mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
The list of added operators: add_, addcmul, arange, baddbmm…, bmm, clamp, div, div_, gelu, index_add, logical_and, mul_, sub_, topk, where This pull request is the same as a previous one: https://github.com/pytorch/pytorch/pull/145121 which inadvertently got deleted while merging. Pull Request resolved: https://github.com/pytorch/pytorch/pull/145625 Approved by: https://github.com/jeffdaily
63 lines
1.6 KiB
Python
63 lines
1.6 KiB
Python
import numpy
|
|
|
|
import operator_benchmark as op_bench
|
|
|
|
import torch
|
|
|
|
|
|
"""Microbenchmarks for index_add_ operator."""
|
|
|
|
|
|
configs_short = op_bench.config_list(
|
|
attr_names=["M", "N", "K", "dim"],
|
|
attrs=[[8, 32, 1, 0], [256, 512, 1, 1], [512, 512, 1, 2]],
|
|
cross_product_configs={"device": ["cpu"], "dtype": [torch.float]},
|
|
tags=["short"],
|
|
)
|
|
|
|
|
|
configs_long = op_bench.cross_product_configs(
|
|
M=[1, 128, 1024],
|
|
N=[2, 256, 512],
|
|
K=[1, 2, 8],
|
|
dim=[0, 1, 2],
|
|
device=["cpu", "cuda"],
|
|
dtype=[torch.float],
|
|
tags=["long"],
|
|
)
|
|
|
|
|
|
class IndexAddBenchmark(op_bench.TorchBenchmarkBase):
|
|
def init(self, M, N, K, dim, dtype, device):
|
|
# creating the original tensor
|
|
tensor = torch.rand(M, N, K, dtype=dtype, device=device)
|
|
|
|
# creating index
|
|
index_max_len = tensor.shape[dim]
|
|
index_len = numpy.random.randint(1, index_max_len + 1)
|
|
index = torch.tensor(
|
|
numpy.random.choice(index_max_len, index_len, replace=False), device=device
|
|
)
|
|
|
|
src_dims = [M, N, K]
|
|
src_dims[dim] = index_len
|
|
source = torch.rand(*src_dims, dtype=dtype, device=device)
|
|
|
|
self.inputs = {
|
|
"tensor": tensor,
|
|
"dim": dim,
|
|
"index": index,
|
|
"source": source,
|
|
}
|
|
self.set_module_name("index_add_")
|
|
|
|
def forward(self, tensor, dim, index, source):
|
|
return tensor.index_add_(dim, index, source)
|
|
|
|
|
|
op_bench.generate_pt_test(configs_short + configs_long, IndexAddBenchmark)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
op_bench.benchmark_runner.main()
|