mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
The list of added operators: add_, addcmul, arange, baddbmm…, bmm, clamp, div, div_, gelu, index_add, logical_and, mul_, sub_, topk, where This pull request is the same as a previous one: https://github.com/pytorch/pytorch/pull/145121 which inadvertently got deleted while merging. Pull Request resolved: https://github.com/pytorch/pytorch/pull/145625 Approved by: https://github.com/jeffdaily
141 lines
3.2 KiB
Python
141 lines
3.2 KiB
Python
import operator_benchmark as op_bench
|
|
|
|
import torch
|
|
|
|
|
|
"""Microbenchmarks for inplace binary operators."""
|
|
|
|
|
|
def add_(in1, in2):
|
|
return in1.add_(in2)
|
|
|
|
|
|
def sub_(in1, in2):
|
|
return in1.sub_(in2)
|
|
|
|
|
|
def div_(in1, in2):
|
|
return in1.div_(in2)
|
|
|
|
|
|
def mul_(in1, in2):
|
|
return in1.mul_(in2)
|
|
|
|
|
|
def copy_(in1, in2):
|
|
return in1.copy_(in2)
|
|
|
|
|
|
######
|
|
# Benchmark ops performance for inplace add + sub + mul + copy
|
|
######
|
|
binary_ops_list = op_bench.op_list(
|
|
attr_names=["op_name", "op_func"],
|
|
attrs=[
|
|
["add_", add_],
|
|
["sub_", sub_],
|
|
# ["div_", div_ ], # done separately below because of data type
|
|
["mul_", mul_],
|
|
["copy_", copy_],
|
|
],
|
|
)
|
|
|
|
binary_short_configs = op_bench.config_list(
|
|
attr_names=["M", "N", "K"],
|
|
attrs=[
|
|
[1, 1, 1],
|
|
[64, 64, 64],
|
|
[64, 64, 128],
|
|
],
|
|
cross_product_configs={
|
|
"device": ["cpu", "cuda"],
|
|
"dtype_one": [torch.int32],
|
|
"dtype_two": [torch.int32],
|
|
},
|
|
tags=["short"],
|
|
)
|
|
|
|
binary_long_configs = op_bench.cross_product_configs(
|
|
M=[8, 128],
|
|
N=[32, 64],
|
|
K=[256, 512],
|
|
device=["cpu", "cuda"],
|
|
dtype_one=[torch.int8, torch.int32],
|
|
dtype_two=[torch.int8, torch.int32],
|
|
tags=["long"],
|
|
)
|
|
|
|
|
|
class InpBinaryOpBenchmark(op_bench.TorchBenchmarkBase):
|
|
def init(self, M, N, K, device, dtype_one, dtype_two, op_func):
|
|
self.inputs = {
|
|
"input_one": torch.randn(M, N, K, device=device).to(dtype=dtype_one),
|
|
"input_two": torch.randn(M, N, K, device=device).to(dtype=dtype_two),
|
|
}
|
|
self.op_func = op_func
|
|
|
|
def forward(self, input_one, input_two):
|
|
return self.op_func(input_one, input_two)
|
|
|
|
|
|
op_bench.generate_pt_tests_from_op_list(
|
|
binary_ops_list, binary_short_configs + binary_long_configs, InpBinaryOpBenchmark
|
|
)
|
|
|
|
|
|
######
|
|
# Benchmark ops performance for inplace div
|
|
######
|
|
# Performing division inplace benchmarks separately, as data needs to be float
|
|
binary_ops_list = op_bench.op_list(
|
|
attr_names=["op_name", "op_func"],
|
|
attrs=[
|
|
["div_", div_],
|
|
],
|
|
)
|
|
|
|
binary_short_configs = op_bench.config_list(
|
|
attr_names=["M", "N", "K"],
|
|
attrs=[
|
|
[1, 1, 1],
|
|
[64, 64, 64],
|
|
[64, 64, 128],
|
|
],
|
|
cross_product_configs={
|
|
"device": ["cpu", "cuda"],
|
|
"dtype_one": [torch.float],
|
|
"dtype_two": [torch.float],
|
|
},
|
|
tags=["short"],
|
|
)
|
|
|
|
binary_long_configs = op_bench.cross_product_configs(
|
|
M=[8, 128],
|
|
N=[32, 64],
|
|
K=[256, 512],
|
|
device=["cpu", "cuda"],
|
|
dtype_one=[torch.float, torch.float],
|
|
dtype_two=[torch.float, torch.float],
|
|
tags=["long"],
|
|
)
|
|
|
|
|
|
class InpBinaryOpBenchmark(op_bench.TorchBenchmarkBase):
|
|
def init(self, M, N, K, device, dtype_one, dtype_two, op_func):
|
|
self.inputs = {
|
|
"input_one": torch.randn(M, N, K, device=device).to(dtype=dtype_one),
|
|
"input_two": torch.randn(M, N, K, device=device).to(dtype=dtype_two),
|
|
}
|
|
self.op_func = op_func
|
|
|
|
def forward(self, input_one, input_two):
|
|
return self.op_func(input_one, input_two)
|
|
|
|
|
|
op_bench.generate_pt_tests_from_op_list(
|
|
binary_ops_list, binary_short_configs + binary_long_configs, InpBinaryOpBenchmark
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
op_bench.benchmark_runner.main()
|