
|
|
a_contig = a if a_row_major else a.transpose(-2, -1)
|
|
self.assertTrue(a_contig.is_contiguous() is not strided)
|
|
b_contig = b if b_row_major else b.transpose(-2, -1)
|
|
self.assertTrue(b_contig.is_contiguous() is not strided)
|
|
|
|
f = torch._grouped_mm
|
|
out = f(a, b.transpose(-2, -1), out_dtype=dtype)
|
|
gO = torch.rand_like(out)
|
|
out.backward(gO)
|
|
self.grouped_mm_helper(a, b, gO, a.grad, b.grad, out)
|
|
|
|
@xfailIfSM120OrLater
|
|
@unittest.skipIf(not SM80OrLater, "Grouped gemm supported only on SM80 or greater")
|
|
@parametrize("strided", [False, True])
|
|
@parametrize("a_row_major", [False, True])
|
|
@parametrize("b_row_major", [False, True])
|
|
@dtypes(torch.bfloat16, torch.float32, torch.float16)
|
|
def test_grouped_gemm_3d_2d(self, strided, a_row_major, b_row_major, dtype):
|
|
if TEST_WITH_ROCM and a_row_major and b_row_major and dtype in [torch.bfloat16, torch.float16]:
|
|
self.skipTest("failed using hipblaslt on rocm 6.4.2")
|
|
device = "cuda"
|
|
s_int = int(strided)
|
|
m, n, k, n_groups = 16, 32, 64, 4
|
|
if a_row_major:
|
|
a = torch.randn(n_groups * (1 + s_int), m, k * (1 + s_int), device=device, dtype=dtype)[::(1 + s_int), :, :k]
|
|
else:
|
|
a = torch.randn(n_groups * (1 + s_int), k * (1 + s_int), m, device=device,
|
|
dtype=dtype).transpose(-2, -1)[::(1 + s_int), :, :k]
|
|
if b_row_major:
|
|
b = torch.randn(n * n_groups, k * (1 + s_int), device=device, dtype=dtype)[:, :k]
|
|
else:
|
|
b = torch.randn(k, n * (n_groups + s_int), device=device, dtype=dtype).transpose(-2, -1)[:n * n_groups, :]
|
|
|
|
a.requires_grad_(True)
|
|
b.requires_grad_(True)
|
|
|
|
a_contig = a if a_row_major else a.transpose(-2, -1)
|
|
self.assertTrue(a_contig.is_contiguous() is not strided)
|
|
b_contig = b if b_row_major else b.transpose(-2, -1)
|
|
self.assertTrue(b_contig.is_contiguous() is not strided)
|
|
for check_zero_size in (False, True):
|
|
if check_zero_size and n_groups <= 1:
|
|
continue
|
|
|
|
offs = torch.arange(n, n_groups * n + 1, n, device=device, dtype=torch.int32)
|
|
if check_zero_size:
|
|
offs[0] = offs[1]
|
|
|
|
f = torch._grouped_mm
|
|
out = f(a, b.transpose(-2, -1), offs=offs, out_dtype=dtype)
|
|
gO = torch.rand_like(out)
|
|
if not check_zero_size:
|
|
out.backward(gO)
|
|
offs_cpu = offs.cpu()
|
|
blist, outlist, bgradlist, gOlist = [], [], [], []
|
|
agradlist = [None] * n_groups if check_zero_size else a.grad
|
|
start = 0
|
|
for i in range(n_groups):
|
|
blist.append(b[start:offs_cpu[i]])
|
|
bgradlist.append(b.grad[start:offs_cpu[i]])
|
|
outlist.append(out[:, start:offs_cpu[i]])
|
|
gOlist.append(gO[:, start:offs_cpu[i]])
|
|
start = offs_cpu[i]
|
|
self.grouped_mm_helper(a, blist, gOlist, agradlist, bgradlist, outlist)
|
|
|
|
@unittest.skipIf(TEST_WITH_ROCM, "ROCm doesn't support CUTLASS")
