Files
pytorch/test/dynamo/test_input_attr_tracking.py
Aaron Gokaslan 3555ebb63d [BE]: Update ruff to 0.11.8 (#153249)
Fixes a ton of false negatives throughout the codebase. RUFF also properly validates NOQA comments now and most of the changes are fixing typos there or removing filewide flake8 suppressions that were also silencing ruff issues.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/153249
Approved by: https://github.com/cyyever, https://github.com/albanD, https://github.com/seemethere
2025-05-12 18:30:52 +00:00

404 lines
14 KiB
Python

# Owner(s): ["module: dynamo"]
# flake8: noqa: B950
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._dynamo.testing
from torch._dynamo.testing import (
CompileCounter,
CompileCounterWithBackend,
EagerAndRecordGraphs,
normalize_gm,
)
class TestInputAttrTracking(torch._dynamo.test_case.TestCase):
def test_tensor_property_on_tensor(self):
def fn(x):
return x * x.y
x_ = torch.randn([2, 2])
y_ = torch.randn([2, 2])
x_.y = y_
eager_result = fn(x_)
graph = None
def grab_graph_backend(gm, inps):
nonlocal graph
graph = gm
return gm
fn = torch.compile(fn, backend=grab_graph_backend, fullgraph=True)
compile_result = fn(x_)
self.assertEqual(eager_result, compile_result)
placeholder_cnt = 0
for node in graph.graph.nodes:
if node.op == "placeholder":
placeholder_cnt += 1
# We want to be very sure that this lifts y to inputs!
self.assertEqual(placeholder_cnt, 2)
def test_tensor_property_assigned_on_tensor(self):
def fn(x, y):
x.y = y
return x * x.y
x_ = torch.randn([2, 2])
y_ = torch.randn([2, 2])
eager_result = fn(x_, y_)
graph = None
def grab_graph_backend(gm, inps):
nonlocal graph
graph = gm
return gm
fn = torch.compile(fn, backend=grab_graph_backend, fullgraph=True)
compile_result = fn(x_, y_)
self.assertEqual(eager_result, compile_result)
placeholder_cnt = 0
for node in graph.graph.nodes:
if node.op == "placeholder":
placeholder_cnt += 1
# y is already an input
self.assertEqual(placeholder_cnt, 2)
def test_const_property_on_tensor(self):
def fn(x):
return x * x.y
x_ = torch.randn([2, 2])
y_ = 4
x_.y = y_
eager_result = fn(x_)
graph = None
def grab_graph_backend(gm, inps):
nonlocal graph
graph = gm
return gm
fn = torch.compile(fn, backend=grab_graph_backend, fullgraph=True)
compile_result = fn(x_)
self.assertEqual(eager_result, compile_result)
placeholder_cnt = 0
for node in graph.graph.nodes:
if node.op == "placeholder":
placeholder_cnt += 1
# We want to be very sure that this does not lifts y to inputs, as its a const
self.assertEqual(placeholder_cnt, 1)
def test_const_property_assigned_on_tensor(self):
def fn(x, y):
x.y = y
return x * x.y
x_ = torch.randn([2, 2])
y_ = 4
eager_result = fn(x_, y_)
fn = torch.compile(fn, backend="eager", fullgraph=True)
compile_result = fn(x_, y_)
self.assertEqual(eager_result, compile_result)
def test_guards_correctly_property_assigned_on_tensor_type_change(self):
def fn(x, y):
x.y = y
return x * x.y
x_ = torch.randn([2, 2])
fn = torch.compile(fn, backend="eager", fullgraph=True)
compile_result_const = fn(x_, 4)
self.assertEqual(compile_result_const, x_ * 4)
y = torch.randn([2, 2])
compile_result_tensor = fn(x_, y)
self.assertEqual(compile_result_tensor, x_ * y)
def test_guards_correctly_property_assigned_on_tensor_type_change_inductor(self):
def fn(x, y):
x.y = y
return x * x.y
x_ = torch.randn([2, 2])
fn = torch.compile(fn, backend="inductor", fullgraph=True)
compile_result_const = fn(x_, 4)
self.assertEqual(compile_result_const, x_ * 4)
y = torch.randn([2, 2])
compile_result_tensor = fn(x_, y)
