Files
pytorch/test/distributed/test_device_mesh.py
fduwjj b0985144b5 [DeviceMesh] Simplifying internal bookkeeping with CuTe layout (#163213)
We want to refactor the internal bookkeeping of DeviceMesh so that:
Simply the bookkeeping logics and make it generic enough so that it is easy to support new transformations like flatten noncontiguous dim, reshape and unflatten. (We leveraged the CuTe layout). This new layout also let us handle non-contiguous slicing, flatten, transpose possible.

Concretely, in this PR, we do the following:
1. Use the `_MeshLayout` to handle all index operations rather use a map to record mesh dims.
2. Removed `flatten_name_to_root_dims`, because now we can directly get layout from a flattened device mesh.
3. Replaced `_get_slice_mesh_dims` with `_get_slice_mesh_layout`.
4. Use the newly added function `check_overlap` to check layout overlap.
5. Use a new function `to_remapping_tensor` to use layout ranks as indices when the mesh tensor is not representable as CuTe. The reason is that layout acts as a backend of mesh tensor bookkeeping (indexing indices), it needs to be used as indices for remap back to the mesh tensor for new DeviceMesh generation and backend init. For example, in the case of 2K to 4K, the underlying layout is (2K, 1) but the actual value of the mesh tensor is [2K, 2K+1, ....,]. While flattening, slicing, we need to remap the layout back to the new mesh tensor so it maps the actual device allocation. For example, in the 2K to 4K case, if the shape is (1K, 1K) with dim_names ("dp", "tp"). Then when slicing "tp", the mesh tensor should be (2K, 2K+1, ..., 3K-1) or (3K, 3K+1, ... 4K-1). not the global ranks generated from the layout. (1K, 1).

Verified that loss curve is very close for DeepSeekV3 on torchtitan, note that exact same match is challenging because even if we run the baseline twice, the loss curve does not exactly match.

<img width="1113" height="490" alt="image" src="https://github.com/user-attachments/assets/7877b5a4-337e-4ad8-b878-2378f4f0f38d" />

The PR looks big indeed but we don't change any existing behavior of DeviceMesh, so it is a pure refactor.

With this refactoring we also enabled the slicing and flatten of non-contiguous dims of a device mesh which is hard to implement without cute layout.

This is a continue of https://github.com/pytorch/pytorch/pull/161106 (original one got messed with EasyCLA)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163213
Approved by: https://github.com/lw, https://github.com/fegin
2025-10-02 15:42:03 +00:00

1606 lines
61 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates
# Owner(s): ["oncall: distributed"]
import os
import unittest
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as funcol
from torch._C._distributed_c10d import Backend as C10dBackend
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.distributed._mesh_layout import _MeshLayout as _Layout
from torch.distributed.device_mesh import _mesh_resources, DeviceMesh, init_device_mesh
from torch.distributed.distributed_c10d import (
_get_default_group,
_world,
get_global_rank,
get_world_size,
init_process_group,
is_initialized,
new_group,
ProcessGroup,
)
from torch.distributed.tensor import DTensor
from torch.distributed.tensor._collective_utils import (
mesh_broadcast,
mesh_scatter,
unpad_tensor,
)
from torch.distributed.tensor.placement_types import _Partial, Shard
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import run_tests, TEST_XPU, TestCase
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeProcessGroup, FakeStore
from torch.utils._typing_utils import not_none
device_type = acc.type if (acc := torch.accelerator.current_accelerator()) else "cpu"
device_count = torch.accelerator.device_count()
def _set_env_var(addr="localhost", port="25364", world_size=1, rank=0, local_rank=-1):
os.environ["MASTER_ADDR"] = addr
os.environ["MASTER_PORT"] = port
os.environ["WORLD_SIZE"] = f"{world_size}"
os.environ["RANK"] = f"{rank}"
if local_rank != -1:
os.environ["LOCAL_RANK"] = f"{local_rank}"
@unittest.skipIf(TEST_XPU, "XPU does not support gloo backend.")
class DeviceMeshTestGlooBackend(DTensorTestBase):
@property
def backend(self):
return "gloo"
@with_comms
def test_device_mesh_reuse_default_group(self):
mesh = init_device_mesh(self.device_type, (self.world_size,))
mesh_group = mesh.get_group()
default_group = _get_default_group()
if torch.cuda.is_available():
self.assertNotEqual(mesh_group, default_group)
self.assertEqual(get_world_size(mesh_group), get_world_size(default_group))
else:
self.assertEqual(mesh_group, default_group)
class DeviceMeshSetDeviceTest(DTensorTestBase):
@property
def world_size(self):
return 4
@skip_if_lt_x_gpu(4)
def test_manual_set_device(self):
mesh_tensor = torch.arange(4).reshape(2, 2)
self.assertTrue(not is_initialized())
# Set the device on each process before DeviceMesh constructor,
# and device to be different than the default world rank
torch.accelerator.set_device_index((self.rank + 2) % self.world_size)
_set_env_var(world_size=self.world_size, rank=self.rank)
DeviceMesh(self.device_type, mesh_tensor)
self.assertTrue(is_initialized())
# check that the device is set to the correct device
# and respect the previous set_device calls
self.assertEqual(
torch.accelerator.current_device_idx(), (self.rank + 2) % self.world_size
)
self.destroy_pg()
@skip_if_lt_x_gpu(4)
def test_auto_set_device_from_local_rank(self):
mesh_tensor = torch.arange(4).reshape(2, 2)
self.assertTrue(not is_initialized())
# set the local rank to be different than the default world rank,
# DeviceMesh should respect LOCAL_RANK env var if it's set
local_rank = (self.rank + 1) % self.world_size
_set_env_var(
world_size=self.world_size,
rank=self.rank,
local_rank=local_rank,
)
DeviceMesh(self.device_type, mesh_tensor)
self.assertTrue(is_initialized())
# check that the device is set to the correct device
# and respect the LOCAL_RANK env var
self.assertEqual(torch.accelerator.current_device_idx(), local_rank)
self.destroy_pg()
@skip_if_lt_x_gpu(4)
def test_auto_set_device_from_heuristic(self):
mesh_tensor = torch.arange(4).reshape(2, 2)
self.assertTrue(not is_initialized())
_set_env_var(
world_size=self.world_size,
rank=self.rank,
)
with self.assertWarnsRegex(
UserWarning, "It seems like you did not set/select the default device"
):
DeviceMesh(self.device_type, mesh_tensor)
self.assertTrue(is_initialized())
# check that the device is set to the correct device
self.assertEqual(torch.accelerator.current_device_idx(), self.rank)
self.destroy_pg()
class DeviceMeshTest(DTensorTestBase):
@property
def world_size(self):
return 4
@skip_if_lt_x_gpu(4)
def test_init_process_group(self):
mesh_tensor = torch.arange(4).reshape(2, 2)
self.assertTrue(not is_initialized())
_set_env_var(world_size=self.world_size, rank=self.rank)
DeviceMesh(self.device_type, mesh_tensor)
self.assertTrue(is_initialized())
self.destroy_pg(self.rank)
@with_comms
@skip_if_lt_x_gpu(4)
def test_assert_invalid_mesh_tensor(self):
mesh = torch.arange(self.world_size).to(self.rank)
with self.assertRaises(ValueError):
DeviceMesh(self.device_type, mesh)
@with_comms()
def test_2d_mesh_non_eager_init_subgroup(self):
mesh_shape = (2, self.world_size // 2)
mesh_2d = init_device_mesh(self.device_type, mesh_shape)
self.assertEqual(mesh_2d.get_group(0).bound_device_id, None)
self.assertEqual(mesh_2d.get_group(1).bound_device_id, None)