|
|
# TODO(future PR): enable compile for torch._grouped_mm fallback path
|
|
@unittest.skipIf(not SM90OrLater, "Grouped gemm with compile supported on SM90")
|
|
@parametrize("op", ["2d/2d", "2d/3d", "3d/2d", "3d/3d"])
|
|
@parametrize("a_row_major", [False, True])
|
|
@parametrize("b_row_major", [False, True])
|
|
@parametrize("max_autotune", [False, True])
|
|
def test_grouped_gemm_compiled(self, op, a_row_major, b_row_major, max_autotune):
|
|
device = "cuda"
|
|
dtype_AB = torch.bfloat16
|
|
dtype_offset = torch.int32
|
|
|
|
align = 16 // dtype_AB.itemsize
|
|
|
|
f_ref = torch._grouped_mm
|
|
|
|
options = {}
|
|
if max_autotune:
|
|
options.update(
|
|
{
|
|
"max_autotune": True,
|
|
"max_autotune_gemm_backends": "TRITON",
|
|
}
|
|
)
|
|
f = torch.compile(
|
|
f_ref,
|
|
options=options,
|
|
)
|
|
|
|
if op == "2d/2d":
|
|
m, n = 3, 7
|
|
m_align = (m + align - 1) // align * align
|
|
n_align = (n + align - 1) // align * align
|
|
if not a_row_major and not b_row_major:
|
|
offs = torch.tensor([0, 1, 6, 6, 7], device=device, dtype=dtype_offset)
|
|
else:
|
|
offs = torch.tensor([0, 8, 16, 16, 27], device=device, dtype=dtype_offset)
|
|
ngroups = offs.shape[0]
|
|
k = offs[-1]
|
|
k_align = (k + align - 1) // align * align
|
|
|
|
if a_row_major:
|
|
A = torch.randn(m, k_align, device=device, dtype=dtype_AB)[:, :k]
|
|
else:
|
|
A = torch.randn(k, m_align, device=device, dtype=dtype_AB).t()[:m, :]
|
|
if b_row_major:
|
|
B = torch.randn(n, k_align, device=device, dtype=dtype_AB)[:, :k]
|
|
else:
|
|
B = torch.randn(k, n_align, device=device, dtype=dtype_AB).t()[:n, :]
|
|
elif op == "2d/3d":
|
|
n, k = 7, 259 # k is larger here, to validate iterating over k tiles on an op
|
|
n_align = (n + align - 1) // align * align
|
|
k_align = (k + align - 1) // align * align
|
|
if a_row_major:
|
|
offs = torch.tensor([0, 1, 3, 3, 5], device=device, dtype=dtype_offset)
|
|
else:
|
|
offs = torch.tensor([0, 8, 16, 16, 19], device=device, dtype=dtype_offset)
|
|
ngroups = offs.shape[0]
|
|
m = offs[-1]
|
|
m_align = (m + align - 1) // align * align
|
|
|
|
if a_row_major:
|
|
A = torch.randn(m, k_align, device=device, dtype=dtype_AB)[:, :k]
|
|
else:
|
|
A = torch.randn(k, m_align, device=device, dtype=dtype_AB).t()[:m, :]
|
|
if b_row_major:
|
|
B = torch.randn(ngroups, n, k_align, device=device, dtype=dtype_AB)[:, :, :k]
|
|
else:
|
|
B = torch.randn(ngroups, k, n_align, device=device, dtype=dtype_AB).transpose(
|
|
-2, -1
|
|
)[:, :n, :]
|
|
elif op == "3d/2d":
|
|
m, k = 3, 13
|
|
m_align = (m + align - 1) // align * align
|
|
k_align = (k + align - 1) // align * align
|
|
offs = torch.tensor([0, 8, 16, 16, 19], device=device, dtype=dtype_offset)
|
|
ngroups = offs.shape[0]
|
|
n = offs[-1]
|
|