self.assertEqual(compile_result_tensor, x_ * y)
def test_complex_attr_access_without_graph_breaks(self):
def fn(x, y, z):
for t in x:
t.y = y
t.z = y * z
new_y = 1
new_z = 1
for t in x:
new_y = t.y * new_y
new_z = t.z * new_z
return new_y, new_z
x_0 = torch.randn([2, 2])
x_1 = torch.randn([2, 2])
x_2 = torch.randn([2, 2])
x = [x_0, x_1, x_2]
y = torch.randn([2, 2])
z = 5
eager_result = fn(x, y, z)
counter = CompileCounter()
fn = torch.compile(fn, backend=counter, fullgraph=True)
compile_result = fn(x, y, z)
self.assertEqual(compile_result, eager_result)
self.assertEqual(counter.frame_count, 1)
self.assertEqual(counter.op_count, 9)
# Graph for reference
# ------------- ------ ----------------------- ------------------------------------ --------
# placeholder l_y_ L_y_ () {}
# call_function mul <built-in function mul> (l_y_, 5) {}
# call_function mul_1 <built-in function mul> (l_y_, 5) {}
# call_function mul_2 <built-in function mul> (l_y_, 5) {}
# call_function mul_3 <built-in function mul> (l_y_, 1) {}
# call_function mul_4 <built-in function mul> (mul, 1) {}
# call_function mul_5 <built-in function mul> (l_y_, mul_3) {}
# call_function mul_6 <built-in function mul> (mul_1, mul_4) {}
# call_function mul_7 <built-in function mul> (l_y_, mul_5) {}
# call_function mul_8 <built-in function mul> (mul_2, mul_6) {}
# output output output ((mul_7, mul_8, mul, mul_1, mul_2),) {}
def test_complex_attr_access_with_graph_breaks(self):
def fn(x, y, z):
for t in x:
t.y = y
t.z = y * z
print("Break!")
new_y = 1
new_z = 1
for t in x:
new_y = t.y * new_y
new_z = t.z * new_z
return new_y, new_z
x_0 = torch.randn([2, 2])
x_1 = torch.randn([2, 2])
x_2 = torch.randn([2, 2])
x = [x_0, x_1, x_2]
y = torch.randn([2, 2])
z = 5
eager_result = fn(x, y, z)
counter = CompileCounter()
fn = torch.compile(fn, backend=counter, fullgraph=False)
compile_result = fn(x, y, z)
self.assertEqual(compile_result, eager_result)
self.assertEqual(counter.frame_count, 2)
self.assertEqual(counter.op_count, 9)
# Graph for reference
# ------------- ------ ----------------------- ---------------------- --------
# placeholder l_y_ L_y_ () {}
# call_function mul <built-in function mul> (l_y_, 5) {}
# call_function mul_1 <built-in function mul> (l_y_, 5) {}
# call_function mul_2 <built-in function mul> (l_y_, 5) {}
# output output output ((mul, mul_1, mul_2),) {}
# [GRAPH BREAK!]
# ------------- ------- ----------------------- ----------------- --------
# placeholder l_x_0_y L_x_0_y () {}
# placeholder l_x_0_z L_x_0_z () {}
# placeholder l_x_1_y L_x_1_y () {}
# placeholder l_x_1_z L_x_1_z () {}
# placeholder l_x_2_y L_x_2_y () {}
# placeholder l_x_2_z L_x_2_z () {}
# call_function mul <built-in function mul> (l_x_0_y, 1) {}
# call_function mul_1 <built-in function mul> (l_x_0_z, 1) {}
# call_function mul_2 <built-in function mul> (l_x_1_y, mul) {}
# call_function mul_3 <built-in function mul> (l_x_1_z, mul_1) {}
# call_function mul_4 <built-in function mul> (l_x_2_y, mul_2) {}
# call_function mul_5 <built-in function mul> (l_x_2_z, mul_3) {}
# output output output ((mul_4, mul_5),) {}
def test_complex_attr_access_with_inline_reconstruct(self):
def inline_test_fn(x, y, z):
print("f")
return x.a + y.a + z.a
def fn(x, y, z):
x.a = 1
y.a = 2
z.a = 3
mult = inline_test_fn(x, y, z)
y = y * mult
x = x * mult
return x, y
x = torch.randn([2, 2])
y = torch.randn([2, 2])
z = torch.randn([2, 2])
eager_result = fn(x, y, z)
counter = CompileCounter()
fn = torch.compile(fn, backend=counter, fullgraph=False)
compile_result = fn(x, y, z)
self.assertEqual(compile_result, eager_result)
