Files
pytorch/benchmarks/operator_benchmark/pt/bmm_test.py
Arash Pakbin f3ddc08ddc Additional operators in operator benchmark (#145625)
The list of added operators:
add_, addcmul, arange, baddbmm…, bmm, clamp, div, div_, gelu, index_add, logical_and, mul_, sub_, topk, where

This pull request is the same as a previous one: https://github.com/pytorch/pytorch/pull/145121 which inadvertently got deleted while merging.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145625
Approved by: https://github.com/jeffdaily
2025-01-26 19:20:02 +00:00

89 lines
2.3 KiB
Python

import operator_benchmark as op_bench
import torch
"""Microbenchmarks for batched operators."""
# binary ops (two inputs in shape of batches)
batched_binary_ops = op_bench.op_list(
attr_names=["op_name", "op_func"],
attrs=[
["bmm", torch.bmm],
],
)
batched_binary_configs_short = op_bench.config_list(
attr_names=["B", "M", "N", "K"],
attrs=[
[2, 1, 8, 2],
[128, 64, 32, 64],
],
cross_product_configs={
"device": ["cpu"],
"dtype": [torch.float, torch.bfloat16],
},
tags=["short"],
)
batched_binary_configs_long = op_bench.cross_product_configs(
B=[1, 128],
M=[8, 128],
N=[32, 64],
K=[4, 256],
device=["cpu", "cuda"],
dtype=[torch.float, torch.bfloat16],
tags=["long"],
)
class BatchedBinaryOpBenchmark(op_bench.TorchBenchmarkBase):
def init(self, B, M, N, K, device, dtype, op_func):
self.inputs = {
"batch1": torch.rand((B, M, N), device=device).to(dtype=dtype),
"batch2": torch.rand((B, N, K), device=device).to(dtype=dtype),
}
self.op_func = op_func
def forward(self, batch1, batch2):
return self.op_func(batch1, batch2)
op_bench.generate_pt_tests_from_op_list(
batched_binary_ops,
batched_binary_configs_short + batched_binary_configs_long,
BatchedBinaryOpBenchmark,
)
# batched ternary ops
batched_ternary_ops = op_bench.op_list(
attr_names=["op_name", "op_func"],
attrs=[["baddbmm", torch.baddbmm]],
)
class BatchedTernaryOpBenchmark(op_bench.TorchBenchmarkBase):
def init(self, B, M, N, K, device, dtype, op_func):
self.inputs = {
"input_": torch.rand((B, M, K), device=device).to(dtype=dtype),
"batch1": torch.rand((B, M, N), device=device).to(dtype=dtype),
"batch2": torch.rand((B, N, K), device=device).to(dtype=dtype),
}
self.op_func = op_func
def forward(self, input_, batch1, batch2):
return self.op_func(input_, batch1, batch2)
op_bench.generate_pt_tests_from_op_list(
batched_ternary_ops,
batched_binary_configs_short + batched_binary_configs_long,
BatchedTernaryOpBenchmark,
)
# TODO: does it automatically register new scripts?
if __name__ == "__main__":
op_bench.benchmark_runner.main()