n_align = (n + align - 1) // align * align
|
|
|
|
if a_row_major:
|
|
A = torch.randn(ngroups, m, k_align, device=device, dtype=dtype_AB)[:, :, :k]
|
|
else:
|
|
A = torch.randn(ngroups, k, m_align, device=device, dtype=dtype_AB).transpose(
|
|
-2, -1
|
|
)[:, :m, :]
|
|
if b_row_major:
|
|
B = torch.randn(n, k_align, device=device, dtype=dtype_AB)[:, :k]
|
|
else:
|
|
B = torch.randn(k, n_align, device=device, dtype=dtype_AB).t()[:n, :]
|
|
elif op == "3d/3d":
|
|
offs = None
|
|
ngroups = 5
|
|
m, n, k = 3, 7, 13
|
|
m_align = (m + align - 1) // align * align
|
|
n_align = (n + align - 1) // align * align
|
|
k_align = (k + align - 1) // align * align
|
|
if a_row_major:
|
|
A = torch.randn(ngroups, m, k_align, device=device, dtype=dtype_AB)[:, :, :k]
|
|
else:
|
|
A = torch.randn(ngroups, k, m_align, device=device, dtype=dtype_AB).transpose(
|
|
-2, -1
|
|
)[:, :m, :]
|
|
if b_row_major:
|
|
B = torch.randn(ngroups, n, k_align, device=device, dtype=dtype_AB)[:, :, :k]
|
|
else:
|
|
B = torch.randn(ngroups, k, n_align, device=device, dtype=dtype_AB).transpose(
|
|
-2, -1
|
|
)[:, :n, :]
|
|
else:
|
|
raise AssertionError(f"Invalid op: {op}")
|
|
|
|
C_ref = f_ref(A, B.transpose(-2, -1), offs=offs)
|
|
C = f(A, B.transpose(-2, -1), offs=offs)
|
|
torch.testing.assert_close(C, C_ref)
|
|
|
|
|
|
@onlyCUDA
|
|
@parametrize("input_dtype", [torch.float32, torch.float16, torch.bfloat16])
|
|
@parametrize("M", [1, 32, 64])
|
|
@parametrize("N", [1, 32, 64])
|
|
@parametrize("K", [1, 32, 64])
|
|
@parametrize("batch_size", [None, 1, 16])
|
|
@parametrize("backend", ["cublas", "cublaslt"])
|
|
def test_mm_bmm_dtype_overload(self, input_dtype, M, N, K, batch_size, backend):
|
|
if torch.version.hip:
|
|
msg = "accuracy regression in hipblas and hipblaslt in ROCm 7.0 for certain shapes"
|
|
if input_dtype == torch.bfloat16 and N == 1 and K == 32 and batch_size:
|
|
raise unittest.SkipTest(msg)
|
|
if input_dtype == torch.bfloat16 and N == 1 and K == 64 and batch_size:
|
|
raise unittest.SkipTest(msg)
|
|
if input_dtype == torch.float16 and M == 32 and N == 1 and K == 64 and batch_size == 1:
|
|
raise unittest.SkipTest(msg)
|
|
if input_dtype == torch.float16 and M == 64 and N == 1 and K == 64 and batch_size == 1:
|
|
raise unittest.SkipTest(msg)
|
|
|
|
device = "cuda"
|
|
dtype = input_dtype
|
|
with blas_library_context(backend):
|
|
def create_inputs(B=None):
|
|
if B is None:
|
|
a = torch.randn(M, K, device=device, dtype=dtype)
|
|
b = torch.randn(K, N, device=device, dtype=dtype)
|
|
else:
|
|
a = torch.randn(B, M, K, device=device, dtype=dtype)
|
|
b = torch.randn(B, K, N, device=device, dtype=dtype)
|
|
return a, b
|
|
|
|
a, b = create_inputs(batch_size)
|
|
|
|
a_fp32, b_fp32 = a.to(torch.float32), b.to(torch.float32)
|
|
|
|
output_dtypes = [torch.float32]