self.assertEqual(counter.frame_count, 1)
self.assertEqual(counter.op_count, 2)
# Graph for reference
# __compiled_fn_2 <eval_with_key>.0 opcode name target args kwargs
# ------------- ------ ----------------------- --------------- --------
# placeholder l_x_ L_x_ () {}
# placeholder l_y_ L_y_ () {}
# call_function mul <built-in function mul> (l_y_, 6) {}
# call_function mul_1 <built-in function mul> (l_x_, 6) {}
# output output output ((mul_1, mul),) {}
def test_set_data_on_input_tensor(self):
def fn(x, y):
x.data = y.data
if x.size() == y.size():
return x * y
else:
return y * y
x = torch.randn([5, 5])
y = torch.randn([2, 2])
eager_result = fn(x, y)
eager_and_record = EagerAndRecordGraphs()
counter = CompileCounterWithBackend(eager_and_record)
fn = torch.compile(fn, backend=counter, fullgraph=True)
compile_result = fn(x, y)
graph = eager_and_record.graphs[0]
actual = normalize_gm(graph.print_readable(False))
self.assertEqual(compile_result, eager_result)
self.assertEqual(counter.frame_count, 1)
self.assertEqual(counter.op_count, 6)
self.assertExpectedInline(
actual,
"""\
class GraphModule(torch.nn.Module):
def forward(self, L_y_: "f32[2, 2]", L_x_: "f32[2, 2]"):
l_y_ = L_y_
l_x_ = L_x_
_get_data_attr: "f32[2, 2]" = torch._C._autograd._get_data_attr(l_y_)
_set_grad_enabled = torch._C._set_grad_enabled(False); _set_grad_enabled = None
set_: "f32[2, 2]" = torch_Tensor_set_(l_x_, _get_data_attr); _get_data_attr = None
_set_grad_enabled_1 = torch._C._set_grad_enabled(True); _set_grad_enabled_1 = None
_lower_version_count_by_1 = torch__dynamo_variables_builtin__lower_version_count_by_1(set_); set_ = _lower_version_count_by_1 = None
mul: "f32[2, 2]" = l_x_ * l_y_; l_x_ = l_y_ = None
return (mul,)
""",
)
# Note - this does not actually get captured in the graph yet.
# The plan of record is to introduce a set_data op, entirely subsume the operation into a call_function
# in the fx graph, and let aot_autograd handle it.
def test_set_data_on_scoped_tensor(self):
def fn(x):
z = torch.zeros([4, 4])
z.data = x.data
if x.size() == z.size():
return z * x
else:
return x
x = torch.randn([5, 5])
eager_result = fn(x)
counter = CompileCounter()
fn = torch.compile(fn, backend=counter, fullgraph=False)
compile_result = fn(x)
self.assertEqual(compile_result, eager_result)
self.assertEqual(counter.frame_count, 2)
self.assertEqual(counter.op_count, 3)
def test_set_data_on_user_defined_class_input_tensor(self):
class MyUserDefinedClass:
def __init__(self, x, y):
self.x = x
self.y = y
def do_some_setattr_stuff(self):
self.z = x * y
self.a = x + x
return self.z * self.a
x = torch.randn([5, 5])
y = torch.randn([5, 5])
mudc_1 = MyUserDefinedClass(x, y)
eager_result = mudc_1.do_some_setattr_stuff()
counter = CompileCounter()
mudc_2 = MyUserDefinedClass(x, y)
do_some_setattr_stuff = torch.compile(
mudc_2.do_some_setattr_stuff, backend=counter, fullgraph=True
)
compile_result = do_some_setattr_stuff()
self.assertEqual(compile_result, eager_result)
self.assertEqual(counter.frame_count, 1)
self.assertEqual(counter.op_count, 3)
# Graph for reference
# __compiled_fn_0 <eval_with_key>.0 opcode name target args kwargs
# ------------- ------ ----------------------- -------------------- --------
# placeholder l_x_ L_x_ () {}
# placeholder l_y_ L_y_ () {}
# call_function mul <built-in function mul> (l_x_, l_y_) {}
# call_function add <built-in function add> (l_x_, l_x_) {}
# call_function mul_1 <built-in function mul> (mul, add) {}
# output output output ((mul_1, mul, add),) {}
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()