# TODO: need to refactor the other tests in this file to test both
# eager_init=True and eager_init=False scenarios.
@with_comms(eager_init=True)
def test_2d_mesh_eager_init_subgroup(self):
mesh_shape = (2, self.world_size // 2)
mesh_2d = init_device_mesh(self.device_type, mesh_shape)
# when eager init is used, the subgroup is created from nccl comm split and
# there would be bound_device_id immediately assigned for the subgroup.
if self.backend == "nccl":
curr_device = torch.cuda.current_device()
self.assertEqual(mesh_2d.get_group(0).bound_device_id.index, curr_device)
self.assertEqual(mesh_2d.get_group(1).bound_device_id.index, curr_device)
@with_comms()
def test_get_group_and_get_all_groups(self):
mesh_shape = (2, self.world_size // 2)
mesh_2d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=("dp", "tp")
)
tp_mesh = mesh_2d["tp"]
dp_mesh = mesh_2d["dp"]
self.assertEqual(mesh_2d.get_group(0), mesh_2d.get_group("dp"))
self.assertEqual(mesh_2d.get_group(1), mesh_2d.get_group("tp"))
self.assertEqual(mesh_2d.get_group("dp"), dp_mesh.get_group())
self.assertEqual(mesh_2d.get_group("tp"), tp_mesh.get_group())
groups = mesh_2d.get_all_groups()
self.assertEqual(len(groups), 2)
self.assertTrue(tp_mesh.get_group() in groups)
self.assertTrue(dp_mesh.get_group() in groups)
@with_comms
def test_get_local_rank_raises_exception(self):
mesh_shape = (2, self.world_size // 2)
mesh_2d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=("dp", "tp")
)
with self.assertRaisesRegex(
RuntimeError,
"Optional kwarg `mesh_dim` needs to be specified when device_mesh.ndim > 1.",
):
mesh_2d.get_local_rank()
@with_comms
def test_get_local_rank(self):
mesh_shape = (2, self.world_size // 2)
mesh_2d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=("dp", "tp")
)
self.assertEqual(mesh_2d.get_local_rank("dp"), mesh_2d.get_local_rank(0))
self.assertEqual(mesh_2d.get_local_rank("tp"), mesh_2d.get_local_rank(1))
dp_mesh = mesh_2d["dp"]
tp_mesh = mesh_2d["tp"]
self.assertEqual(dp_mesh.get_local_rank(), mesh_2d.get_local_rank("dp"))
self.assertEqual(tp_mesh.get_local_rank(), mesh_2d.get_local_rank("tp"))
# Verify flattened mesh local rank correctness.
flattened_mesh = mesh_2d["dp", "tp"]._flatten()
self.assertEqual(flattened_mesh.get_local_rank(), self.rank)
@with_comms
def test_device_mesh_2d(self):
mesh_tensor = torch.arange(4).reshape(2, 2)
# construct a device mesh for self.device_type
mesh = DeviceMesh(self.device_type, mesh_tensor)
# check all dim groups
dim_to_subgroups = mesh.get_all_groups()
expected_ranks_by_dim = [[[0, 2], [1, 3]], [[0, 1], [2, 3]]]
for dim, dim_group in enumerate(dim_to_subgroups):
self.assertTrue(dim < 2)
dim_ranks = expected_ranks_by_dim[dim]
dim_group_size = get_world_size(dim_group)
self.assertIsInstance(dim_group, ProcessGroup)
self.assertEqual(dim_group_size, 2)
global_ranks = [
get_global_rank(dim_group, i) for i in range(dim_group_size)
]
current_rank_expected_group_ranks = (
dim_ranks[0] if self.rank in dim_ranks[0] else dim_ranks[1]
)
self.assertEqual(global_ranks, current_rank_expected_group_ranks)
@with_comms
def test_device_mesh_init_backend(self):
mesh = DeviceMesh(
self.device_type, torch.arange(10), _init_backend=False, _rank=5
)
with self.assertRaisesRegex(RuntimeError, "process groups not initialized!"):
mesh.get_group()
# coordinates should always been populated when init_backend is False, as whenever
# we call init_backend we should make sure the default pg already created
self.assertEqual(mesh.get_coordinate(), [5])
def test_fake_pg_device_mesh(self):
fake_store = FakeStore()
init_process_group("fake", store=fake_store, rank=0, world_size=self.world_size)
device_type = (
torch.accelerator.current_accelerator().type
if torch.accelerator.is_available()
else "cpu"
)
mesh = DeviceMesh(device_type, torch.arange(self.world_size))
local_tensor = torch.randn(2, 8)
global_tensor = funcol.all_gather_tensor(
local_tensor, gather_dim=0, group=(mesh, 0)
).wait()
self.assertEqual(global_tensor.shape, (self.world_size * 2, 8))
@with_comms
def test_from_group_with_global_pg(self):
# Simple test: check `from_group` from a mesh pg vs. directly
# initializing via `init_device_mesh`
ref_global_mesh = init_device_mesh(self.device_type, (self.world_size,))
mesh_pg = ref_global_mesh.get_group()
global_mesh = DeviceMesh.from_group(mesh_pg, self.device_type)
self.assertEqual(ref_global_mesh, global_mesh)
self.assertEqual(ref_global_mesh._dim_group_names, global_mesh._dim_group_names)
self.assertEqual(
ref_global_mesh._coordinate_on_dim, global_mesh._coordinate_on_dim
)
# Check when `mesh` is passed as well
global_mesh = DeviceMesh.from_group(
mesh_pg, self.device_type, mesh=torch.arange(self.world_size)
)
self.assertEqual(ref_global_mesh, global_mesh)
self.assertEqual(ref_global_mesh._dim_group_names, global_mesh._dim_group_names)
self.assertEqual(
ref_global_mesh._coordinate_on_dim, global_mesh._coordinate_on_dim
)
@with_comms
def test_from_group_with_invalid_mesh(self):
global_pg = _get_default_group()
global_pg_size = global_pg.size()
assert global_pg_size == 4, "Test assumes global world size of 4"
invalid_mesh = [[0, 1], [2, 3]] # 2D mesh when we need 1D
regex = r"Invalid mesh \[\[0, 1\], \[2, 3\]\] for ProcessGroup with ranks \[0, 1, 2, 3\]"
with self.assertRaisesRegex(ValueError, regex):
DeviceMesh.from_group(
global_pg, device_type, invalid_mesh, mesh_dim_names=("dim0", "dim1")
)
device_mesh = init_device_mesh(self.device_type, (2, 2))
groups = device_mesh.get_all_groups()
invalid_mesh = (0, 1, 2, 3) # 1D mesh when we need 2D
regex = r"Expects mesh with ndim equal to number of ProcessGroups but got mesh \[0, 1, 2, 3\] and 2 ProcessGroups"
with self.assertRaisesRegex(ValueError, regex):
DeviceMesh.from_group(
groups, self.device_type, invalid_mesh, mesh_dim_names=("dim0", "dim1")
)
def test_raises_invalid_device_type(self):
with self.assertRaisesRegex(
RuntimeError,
"Device type with index is not supported",
):
# test init_device_mesh with an invalid device type that contains a GPU index
mesh_shape = (2, self.world_size // 2)
init_device_mesh(
f"{device_type}:0", mesh_shape=mesh_shape, mesh_dim_names=("dp", "tp")
)
@with_comms
def test_set_mesh_dim_group_options(self):
device_type = (
torch.accelerator.current_accelerator().type
if torch.accelerator.is_available()
else "cpu"
)
_mesh_resources._set_mesh_dim_group_options(1, "fake", None)
mesh_tensor = torch.arange(4).reshape(2, 2)
mesh = DeviceMesh(device_type, mesh_tensor)