|
|
|
|
if input_dtype != torch.float32:
|
|
output_dtypes.append(input_dtype)
|
|
|
|
for output_dtype in output_dtypes:
|
|
# Catch edge case of incompat with bfloat16 and major version < 8
|
|
if input_dtype == torch.bfloat16 and not PLATFORM_SUPPORTS_BF16:
|
|
if output_dtype == torch.bfloat16:
|
|
continue
|
|
|
|
if batch_size:
|
|
with self.assertRaises(RuntimeError):
|
|
torch.bmm(a, b, out_dtype=output_dtype)
|
|
else:
|
|
with self.assertRaises(RuntimeError):
|
|
torch.mm(a, b, out_dtype=output_dtype)
|
|
else:
|
|
if batch_size:
|
|
out = torch.bmm(a, b, out_dtype=output_dtype)
|
|
baseline = torch.bmm(a_fp32, b_fp32) if output_dtype == torch.float32 else torch.bmm(a, b)
|
|
else:
|
|
out = torch.mm(a, b, out_dtype=output_dtype)
|
|
baseline = torch.mm(a_fp32, b_fp32) if output_dtype == torch.float32 else torch.mm(a, b)
|
|
|
|
self.assertEqual(out.dtype, output_dtype)
|
|
|
|
torch.testing.assert_close(out, baseline, atol=1e-3, rtol=1e-3)
|
|
|
|
|
|
@onlyCUDA
|
|
@parametrize("input_dtype", [torch.float32, torch.float16, torch.bfloat16])
|
|
@parametrize("M", [1, 32, 64])
|
|
@parametrize("N", [1, 32, 64])
|
|
@parametrize("K", [1, 32, 64])
|
|
@parametrize("batch_size", [None, 1, 32])
|
|
@parametrize("backend", ["cublas", "cublaslt"])
|
|
def test_addmm_baddmm_dtype_overload(self, input_dtype, M, N, K, batch_size, backend):
|
|
if torch.version.hip:
|
|
msg = "accuracy regression in hipblas and hipblaslt in ROCm 7.0 for certain shapes"
|
|
if input_dtype == torch.bfloat16 and N == 1 and K == 32 and batch_size:
|
|
raise unittest.SkipTest(msg)
|
|
if input_dtype == torch.bfloat16 and N == 1 and K == 64 and batch_size:
|
|
raise unittest.SkipTest(msg)
|
|
if input_dtype == torch.float16 and M == 32 and N == 1 and K == 64 and batch_size == 1:
|
|
raise unittest.SkipTest(msg)
|
|
if input_dtype == torch.float16 and M == 64 and N == 1 and K == 64 and batch_size == 1:
|
|
raise unittest.SkipTest(msg)
|
|
|
|
device = "cuda"
|
|
dtype = input_dtype
|
|
with blas_library_context(backend):
|
|
def create_inputs(B=None):
|
|
if B is None:
|
|
a = torch.randn(M, K, device=device, dtype=dtype)
|
|
b = torch.randn(K, N, device=device, dtype=dtype)
|
|
c = torch.randn(M, N, device=device, dtype=dtype)
|
|
else:
|
|
a = torch.randn(B, M, K, device=device, dtype=dtype)
|
|
b = torch.randn(B, K, N, device=device, dtype=dtype)
|
|
c = torch.randn(B, M, N, device=device, dtype=dtype)
|
|
|
|
return a, b, c
|
|
|
|
a, b, c = create_inputs(batch_size)
|
|
|
|
a_fp32, b_fp32, c_fp32 = a.to(torch.float32), b.to(torch.float32), c.to(torch.float32)
|
|
|
|
output_dtypes = [torch.float32]
|
|
|
|
if input_dtype != torch.float32:
|
|
output_dtypes.append(input_dtype)
|
|
|
|
for output_dtype in output_dtypes:
|
|
