mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Summary: This one had a tricky usage of `torch.symeig` that had to be replaced. I tested the replacement locally though. Pull Request resolved: https://github.com/pytorch/pytorch/pull/57732 Reviewed By: bdhirsh Differential Revision: D28328189 Pulled By: mruberry fbshipit-source-id: 7f000fcbf2b029beabc76e5a89ff158b47977474
102 lines
2.3 KiB
Python
102 lines
2.3 KiB
Python
"""Various linear algebra utility methods for internal use.
|
|
|
|
"""
|
|
|
|
from torch import Tensor
|
|
import torch
|
|
|
|
from typing import Optional, Tuple
|
|
|
|
|
|
def is_sparse(A):
|
|
"""Check if tensor A is a sparse tensor"""
|
|
if isinstance(A, torch.Tensor):
|
|
return A.layout == torch.sparse_coo
|
|
|
|
error_str = "expected Tensor"
|
|
if not torch.jit.is_scripting():
|
|
error_str += " but got {}".format(type(A))
|
|
raise TypeError(error_str)
|
|
|
|
def get_floating_dtype(A):
|
|
"""Return the floating point dtype of tensor A.
|
|
|
|
Integer types map to float32.
|
|
"""
|
|
dtype = A.dtype
|
|
if dtype in (torch.float16, torch.float32, torch.float64):
|
|
return dtype
|
|
return torch.float32
|
|
|
|
|
|
def matmul(A: Optional[Tensor], B: Tensor) -> Tensor:
|
|
"""Multiply two matrices.
|
|
|
|
If A is None, return B. A can be sparse or dense. B is always
|
|
dense.
|
|
"""
|
|
if A is None:
|
|
return B
|
|
if is_sparse(A):
|
|
return torch.sparse.mm(A, B)
|
|
return torch.matmul(A, B)
|
|
|
|
|
|
def conjugate(A):
|
|
"""Return conjugate of tensor A.
|
|
|
|
.. note:: If A's dtype is not complex, A is returned.
|
|
"""
|
|
if A.is_complex():
|
|
return A.conj()
|
|
return A
|
|
|
|
|
|
def transpose(A):
|
|
"""Return transpose of a matrix or batches of matrices.
|
|
"""
|
|
ndim = len(A.shape)
|
|
return A.transpose(ndim - 1, ndim - 2)
|
|
|
|
|
|
def transjugate(A):
|
|
"""Return transpose conjugate of a matrix or batches of matrices.
|
|
"""
|
|
return conjugate(transpose(A))
|
|
|
|
|
|
def bform(X: Tensor, A: Optional[Tensor], Y: Tensor) -> Tensor:
|
|
"""Return bilinear form of matrices: :math:`X^T A Y`.
|
|
"""
|
|
return matmul(transpose(X), matmul(A, Y))
|
|
|
|
|
|
def qform(A: Optional[Tensor], S: Tensor):
|
|
"""Return quadratic form :math:`S^T A S`.
|
|
"""
|
|
return bform(S, A, S)
|
|
|
|
|
|
def basis(A):
|
|
"""Return orthogonal basis of A columns.
|
|
"""
|
|
if A.is_cuda:
|
|
# torch.orgqr is not available in CUDA
|
|
Q = torch.linalg.qr(A).Q
|
|
else:
|
|
Q = torch.orgqr(*torch.geqrf(A))
|
|
return Q
|
|
|
|
|
|
def symeig(A: Tensor, largest: Optional[bool] = False) -> Tuple[Tensor, Tensor]:
|
|
"""Return eigenpairs of A with specified ordering.
|
|
"""
|
|
if largest is None:
|
|
largest = False
|
|
E, Z = torch.linalg.eigh(A, UPLO='U')
|
|
# assuming that E is ordered
|
|
if largest:
|
|
E = torch.flip(E, dims=(-1,))
|
|
Z = torch.flip(Z, dims=(-1,))
|
|
return E, Z
|