# Fake pg only have BackendType as BackendType::CUSTOM.
self.assertEqual(mesh.get_group(1)._get_backend_name(), "custom")
class DeviceMeshTestNDim(DTensorTestBase):
@property
def world_size(self):
return 8
@with_comms
def test_device_mesh_nd(self):
# construct a device mesh for self.device_type
mesh_tensor = torch.arange(8).reshape(2, 2, 2)
mesh = DeviceMesh(self.device_type, mesh_tensor)
# check all dim groups
dim_to_subgroups = mesh.get_all_groups()
for dim, dim_group in enumerate(dim_to_subgroups):
self.assertTrue(dim < mesh_tensor.ndim)
dim_ranks = mesh_tensor.swapdims(-1, dim).reshape(-1, 2)
dim_group_size = get_world_size(dim_group)
self.assertIsInstance(dim_group, ProcessGroup)
self.assertEqual(dim_group_size, 2)
global_ranks = [
get_global_rank(dim_group, i) for i in range(dim_group_size)
]
for ranks in dim_ranks:
if self.rank in ranks:
self.assertEqual(global_ranks, ranks.tolist())
@with_comms
def test_device_mesh_hash(self):
mesh_tensor_2d = torch.arange(8).reshape(4, 2)
mesh = DeviceMesh(self.device_type, mesh_tensor_2d)
mesh2 = DeviceMesh(self.device_type, mesh_tensor_2d)
self.assertEqual(hash(mesh), hash(mesh2))
mesh_tensor_3d = torch.arange(8).reshape(2, 2, 2)
mesh3 = DeviceMesh(self.device_type, mesh_tensor_3d)
self.assertNotEqual(hash(mesh), hash(mesh3))
self.assertNotEqual(hash(mesh2), hash(mesh3))
@with_comms
def test_get_local_rank_3d(self):
"""
If we have a 3D mesh and we want to apply dp, pp, tp to it,
mesh_dim_names = ["dp", "pp", "tp"], and the mesh tensor would be:
mesh_3d_tensor = [
[
[0, 1],
[2, 3],
],
[
[4, 5],
[6, 7],
]
]
"""
mesh_shape = (2, 2, 2)
mesh_3d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=("dp", "pp", "tp")
)
# tp_rank_0: [0, 2, 4, 6], tp_rank_1: [1, 3, 5, 7]
tp_rank = mesh_3d.get_local_rank("tp")
expected_tp_rank = self.rank % 2
self.assertEqual(tp_rank, expected_tp_rank)
# pp_rank_0: [0, 1, 4, 5], pp_rank_1: [2, 3, 6, 7]
pp_rank = mesh_3d.get_local_rank("pp")
expected_pp_rank = 0 if self.rank % 4 <= 1 else 1
self.assertEqual(pp_rank, expected_pp_rank)
# dp_rank_0: [0, 1, 2, 3], dp_rank_1: [4, 5, 6, 7]
dp_rank = mesh_3d.get_local_rank("dp")
expected_dp_rank = self.rank // 4
self.assertEqual(dp_rank, expected_dp_rank)
@with_comms
def test_device_mesh_parent_child_hash(self):
mesh_2d = init_device_mesh(
self.device_type, (2, self.world_size // 2), mesh_dim_names=("DP", "TP")
)
mesh_group_1 = torch.arange(0, self.world_size // 2)
mesh_group_2 = torch.arange(self.world_size // 2, self.world_size)
ep_mesh_1 = DeviceMesh(self.device_type, mesh_group_1)
ep_mesh_2 = DeviceMesh(self.device_type, mesh_group_2)
ep_mesh = ep_mesh_1 if self.rank < self.world_size // 2 else ep_mesh_2
# ep_mesh is considered different from mesh_2d["TP"]
self.assertEqual(mesh_2d["TP"]._flatten_mesh_list, ep_mesh._flatten_mesh_list)
self.assertEqual(mesh_2d["TP"]._layout, ep_mesh._layout)
self.assertEqual(mesh_2d["TP"].mesh.shape, ep_mesh.mesh.shape)
self.assertEqual(mesh_2d["TP"].device_type, ep_mesh.device_type)
self.assertNotEqual(mesh_2d["TP"].mesh_dim_names, ep_mesh.mesh_dim_names)
self.assertEqual(mesh_2d["TP"]._thread_id, ep_mesh._thread_id)
self.assertNotEqual(hash(mesh_2d["TP"]), hash(ep_mesh))
self.assertNotEqual(mesh_2d["TP"], ep_mesh)
another_mesh_1 = DeviceMesh(self.device_type, mesh_group_1)
another_mesh_2 = DeviceMesh(self.device_type, mesh_group_2)
another_mesh = (
another_mesh_1 if self.rank < self.world_size // 2 else another_mesh_2
)
# another_mesh is considered the same as ep_mesh
self.assertEqual(ep_mesh._flatten_mesh_list, another_mesh._flatten_mesh_list)
self.assertEqual(ep_mesh._layout, another_mesh._layout)
self.assertEqual(ep_mesh.mesh.shape, another_mesh.mesh.shape)
self.assertEqual(ep_mesh.device_type, another_mesh.device_type)
self.assertEqual(ep_mesh.mesh_dim_names, another_mesh.mesh_dim_names)
self.assertEqual(ep_mesh._thread_id, another_mesh._thread_id)
self.assertEqual(hash(ep_mesh), hash(another_mesh))
self.assertEqual(ep_mesh, another_mesh)
@with_comms
def test_from_group_with_mesh_shape_3d(self):
"""Tests ``from_group`` when passing ``mesh_shape`` as 3D."""
# Consider the following 3D scenario and we need to create the 2D HSDP mesh from it.
# - (2, 2, 2) ("dp_replicate", "dp_shard", "tp") mesh
mesh_shape = (2, 2, 2)
mesh_dim_names = ("dp_replicate", "dp_shard", "tp")
ref_mesh = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
dp_shard_group = ref_mesh["dp_shard"].get_group()
dp_replicate_group = ref_mesh["dp_replicate"].get_group()
dp_mesh = DeviceMesh.from_group(
[dp_replicate_group, dp_shard_group],
self.device_type,
mesh=ref_mesh.mesh[:, :, ref_mesh.get_local_rank(mesh_dim="tp")],
mesh_dim_names=("dp_replicate", "dp_shard"),
)
ref_mesh_dp_dim_group_names = ref_mesh._dim_group_names[:2]
self.assertEqual(ref_mesh_dp_dim_group_names, dp_mesh._dim_group_names[:2])
# Cannot check directly for mesh equality since parent meshes are not
# the same since the ref's parent mesh is 3D
self.assertEqual(dp_mesh["dp_replicate"].mesh, ref_mesh["dp_replicate"].mesh)
self.assertEqual(
dp_mesh["dp_replicate"]._dim_group_names,
ref_mesh["dp_replicate"]._dim_group_names,
)
self.assertEqual(dp_mesh["dp_shard"].mesh, ref_mesh["dp_shard"].mesh)
self.assertEqual(
dp_mesh["dp_shard"]._dim_group_names,
ref_mesh["dp_shard"]._dim_group_names,
)
@with_comms()
def test_from_group_with_mesh_shape_2d(self):
"""Tests ``from_group`` when passing ``mesh_shape`` as 2D."""
# Consider the following scenario where the process group has been created,
# but we need to create the 2D HSDP mesh from it later in the program.
mesh_shape = (2, 4)
mesh_dim_names = ("dp_replicate", "dp_shard")
ref_mesh = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
# Create shard groups (e.g. (0, 1, 2, 3), (4, 5, 6, 7))
# and assign the correct shard group to each rank
shard_rank_lists = (
list(range(0, self.world_size // 2)),
list(range(self.world_size // 2, self.world_size)),
)
shard_groups = (
new_group(shard_rank_lists[0]),
new_group(shard_rank_lists[1]),
)
current_shard_group = (
shard_groups[0] if self.rank in shard_rank_lists[0] else shard_groups[1]
)
# Create replicate groups (for example, (0, 4), (1, 5), (2, 6), (3, 7))
# and assign the correct replicate group to each rank
current_replicate_group = None
shard_factor = len(shard_rank_lists[0])
for i in range(self.world_size // 2):
replicate_group_ranks = list(range(i, self.world_size, shard_factor))
replicate_group = new_group(replicate_group_ranks)
if self.rank in replicate_group_ranks:
current_replicate_group = replicate_group
dp_mesh = DeviceMesh.from_group(
[not_none(current_replicate_group), current_shard_group],
self.device_type,
mesh=ref_mesh.mesh,
mesh_dim_names=("dp_replicate", "dp_shard"),
)
for mesh_dim_group, ref_mesh_dim_group in zip(
dp_mesh.get_all_groups(), ref_mesh.get_all_groups()
):
mesh_dim_group_ranks = dist.get_process_group_ranks(mesh_dim_group)
ref_mesh_dim_group_ranks = dist.get_process_group_ranks(ref_mesh_dim_group)
self.assertEqual(mesh_dim_group_ranks, ref_mesh_dim_group_ranks)