# Catch edge case of incompat with bfloat16 and major version < 8
|
|
if input_dtype == torch.bfloat16 and not PLATFORM_SUPPORTS_BF16:
|
|
if output_dtype == torch.bfloat16:
|
|
continue
|
|
|
|
if batch_size:
|
|
with self.assertRaises(RuntimeError):
|
|
torch.baddbmm(c, a, b, out_dtype=output_dtype)
|
|
else:
|
|
with self.assertRaises(RuntimeError):
|
|
torch.addmm(c, a, b, out_dtype=output_dtype)
|
|
else:
|
|
if batch_size:
|
|
out = torch.baddbmm(c, a, b, out_dtype=output_dtype)
|
|
if output_dtype == torch.float32:
|
|
baseline = torch.baddbmm(c_fp32, a_fp32, b_fp32)
|
|
else:
|
|
baseline = torch.baddbmm(c, a, b)
|
|
else:
|
|
out = torch.addmm(c, a, b, out_dtype=output_dtype)
|
|
if output_dtype == torch.float32:
|
|
baseline = torch.addmm(c_fp32, a_fp32, b_fp32)
|
|
else:
|
|
baseline = torch.addmm(c, a, b)
|
|
|
|
self.assertEqual(out.dtype, output_dtype)
|
|
torch.testing.assert_close(out, baseline, atol=1e-3, rtol=1e-3)
|
|
|
|
|
|
@onlyCUDA
|
|
@parametrize("batch_size", [1, 32])
|
|
@parametrize("backend", ["cublas", "cublaslt"])
|
|
def test_fp16_accum_and_fp32_out_failure(self, batch_size, backend):
|
|
M, N, K = 32, 32, 32
|
|
device = "cuda"
|
|
dtype = torch.float16
|
|
with blas_library_context(backend):
|
|
torch.backends.cuda.preferred_blas_library(backend)
|
|
|
|
orig_fp16_accum = torch.backends.cuda.matmul.allow_fp16_accumulation
|
|
torch.backends.cuda.matmul.allow_fp16_accumulation = True
|
|
|
|
def create_inputs():
|
|
a = torch.randn(M, K, device=device, dtype=dtype)
|
|
b = torch.randn(K, N, device=device, dtype=dtype)
|
|
c = torch.randn(M, N, device=device, dtype=dtype)
|
|
return a, b, c
|
|
|
|
def expand(tensor):
|
|
return tensor.unsqueeze(0).expand(batch_size, *tensor.shape)
|
|
|
|
a, b, c = create_inputs()
|
|
|
|
with self.assertRaises(Exception):
|
|
torch.baddbmm(expand(c), expand(a), expand(b), out_dtype=torch.float32)
|
|
|
|
with self.assertRaises(Exception):
|
|
torch.addmm(c, a, b, out_dtype=torch.float32)
|
|
|
|
with self.assertRaises(Exception):
|
|
torch.bmm(expand(a,), expand(b), out_dtype=torch.float32)
|
|
|
|
with self.assertRaises(Exception):
|
|
torch.mm(a, b, out_dtype=torch.float32)
|
|
|
|
torch.backends.cuda.matmul.allow_fp16_accumulation = orig_fp16_accum
|
|
|
|
@onlyCUDA
|
|
@parametrize("ops", [("mm", torch.mm), ("bmm", torch.bmm), ("addmm", torch.addmm), ("baddbmm", torch.baddbmm)])
|
|
def test_input_dimension_checking_out_dtype(self, ops):
|
|
op_name, op = ops
|
|
B = 2
|
|
M, N, K = 32, 32, 32
|
|
|
|
def is_addmm():
|
|
return "add" in op_name
|
|
|
|
def is_batched():
|
|
return "bmm" in op_name
|
|
|
|
if is_batched():
|
|
a = torch.randn(B, M, K, device="cuda", dtype=torch.bfloat16)
|
|
mismatch_k_b = torch.randn(B, K + 1, N, device="cuda", dtype=torch.bfloat16)
|
|