# check both the 2d mesh and the submeshes are exactly the same.
self.assertEqual(dp_mesh, ref_mesh)
self.assertEqual(dp_mesh["dp_replicate"], ref_mesh["dp_replicate"])
self.assertEqual(dp_mesh["dp_shard"], ref_mesh["dp_shard"])
class InitDeviceMeshTest(DTensorTestBase):
@property
def world_size(self):
return 8
@with_comms
def test_init_device_mesh(self):
mesh_shape = (2, 4)
mesh_dim_names = ("DP", "TP")
ref_mesh = DeviceMesh(
self.device_type,
torch.arange(8).view(mesh_shape),
mesh_dim_names=mesh_dim_names,
)
# test init_device_mesh with mesh_dim_names
mesh_2d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
self.assertEqual(mesh_2d, ref_mesh)
self.assertEqual(mesh_2d.mesh_dim_names, mesh_dim_names)
@with_comms
def test_raises_duplicate_mesh_dim_names(self):
with self.assertRaisesRegex(
RuntimeError,
"Each mesh_dim_name must be unique.",
):
init_device_mesh(
self.device_type,
(2, 4),
mesh_dim_names=["dp", "dp"],
)
@with_comms
def test_raises_mesh_shape_mesh_dim_names_mismatch(self):
with self.assertRaisesRegex(
RuntimeError,
"mesh_shape and mesh_dim_names should have same length!",
):
init_device_mesh(
self.device_type,
(8,),
mesh_dim_names=["dp", "tp"],
)
def _test_backend_override_argument_dict_with_idx_and_backend(self):
opts = FakeProcessGroup.Options()
opts.fake_option = 42
mesh = init_device_mesh(
self.device_type,
(2, 2, 2),
mesh_dim_names=("dp", "tp", "cp"),
backend_override={0: "fake", 2: ("fake", opts)},
)
def get_opts(mesh: DeviceMesh, dim_idx: int) -> C10dBackend.Options:
return (
mesh.get_group(dim_idx)
._get_backend(torch.device(f"{self.device_type}:{self.rank}"))
.options
)
# Fake pg only have BackendType as BackendType::CUSTOM.
self.assertEqual(mesh.get_group(0)._get_backend_name(), "custom")
self.assertNotEqual(mesh.get_group(1)._get_backend_name(), "custom")
self.assertEqual(mesh.get_group(2)._get_backend_name(), "custom")
self.assertIsNone(get_opts(mesh, 0))
self.assertEqual(get_opts(mesh, 2).fake_option, 42)
dp_tp_mesh = mesh["dp", "tp"]._flatten()
dp_cp_mesh = mesh["dp", "cp"]._flatten(backend_override="fake")
tp_cp_mesh = mesh["tp", "cp"]._flatten(backend_override=("fake", opts))
self.assertNotEqual(dp_tp_mesh.get_group(0)._get_backend_name(), "custom")
self.assertEqual(dp_cp_mesh.get_group(0)._get_backend_name(), "custom")
self.assertEqual(tp_cp_mesh.get_group(0)._get_backend_name(), "custom")
self.assertIsNone(get_opts(dp_cp_mesh, 0))
self.assertEqual(get_opts(tp_cp_mesh, 0).fake_option, 42)
@with_comms
def test_backend_override_argument_dict_with_idx_and_backend_lazy(self):
self._test_backend_override_argument_dict_with_idx_and_backend()
@with_comms(eager_init=True)
def test_backend_override_argument_dict_with_idx_and_backend_eager(self):
self._test_backend_override_argument_dict_with_idx_and_backend()
@with_comms(backend="fake")
def test_backend_override_argument_dict_with_name_and_options(self):
opts = FakeProcessGroup.Options()
opts.fake_option = 42
mesh = init_device_mesh(
self.device_type,
(2, 2, 2),
mesh_dim_names=("dp", "tp", "cp"),
backend_override={"tp": opts},
)
def get_opts(mesh: DeviceMesh, dim_idx: int) -> C10dBackend.Options:
return (
mesh.get_group(dim_idx)
._get_backend(torch.device(f"{self.device_type}:{self.rank}"))
.options
)
self.assertIsNone(get_opts(mesh, 0))
self.assertEqual(get_opts(mesh, 1).fake_option, 42)
self.assertIsNone(get_opts(mesh, 2))
dp_tp_mesh = mesh["dp", "tp"]._flatten()
dp_cp_mesh = mesh["dp", "cp"]._flatten(backend_override=opts)
self.assertIsNone(get_opts(dp_tp_mesh, 0))
self.assertEqual(get_opts(dp_cp_mesh, 0).fake_option, 42)
@with_comms
def test_backend_override_argument_errors(self):
with self.assertRaisesRegex(
RuntimeError,
"Found redundant dim index 0 and name dp in backend_override",
):
init_device_mesh(
self.device_type,
(2, 4),
mesh_dim_names=("dp", "tp"),
backend_override={"dp": "foo", 0: "bar"},
)
with self.assertRaisesRegex(
RuntimeError,
r"Found invalid keys in backend_override: got \['cp'\]",
):
init_device_mesh(
self.device_type,
(2, 4),
mesh_dim_names=("dp", "tp"),
backend_override={"cp": "foo"},
)
with self.assertRaisesRegex(
RuntimeError,
r"Found invalid keys in backend_override: got \[42\]",
):
init_device_mesh(
self.device_type,
(2, 4),
mesh_dim_names=("dp", "tp"),
backend_override={42: "bar"},
)
class TestDeviceMeshGetItem(DTensorTestBase):
@property
def world_size(self):
return 8
@with_comms
def test_raises_no_mesh_dim_found(self):
with self.assertRaisesRegex(
RuntimeError, "Cannot slice a DeviceMesh without mesh_dim_names!"
):
mesh = init_device_mesh(self.device_type, (2, 4))
mesh["DP"]
@with_comms
def test_raises_invalid_mesh_dim_name(self):
child_mesh_dim_name = ("PP",)
with self.assertRaisesRegex(KeyError, "Invalid mesh_dim_name"):
mesh_dim_names = ("DP", "TP")
mesh = init_device_mesh(
self.device_type,
(2, 4),
mesh_dim_names=mesh_dim_names,
)
mesh[child_mesh_dim_name]
@with_comms
def test_get_item_2d(self):
mesh_shape = (2, 4)
mesh_dim_names = ("DP", "TP")
mesh_2d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
pg_ranks_by_dim_name = {}
for mesh_dim_name in mesh_dim_names:
mesh_dim = mesh_dim_names.index(mesh_dim_name)
pg_ranks_by_dim_name[mesh_dim_name] = mesh_2d.mesh.swapdims(
-1, mesh_dim
).reshape(-1, mesh_2d.mesh.size(mesh_dim))
tp_mesh = mesh_2d["TP"]
tp_group_idx = self.rank // 4
self.assertEqual(tp_mesh.mesh, pg_ranks_by_dim_name["TP"][tp_group_idx])
dp_group_idx = self.rank % 4
self.assertEqual(mesh_2d["DP"].mesh, pg_ranks_by_dim_name["DP"][dp_group_idx])
@with_comms
def test_get_item_1d(self):
mesh = init_device_mesh(self.device_type, (8,), mesh_dim_names=("dp",))
# Make sure slicing out 1D mesh from a 1D mesh works.
dp_mesh = mesh["dp"]
self.assertEqual(dp_mesh, mesh)
with self.assertRaisesRegex(KeyError, "Invalid mesh_dim_name"):
dp_mesh = mesh["dim0"]
@with_comms
def test_get_item_3d(self):
mesh_shape = (2, 2, 2)
mesh_dim_names = ("Replicate", "Shard", "TP")
mesh_3d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
tp_group = [[0, 1], [2, 3], [4, 5], [6, 7]]
tp_group_idx = int(self.rank / 2)
self.assertEqual(mesh_3d["TP"].mesh.tolist(), tp_group[tp_group_idx])
shard_group = [[0, 2], [1, 3], [4, 6], [5, 7]]
shard_group_idx = self.rank % 2 + self.rank // 4 * 2
self.assertEqual(mesh_3d["Shard"].mesh.tolist(), shard_group[shard_group_idx])
replicate_group = [[0, 4], [1, 5], [2, 6], [3, 7]]
replicate_group_idx = self.rank % 4
self.assertEqual(
mesh_3d["Replicate"].mesh.tolist(), replicate_group[replicate_group_idx]
)
# We support both UX for nD slicing.
# mesh_3d[["Replicate", "Shard"]] or mesh_3d["Replicate", "Shard"]
hsdp_mesh_1 = mesh_3d[["Replicate", "Shard"]]
hsdp_mesh_2 = mesh_3d["Replicate", "Shard"]
hsdp_group = [[[0, 2], [4, 6]], [[1, 3], [5, 7]]]
hsdp_group_idx = self.rank % 2
self.assertEqual(hsdp_mesh_1.mesh.tolist(), hsdp_group[hsdp_group_idx])
self.assertEqual(hsdp_mesh_2.mesh.tolist(), hsdp_group[hsdp_group_idx])
self.assertEqual(hsdp_mesh_1, hsdp_mesh_2)
# Test slicing out 1D mesh from a sub-2D mesh.
shard_mesh = hsdp_mesh_2["Shard"]
self.assertEqual(shard_mesh.mesh.tolist(), shard_group[shard_group_idx])
replicate_mesh = hsdp_mesh_2["Replicate"]
self.assertEqual(
replicate_mesh.mesh.tolist(), replicate_group[replicate_group_idx]
)
@with_comms
def test_cache_and_reuse_submesh_slice_result(self):
mesh = init_device_mesh(self.device_type, (2, 4), mesh_dim_names=("dp", "tp"))
ref_pg_count = _world.group_count
# When we call the "dp" slice second time, it should not create any new pg.
# As we are just using the cached result so the pg count should be the same.
self.assertEqual(ref_pg_count, _world.group_count)
# When we call the "tp" slice, it should not create a new pg, as the "tp" slice would
# just reuse the parent mesh pg.
mesh["tp"]
self.assertEqual(_world.group_count, ref_pg_count)
@with_comms
def test_get_item_3d_noncontiguous_slicing(self):
mesh_shape = (2, 2, 2)
mesh_dim_names = ("dp", "pp", "cp")
mesh_3d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
# Slice order simply decides which mesh_dim sits on which mesh_dim.
# For dp_cp_mesh, cp mesh is the innermost dimension.
dp_cp_mesh = mesh_3d["dp", "cp"]
expected_mesh_tensor = (
torch.tensor([[0, 1], [4, 5]], dtype=torch.int)
if self.rank in (0, 1, 4, 5)
else torch.tensor([[2, 3], [6, 7]], dtype=torch.int)
)
dp_local_rank = dp_cp_mesh.get_local_rank("dp")
self.assertEqual(dp_cp_mesh.mesh, expected_mesh_tensor)
cp_mesh = mesh_3d["cp"]
# Check on the current dp_local_rank, whether the cp mesh tensor is the same.
self.assertEqual(dp_cp_mesh.mesh[dp_local_rank], cp_mesh.mesh)
with self.assertRaisesRegex(
KeyError,
"Invalid mesh_dim_names",
):
mesh_3d["cp", "dp"]
@with_comms
def test_flatten_mesh_1d(self):
mesh_shape = (4,)
mesh_dim_names = ("default",)
mesh_1d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
mesh_1d._flatten()
@with_comms
def test_flatten_mesh_3d(self):
mesh_shape = (2, 2, 2)
mesh_dim_names = ("dp", "cp", "tp")
mesh_3d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
# Test flatten into an existing mesh_dim_name inside the mesh
with self.assertRaisesRegex(
ValueError,
"already exists for submesh of the DeviceMesh",
):
mesh_3d._flatten("dp")
# Test flatten contiguous dims
dp_cp_mesh = mesh_3d["dp", "cp"]
flattened_dp_cp_mesh = dp_cp_mesh._flatten()
self.assertEqual(dp_cp_mesh.mesh.flatten(), flattened_dp_cp_mesh.mesh)
self.assertEqual(flattened_dp_cp_mesh.mesh_dim_names[0], "dp_cp")
self.assertEqual(flattened_dp_cp_mesh.get_group().group_desc, "mesh_dp_cp")
root_mesh = _mesh_resources.get_root_mesh(dp_cp_mesh)
self.assertEqual(root_mesh, mesh_3d)
flatten_mesh_layout = _mesh_resources.root_to_flatten_mapping[root_mesh][
"dp_cp"
]._layout
self.assertEqual(flatten_mesh_layout, flattened_dp_cp_mesh._layout)
self.assertEqual(
flattened_dp_cp_mesh._layout.global_ranks(8),
[[0, 2, 4, 6], [1, 3, 5, 7]],
)
ref_pg_count = _world.group_count
# Calling flatten again should not create a new pg.
flattened_dp_cp_mesh_2 = dp_cp_mesh._flatten()
self.assertEqual(flattened_dp_cp_mesh, flattened_dp_cp_mesh_2)
self.assertEqual(ref_pg_count, _world.group_count)
# Test flatten non-contiguous dims
dp_tp_mesh = mesh_3d["dp", "tp"]
flattened_dp_tp_mesh = dp_tp_mesh._flatten()
self.assertEqual(dp_tp_mesh.mesh.flatten(), flattened_dp_tp_mesh.mesh)
self.assertEqual(flattened_dp_tp_mesh.mesh_dim_names[0], "dp_tp")
root_mesh = _mesh_resources.get_root_mesh(dp_tp_mesh)
self.assertEqual(root_mesh, mesh_3d)
flatten_mesh_root_layout = _mesh_resources.root_to_flatten_mapping[root_mesh][
"dp_tp"
]._layout
self.assertEqual(flatten_mesh_root_layout, flattened_dp_tp_mesh._layout)
self.assertEqual(
flattened_dp_tp_mesh._layout.global_ranks(8),
[[0, 1, 4, 5], [2, 3, 6, 7]],
)
with self.assertRaisesRegex(
NotImplementedError,
"Currently, this only allows slicing out a contiguous flattened dim",
):
mesh_3d["dp_tp", "cp"]
# Test flatten with a flattened mesh_dim_name
cp_tp_mesh = mesh_3d["cp", "tp"]
cp_tp_mesh._flatten("dummy")
self.assertEqual(mesh_3d["dummy"].mesh_dim_names[0], "dummy")
# Test flatten into an existing mesh_dim_name inside the mesh
with self.assertRaisesRegex(
ValueError,
"dp already exists for submesh of the DeviceMesh",
):
mesh_3d._flatten("dp")
with self.assertRaisesRegex(
ValueError,
"Flatten mesh with mesh_dim_name dp_tp has been created before",
):
mesh_3d["cp", "tp"]._flatten("dp_tp")
@with_comms(eager_init=True)
def test_flatten_mesh_4d(self):
mesh_shape = (2, 2, 2, 1)
mesh_dim_names = ("dp_replicate", "dp_shard", "cp", "tp")
mesh_4d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
# flatten HSDP and CP into one mesh
dp_cp_mesh = mesh_4d[mesh_dim_names[:3]]._flatten("dp_cp")
# check flattened mesh integrity
self.assertEqual(mesh_4d["dp_cp"].mesh.flatten(), dp_cp_mesh.mesh)
# check flattened mesh dim names is correct
self.assertEqual(dp_cp_mesh.mesh_dim_names, ("dp_cp",))
# check flattened mesh dependency
self.assertEqual(_mesh_resources.get_root_mesh(dp_cp_mesh), mesh_4d)