c = torch.randn(B, M, N, device="cuda", dtype=torch.bfloat16)
|
|
extra_dim_b = a.clone().unsqueeze(0)
|
|
|
|
mismatch_k_err = "Expected size for first two dimensions of batch2 tensor to be"
|
|
extra_dim_err = "batch2 must be a 3D tensor"
|
|
else:
|
|
a = torch.randn(M, K, device="cuda", dtype=torch.bfloat16)
|
|
mismatch_k_b = torch.randn(K + 1, N, device="cuda", dtype=torch.bfloat16)
|
|
c = torch.randn(M, N, device="cuda", dtype=torch.bfloat16)
|
|
extra_dim_b = a.clone().unsqueeze(0)
|
|
|
|
mismatch_k_err = "mat1 and mat2 shapes cannot be multiplied"
|
|
extra_dim_err = "mat2 must be a matrix, got 3-D tensor"
|
|
|
|
# Test mismatch K
|
|
with self.assertRaisesRegex(RuntimeError, mismatch_k_err):
|
|
if is_addmm():
|
|
op(c, a, mismatch_k_b, out_dtype=torch.float32)
|
|
else:
|
|
op(a, mismatch_k_b, out_dtype=torch.float32)
|
|
|
|
# Test extra dimension
|
|
with self.assertRaisesRegex(RuntimeError, extra_dim_err):
|
|
if is_addmm():
|
|
op(c, a, extra_dim_b, out_dtype=torch.float32)
|
|
else:
|
|
op(c, extra_dim_b, out_dtype=torch.float32)
|
|
|
|
if is_batched():
|
|
with self.assertRaisesRegex(RuntimeError, "Expected size for first two dimensions of batch2 tensor to be"):
|
|
# Test mismatch B for bmm/baddbmm
|
|
mismatch_batch_dim_b = torch.randn(B + 1, K, N, device="cuda", dtype=torch.bfloat16)
|
|
if is_addmm():
|
|
op(c, a, mismatch_batch_dim_b, out_dtype=torch.float32)
|
|
else:
|
|
op(a, mismatch_batch_dim_b, out_dtype=torch.float32)
|
|
|
|
|
|
@unittest.skipIf(TEST_WITH_ROCM, "ROCm doesn't support CUTLASS")
|
|
@unittest.skipIf(IS_WINDOWS, "Windows doesn't support CUTLASS extensions")
|
|
@unittest.skipIf(not _IS_SM8X, "mixed dtypes linear only supported on SM 8.x")
|
|
class TestMixedDtypesLinearCuda(TestCase):
|
|
@dtypes(torch.float16, torch.bfloat16)
|
|
def test_mixed_dtypes_linear(self, dtype: torch.dtype, device: str = "cuda"):
|
|
version = _get_torch_cuda_version()
|
|
if version < (11, 8):
|
|
self.skipTest("_mixed_dtypes_linear only compiled for CUDA 11.8+")
|
|
|
|
def run_test(
|
|
batch_shape,
|
|
m,
|
|
n,
|
|
k,
|
|
add_bias,
|
|
activation,
|
|
dtype,
|
|
dtypeq,
|
|
device,
|
|
rtol,
|
|
atol,
|
|
):
|
|
if not add_bias and activation != "none":
|
|
return
|
|
|
|
val_lo, val_hi = -1, 1
|
|
valq_lo, valq_hi = -2, 2
|
|
input = make_tensor(
|
|
*batch_shape, m, k, low=val_lo, high=val_hi, dtype=dtype, device=device
|
|
)
|
|
weight = make_tensor(
|
|
n, k, low=valq_lo, high=valq_hi, dtype=torch.int8, device=device
|
|
)
|
|
scale = make_tensor(
|
|
(n,), low=val_lo, high=val_hi, dtype=input.dtype, device=device
|
|
)
|
|
bias = (
|
|
make_tensor(
|
|
(n,), low=val_lo, high=val_hi, dtype=input.dtype, device=device
|
|
)
|
|
if add_bias
|
|
else None
|
|
)
|
|
|
|
input_ref = input.reshape(-1, input.shape[-1])