@with_comms
def test_reconstruct_mesh_with_flatten_dim(self):
mesh_3d = init_device_mesh(
self.device_type, (2, 2, 2), mesh_dim_names=("replicate", "shard", "cp")
)
shard_cp_mesh = mesh_3d["shard", "cp"]._flatten()
hsdp_mesh = mesh_3d["replicate", "shard_cp"]
expected_mesh_tensor = torch.tensor(
[[0, 1, 2, 3], [4, 5, 6, 7]], dtype=torch.int
)
self.assertEqual(hsdp_mesh.mesh, expected_mesh_tensor)
self.assertEqual(shard_cp_mesh.get_group(), mesh_3d["shard_cp"].get_group())
self.assertEqual(
shard_cp_mesh.get_group(), mesh_3d.get_group(mesh_dim="shard_cp")
)
mesh_3d = init_device_mesh(
self.device_type, (2, 2, 2), mesh_dim_names=("dp", "cp", "tp")
)
dp_cp_mesh = mesh_3d["dp", "cp"]._flatten()
spmd_mesh = mesh_3d["dp_cp", "tp"]
expected_mesh_tensor = torch.tensor(
[[0, 1], [2, 3], [4, 5], [6, 7]], dtype=torch.int
)
self.assertEqual(spmd_mesh.mesh, expected_mesh_tensor)
self.assertEqual(dp_cp_mesh.get_group(), mesh_3d["dp_cp"].get_group())
self.assertEqual(dp_cp_mesh.get_group(), mesh_3d.get_group(mesh_dim="dp_cp"))
class TestMeshEnv(DTensorTestBase):
@property
def world_size(self):
return 8
@with_comms
def test_get_root_mesh(self):
mesh_3d = init_device_mesh(
self.device_type,
(2, 2, 2),
mesh_dim_names=("dp", "cp", "tp"),
)
dp_cp_mesh = mesh_3d["dp", "cp"]
dp_tp_mesh = mesh_3d["dp", "tp"]
cp_tp_mesh = mesh_3d["cp", "tp"]
dp_mesh = mesh_3d["dp"]
cp_mesh = mesh_3d["cp"]
tp_mesh = mesh_3d["tp"]
self.assertEqual(_mesh_resources.get_root_mesh(dp_cp_mesh), mesh_3d)
self.assertEqual(_mesh_resources.get_root_mesh(dp_tp_mesh), mesh_3d)
self.assertEqual(_mesh_resources.get_root_mesh(cp_tp_mesh), mesh_3d)
self.assertEqual(_mesh_resources.get_root_mesh(dp_mesh), mesh_3d)
self.assertEqual(_mesh_resources.get_root_mesh(cp_mesh), mesh_3d)
self.assertEqual(_mesh_resources.get_root_mesh(tp_mesh), mesh_3d)
@with_comms
def test_get_root_mesh_dim_exist(self):
mesh_shape = (2, self.world_size // 2)
mesh_dim_names = ("DP", "TP")
mesh_2d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
self.assertEqual(_mesh_resources.get_root_mesh_dim(mesh_2d["DP"]), 0)
self.assertEqual(_mesh_resources.get_root_mesh_dim(mesh_2d["TP"]), 1)
@with_comms
def test_get_root_mesh_dim_not_exist(self):
mesh_shape = (self.world_size,)
mesh = init_device_mesh(self.device_type, mesh_shape)
self.assertEqual(_mesh_resources.get_root_mesh_dim(mesh), None)
@with_comms
def test_get_mesh_dim_by_name(self):
mesh_shape = (2, self.world_size // 2)
mesh_dim_names = ("DP", "TP")
mesh_2d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
self.assertEqual(_mesh_resources.get_mesh_dim_by_name(mesh_2d, "DP"), 0)
self.assertEqual(_mesh_resources.get_mesh_dim_by_name(mesh_2d, "TP"), 1)
@with_comms
def test_get_all_submeshes(self):
mesh_2d = init_device_mesh(
self.device_type,
(2, 4),
mesh_dim_names=("replicate", "shard"),
)
all_submeshes = _mesh_resources._get_all_submeshes(mesh_2d, "replicate")
self.assertEqual(len(all_submeshes), 4)
self.assertEqual(
all(submesh.mesh.numel() == 2 for submesh in all_submeshes), True
)
@with_comms
def test_mesh_slice_fake_tensor_mode(self):
mesh_shape = (2, self.world_size // 2)
mesh_dim_names = ("DP", "TP")
mesh_2d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
with FakeTensorMode():
mesh_2d["DP"]
mesh_2d["TP"]
mesh_2d["DP", "TP"]
class DeviceMeshCollectiveTest(DTensorTestBase):
@property
def world_size(self):
return 8
@with_comms
def test_broadcast_1d(self):
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
local_tensor = torch.ones(3, 3, device=self.device_type) * self.rank
mesh_broadcast(local_tensor, mesh, mesh_dim=0)
self.assertEqual(local_tensor, torch.zeros(3, 3))
@with_comms
def test_scatter_1d(self):
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
scatter_tensor_shape = [3, 3, 3]
for scatter_dim in range(len(scatter_tensor_shape)):
shard_placement = Shard(scatter_dim)
scatter_tensor_shape[scatter_dim] *= self.world_size
# make the random seed same across rank
torch.manual_seed(0)
global_tensor = torch.randn(scatter_tensor_shape, device=self.device_type)
splitted_list, _ = shard_placement._split_tensor(
global_tensor, mesh.size(), with_padding=True, contiguous=True
)
recv_tensor = torch.empty_like(splitted_list[mesh.get_rank()])
# scatter on dim > 0 would generate non-contiguous tensor, verify that works
mesh_scatter(recv_tensor, splitted_list, mesh, mesh_dim=0)
self.assertEqual(recv_tensor, splitted_list[mesh.get_rank()])
@with_comms
def test_scatter_uneven(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
my_rank = device_mesh.get_rank()
tensor_to_split = torch.randn(
device_mesh.size() + 3, device_mesh.size() + 1, device=self.device_type
)
for shard_dim in range(tensor_to_split.ndim):
shard_placement = Shard(shard_dim)
tensor_to_scatter = tensor_to_split.clone()
tensor_splitted_list = list(
torch.chunk(tensor_to_split, self.world_size, dim=shard_dim)
)
for _ in range(self.world_size - len(tensor_splitted_list)):
tensor_splitted_list.append(torch.tensor([], device=self.device_type))
padded_tensor_list, pad_sizes = shard_placement._split_tensor(
tensor_to_scatter,
device_mesh.size(),
with_padding=True,
contiguous=True,
)
scattered_tensor = torch.empty_like(padded_tensor_list[my_rank])
mesh_scatter(scattered_tensor, padded_tensor_list, device_mesh, mesh_dim=0)
if pad_sizes[my_rank] != 0:
scattered_tensor = unpad_tensor(
scattered_tensor, shard_dim, pad_sizes[my_rank]
)
if scattered_tensor.numel() == 0:
# We need to check numel() instead of size if a tensor is ([]) after unpadding,
# since the size could be ([0, 8]) after unpadding.
self.assertEqual(
scattered_tensor.numel(), tensor_splitted_list[my_rank].numel()
)
else:
self.assertEqual(
scattered_tensor.size(), tensor_splitted_list[my_rank].size()
)
self.assertEqual(scattered_tensor, tensor_splitted_list[my_rank])
@with_comms
def test_all_gather_uneven(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
my_rank = device_mesh.get_rank()
tensor_to_split = torch.ones(
device_mesh.size() + 3,
device_mesh.size() + 1,
device=self.device_type,
)
for shard_dim in range(tensor_to_split.ndim):
shard_placement = Shard(shard_dim)
tensor_padded_list, pad_sizes = shard_placement._split_tensor(
tensor_to_split,
device_mesh.size(),
with_padding=True,
contiguous=True,
)
local_tensor = tensor_padded_list[my_rank]
big_tensor = funcol.all_gather_tensor(
local_tensor, gather_dim=shard_dim, group=(device_mesh, 0)
)
big_tensor_chunks = list(
torch.chunk(big_tensor, device_mesh.size(), dim=shard_dim)
)
unpadded_list = [
(
unpad_tensor(big_tensor, shard_dim, pad_sizes[i])
if pad_sizes[i] > 0
else big_tensor
)
for i, big_tensor in enumerate(big_tensor_chunks)
]
all_gathered_tensor = torch.cat(unpadded_list, dim=shard_dim)
self.assertEqual(all_gathered_tensor.size(), tensor_to_split.size())
self.assertEqual(all_gathered_tensor, tensor_to_split)
@with_comms
def test_reduce_scatter_contiguous(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
my_rank = device_mesh.get_rank()
# Init the tensor
step = self.world_size * 2
total_elem = step**2
tensor = torch.arange(0, total_elem).view(step, -1).to(device=self.device_type)
tensor = tensor * (my_rank + 1)
# Get non-contiguous tensor by slicing
tensor_to_reduce = tensor[::2, :2]
tensor_contiguous = tensor_to_reduce.clone().contiguous()
# Partial to Shard to trigger reduce_scatter
tensor_to_reduce = DTensor.from_local(
tensor_to_reduce, device_mesh, [_Partial()]
)
tensor_contiguous = DTensor.from_local(
tensor_contiguous, device_mesh, [_Partial()]
)
new_tensor = tensor_to_reduce.redistribute(device_mesh, [Shard(0)])
new_tensor_contiguous = tensor_contiguous.redistribute(device_mesh, [Shard(0)])
# The output for contiguous and non-contiguous tensors of the same value
# should return the same reducescatter value.
new_tensor_local = new_tensor._local_tensor
new_tensor_contiguous_local = new_tensor_contiguous._local_tensor
self.assertEqual(new_tensor_local, new_tensor_contiguous_local)
self.assertEqual(list(new_tensor_local.size()), [1, 2])
# Check the reduce numerical value
sum_base = (1 + self.world_size) * self.world_size / 2
first_elem = my_rank * sum_base * step * 2
expected_tensor = torch.tensor(
[[first_elem, first_elem + sum_base]],
dtype=new_tensor_local.dtype,
device=self.device_type,
)
self.assertEqual(new_tensor_local, expected_tensor)
@with_comms
def test_reduce_scatter_uneven(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
my_rank = device_mesh.get_rank()
tensor_to_split = (
torch.ones(
device_mesh.size() + 3,
device_mesh.size() + 1,
device=self.device_type,
)
* self.rank
)
for shard_dim in range(tensor_to_split.ndim):
shard_placement = Shard(shard_dim)
tensor_to_scatter = tensor_to_split.clone()
tensor_splitted_list = list(
torch.chunk(tensor_to_split, self.world_size, dim=shard_dim)
)
for _ in range(self.world_size - len(tensor_splitted_list)):
tensor_splitted_list.append(torch.tensor([], device=self.device_type))
padded_tensor_list, pad_sizes = shard_placement._split_tensor(
tensor_to_scatter,
device_mesh.size(),
with_padding=True,
contiguous=True,
)
tensor_to_reduce = torch.cat(padded_tensor_list, shard_dim)
res_num = ((0 + self.world_size - 1) * self.world_size) / 2
scattered_tensor = funcol.reduce_scatter_tensor(
tensor_to_reduce,
reduceOp="sum",
scatter_dim=shard_dim,
group=(device_mesh, 0),
)
# unpad scattered_tensor
if pad_sizes[my_rank] > 0:
scattered_tensor = unpad_tensor(
scattered_tensor, shard_dim, pad_sizes[my_rank]
)
if scattered_tensor.numel() == 0:
# We need to check numel() instead of size if a tensor is ([]) after unpadding,
# since the size could be ([0, 8]) after unpadding.
self.assertEqual(
scattered_tensor.numel(), tensor_splitted_list[my_rank].numel()
)
else:
self.assertEqual(
scattered_tensor.size(), tensor_splitted_list[my_rank].size()
)
self.assertEqual(
scattered_tensor,
torch.ones_like(tensor_splitted_list[my_rank]) * res_num,
)
@with_comms
def test_broadcast_nd(self):
mesh_tensor = torch.arange(8).reshape(2, 2, 2)
mesh = DeviceMesh(self.device_type, mesh_tensor)
local_tensor = torch.ones(3, 3, device=self.device_type) * self.rank
# check all dim groups
dim_to_subgroups = mesh.get_all_groups()
for dim, dim_group in enumerate(dim_to_subgroups):
dim_group_size = get_world_size(dim_group)
global_ranks = [
get_global_rank(dim_group, i) for i in range(dim_group_size)
]
cloned_local_tensor = local_tensor.clone()
mesh_broadcast(cloned_local_tensor, mesh, mesh_dim=dim)
res_num = global_ranks[0]
self.assertEqual(cloned_local_tensor, torch.ones(3, 3) * res_num)
@with_comms
def test_scatter_nd(self):
mesh_tensor = torch.arange(8).reshape(2, 2, 2)
mesh = DeviceMesh(self.device_type, mesh_tensor)
# check all dim groups
dim_to_subgroups = mesh.get_all_groups()
for dim, dim_group in enumerate(dim_to_subgroups):
dim_group_size = get_world_size(dim_group)
global_ranks = [
get_global_rank(dim_group, i) for i in range(dim_group_size)
]
scattered_tensors = [
torch.ones(3, 3, device=self.device_type) * global_rank
for global_rank in global_ranks
]
received_tensor = torch.empty_like(
scattered_tensors[mesh.get_coordinate()[dim]]
)
mesh_scatter(received_tensor, scattered_tensors, mesh, mesh_dim=dim)
self.assertEqual(received_tensor, torch.ones(3, 3) * self.rank)
class CuTeLayoutTest(TestCase):
def test_coalesce(self):
# ((3,2),(2,1)) -> (6,1)
l = _Layout((3, 2), (2, 1))
l = l.coalesce()
self.assertEqual(list(l.sizes_and_strides), [(6, 1)])
# ((2,12),(3,4),(4,1)) -> (24,1)
l = _Layout((2, 3, 4), (12, 4, 1))
l = l.coalesce()
self.assertEqual(list(l.sizes_and_strides), [(24, 1)])
def test_coalesce_non_coalescible(self):
# ((3,4),(2,1)) stays as-is (4 ≠ 2*1)
l = _Layout((3, 2), (4, 1))
l = l.coalesce()
self.assertEqual(list(l.sizes_and_strides), [(3, 4), (2, 1)])
def test_complement_n_group_layout(self):
# complement((4,2), 8) = (2,1); together form (8,1)
pg_layout = _Layout(
(4,),
(2,),
)
outer = pg_layout.complement(world_size=8)
self.assertEqual(list(outer.sizes_and_strides), [(2, 1)])
self.assertEqual(
pg_layout.all_ranks_from_zero(),
[0, 2, 4, 6],
)
groups = [
[o + i for i in pg_layout.all_ranks_from_zero()]
for o in outer.all_ranks_from_zero()
]
self.assertEqual(
groups,
[
[0, 2, 4, 6],
[1, 3, 5, 7],
],
)
self.assertEqual(
pg_layout.global_ranks(8),
[
[0, 2, 4, 6],
[1, 3, 5, 7],
],
)
# complement((4,2), 16) = ((2,8), (2,1)); together form (16,1)
outer = pg_layout.complement(world_size=16)
self.assertEqual(list(outer.sizes_and_strides), [(2, 8), (2, 1)])
self.assertEqual(
outer.all_ranks_from_zero(),
[0, 1, 8, 9],
)
self.assertEqual(
pg_layout.global_ranks(16),
[
[0, 2, 4, 6],
[1, 3, 5, 7],
[8, 10, 12, 14],
[9, 11, 13, 15],
],
)
# Complement ((2,4), (2,1)) under world_size=16 → complement ((2,8), (2,2))
pg_layout = _Layout((2, 2), (4, 1))
self.assertEqual(
pg_layout.all_ranks_from_zero(),
[0, 1, 4, 5],
)
outer = pg_layout.complement(world_size=16)
self.assertEqual(list(outer.sizes_and_strides), [(2, 8), (2, 2)])
self.assertEqual(
outer.all_ranks_from_zero(),
[0, 2, 8, 10],
)
self.assertEqual(
pg_layout.global_ranks(16),
[
[0, 1, 4, 5],
[2, 3, 6, 7],
[8, 9, 12, 13],
[10, 11, 14, 15],
],
)
# Test layout_to_global_ranks and layout_to_all_ranks_from_zero
pg_layout = _Layout((2, 2), (4, 2))
self.assertEqual(
pg_layout.all_ranks_from_zero(),
[0, 2, 4, 6],
)
self.assertEqual(
pg_layout.global_ranks(16),
[
[0, 2, 4, 6],
[1, 3, 5, 7],
[8, 10, 12, 14],
[9, 11, 13, 15],
],
)
outer = pg_layout.complement(world_size=16)
self.assertEqual(list(outer.sizes_and_strides), [(2, 8), (2, 1)])