|
|
|
|
# First, test plain multiplication.
|
|
weight_ref = weight.T.to(input.dtype) * scale.view(1, n)
|
|
weightq = (
|
|
pack_int4_to_int8(weight.T) if dtypeq == torch.quint4x2 else weight.T
|
|
)
|
|
output_ref = torch.mm(input_ref, weight_ref).reshape(*input.shape[:-1], n)
|
|
output = torch.ops.aten._mixed_dtypes_linear(
|
|
input,
|
|
quantized_weight_reorder_for_mixed_dtypes_linear_cutlass(
|
|
weightq, dtypeq, transpose=False
|
|
),
|
|
scale,
|
|
)
|
|
torch.testing.assert_close(output, output_ref, rtol=rtol, atol=atol)
|
|
|
|
# Second, test the linear operator itself.
|
|
weight_ref = weight.to(input.dtype) * scale.view(n, 1)
|
|
weightq = pack_int4_to_int8(weight) if dtypeq == torch.quint4x2 else weight
|
|
bias_ref = bias.view(1, n) if add_bias else None
|
|
output_ref = torch.nn.functional.linear(
|
|
input_ref, weight_ref, bias=bias_ref
|
|
).reshape(*input.shape[:-1], n)
|
|
if activation == "relu":
|
|
relu = torch.nn.ReLU()
|
|
output_ref = relu(output_ref)
|
|
elif activation == "silu":
|
|
silu = torch.nn.SiLU()
|
|
output_ref = silu(output_ref)
|
|
output = torch.ops.aten._mixed_dtypes_linear(
|
|
input,
|
|
quantized_weight_reorder_for_mixed_dtypes_linear_cutlass(
|
|
weightq, dtypeq, transpose=True
|
|
),
|
|
scale,
|
|
bias=bias,
|
|
activation=activation,
|
|
)
|
|
torch.testing.assert_close(output, output_ref, rtol=rtol, atol=atol)
|
|
|
|
dtypeqs = [torch.int8, torch.quint4x2]
|
|
batch_shapes = [[], [2], [2, 1]]
|
|
shapes = [
|
|
[8, 64, 64],
|
|
[8, 64, 128],
|
|
[8, 128, 64],
|
|
[8, 128, 128],
|
|
[8, 128, 192],
|
|
[8, 128, 256],
|
|
[8, 256, 128],
|
|
[8, 256, 384],
|
|
[8, 384, 256],
|
|
]
|
|
activations = [None, "relu", "silu"]
|
|
rtol, atol = 1e-3, 1e-3
|
|
if dtype == torch.bfloat16:
|
|
rtol, atol = 1e-2, 1e-3
|
|
for dtypeq, batch_shape, (m, n, k), add_bias, activation in product(
|
|
dtypeqs, batch_shapes, shapes, (False, True), activations
|
|
):
|
|
run_test(
|
|
batch_shape,
|
|
m,
|
|
n,
|
|
k,
|
|
add_bias,
|
|
activation,
|
|
dtype,
|
|
dtypeq,
|
|
device,
|
|
rtol,
|
|
atol,
|
|
)
|
|
|
|
instantiate_device_type_tests(TestMatmulCuda, globals(), except_for="cpu")
|
|
instantiate_device_type_tests(TestMixedDtypesLinearCuda, globals(), except_for="cpu")
|
|
|
|
if __name__ == '__main__':
|
|
TestCase._default_dtype_check_enabled = True
|
|
run_tests()
|