# Test when stride is not monotonically decreasing, the complement layout
# is same as the one sorted its stride.
pg_layout_r = _Layout((2, 2), (2, 4))
outer = pg_layout_r.complement(world_size=16)
self.assertEqual(list(outer.sizes_and_strides), [(2, 8), (2, 1)])
self.assertEqual(
pg_layout_r.global_ranks(16),
[
[0, 4, 2, 6],
[1, 5, 3, 7],
[8, 12, 10, 14],
[9, 13, 11, 15],
],
)
# Test just all_ranks_from_zero and global_ranks.
pg_layout = _Layout((4,), (2,))
self.assertEqual(
pg_layout.all_ranks_from_zero(),
[0, 2, 4, 6],
)
self.assertEqual(
pg_layout.global_ranks(16),
[
[0, 2, 4, 6],
[1, 3, 5, 7],
[8, 10, 12, 14],
[9, 11, 13, 15],
],
)
def test_composition(self):
# self = ((4,2), (2,1)), l = (2,1) → self o l = (2,1)
orig_l = _Layout((4, 2), (2, 1))
right_l = _Layout((2,), (1,))
composed_layout = orig_l.composition(right_l)
self.assertEqual(list(composed_layout.sizes_and_strides), [(2, 1)])
self.assertEqual(
composed_layout.global_ranks(8),
[
[0, 1],
[2, 3],
[4, 5],
[6, 7],
],
)
# self = (4,2), l = (2,1) → self o l = (2,2)
orig_l = _Layout((4,), (2,))
right_l = _Layout((2,), (1,))
composed_layout = orig_l.composition(right_l)
self.assertEqual(list(composed_layout.sizes_and_strides), [(2, 2)])
self.assertEqual(
composed_layout.global_ranks(8),
[
[0, 2],
[1, 3],
[4, 6],
[5, 7],
],
)
# self = (4,2), l = ((2,2), (2,1)) → self o l = ((2,4), (2,2))
# This is to mimic the un-flatten from a 2D mesh to a 1D mesh.
right_l = _Layout((2, 2), (2, 1))
composed_layout = orig_l.composition(right_l)
self.assertEqual(list(composed_layout.sizes_and_strides), [(2, 4), (2, 2)])
self.assertEqual(
composed_layout[0].global_ranks(8),
[
[0, 4],
[1, 5],
[2, 6],
[3, 7],
],
)
self.assertEqual(
composed_layout[1].global_ranks(8),
[
[0, 2],
[1, 3],
[4, 6],
[5, 7],
],
)
# Error case.
orig_l = _Layout((4, 2), (4, 1))
with self.assertRaises(
AssertionError,
):
right_l = _Layout((2,), (3,))
orig_l.composition(right_l)
def test_check_non_overlap(self):
"""Test the check_non_overlap method for various layout configurations."""
# Test 1: Valid layout - no overlap
# sizes=(2,3), strides=(6,1) - stride 6 > span 3, so no overlap
layout1 = _Layout((2, 3), (6, 1))
self.assertTrue(layout1.check_non_overlap())
# Test 2: Invalid layout - overlap due to stride < previous span
# sizes=(2,3), strides=(2,1) - stride 2 < span 3, causes overlap
layout2 = _Layout((2, 3), (2, 1))
self.assertFalse(layout2.check_non_overlap())
# Test 3: Invalid layout - duplicate strides
# sizes=(2,3), strides=(1,1) - same stride, causes overlap
layout3 = _Layout((2, 3), (1, 1))
self.assertFalse(layout3.check_non_overlap())
# Test 4: Valid layout - single dimension
layout4 = _Layout((4,), (1,))
self.assertTrue(layout4.check_non_overlap())
# Test 5: Valid layout - exact boundary case
# sizes=(2,3), strides=(3,1) - stride 3 == span 3, valid
layout5 = _Layout((2, 3), (3, 1))
self.assertTrue(layout5.check_non_overlap())
# Test 6: Valid layout - multi-dimensional with proper spacing
layout6 = _Layout((2, 2, 2), (8, 4, 1))
self.assertTrue(layout6.check_non_overlap())
# Test 7: Valid layout - stride not ordered
layout7 = _Layout((2, 2, 2), (4, 1, 2))
self.assertTrue(layout7.check_non_overlap())
# Test 8: Valid layout - Interleaved but no overlap
layout8 = _Layout((3, 2), (2, 3))
self.assertTrue(layout8.check_non_overlap())
def test_remap_to_tensor(self):
"""Test the remap_to_tensor method for various scenarios."""
# Test 1: Consecutive ranks, full world - should return logical groups directly
original_mesh = torch.tensor([[0, 1], [2, 3]], dtype=torch.int)
layout1 = _Layout((2, 2), (2, 1)) # row-major 2x2
result1 = layout1.remap_to_tensor(original_mesh)
expected1 = torch.tensor([[[0, 1], [2, 3]]], dtype=torch.int)
self.assertEqual(result1, expected1)
# Test 2: Non-consecutive ranks - should map to actual ranks
original_mesh = torch.tensor([[10, 20], [30, 40]], dtype=torch.int)
layout2 = _Layout((2, 2), (2, 1))
result2 = layout2.remap_to_tensor(original_mesh)
expected2 = torch.tensor([[[10, 20], [30, 40]]], dtype=torch.int)
self.assertEqual(result2, expected2)
# Test 4: 1D layout with consecutive ranks
original_mesh = torch.tensor([0, 1, 2, 3], dtype=torch.int)
layout4 = _Layout((4,), (1,))
result4 = layout4.remap_to_tensor(original_mesh)
expected4 = torch.tensor([[0, 1, 2, 3]], dtype=torch.int)
self.assertEqual(result4, expected4)
# Test 5: Complex strided layout with non-consecutive ranks
original_mesh = torch.tensor([5, 10, 15, 20], dtype=torch.int)
layout5 = _Layout((2, 2), (2, 1))
result5 = layout5.remap_to_tensor(original_mesh)
expected5 = torch.tensor([[[5, 10], [15, 20]]], dtype=torch.int)
self.assertEqual(result5, expected5)
# Test 6: Tensor Cute representation of a 2D mesh
original_mesh = torch.tensor([[0, 2], [1, 3]], dtype=torch.int)
layout6 = _Layout((2, 2), (1, 2)) # column-major style
result6 = layout6.remap_to_tensor(original_mesh)
expected6 = torch.tensor([[[0, 1], [2, 3]]], dtype=torch.int)
self.assertEqual(result6, expected6)
# Test 7: Layout with different stride pattern
original_mesh = torch.tensor([0, 2, 1, 4], dtype=torch.int)
layout7 = _Layout((2, 2), (1, 2)) # column-major style
result7 = layout7.remap_to_tensor(original_mesh)
expected7 = torch.tensor([[[0, 1], [2, 4]]], dtype=torch.int)
self.assertEqual(result7, expected7)
if __name__ == "__main__":
run_tests()