mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116519 Approved by: https://github.com/cpuhrsch
677 lines
28 KiB
Python
677 lines
28 KiB
Python
# Owner(s): ["module: sparse"]
|
|
import itertools
|
|
import random
|
|
import unittest
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from torch.sparse.semi_structured import (
|
|
_DTYPE_TO_SEMI_STRUCTURED_SPARSE_CONFIG,
|
|
SparseSemiStructuredTensor,
|
|
to_sparse_semi_structured,
|
|
)
|
|
|
|
from torch.testing import make_tensor
|
|
|
|
from torch.testing._internal.common_device_type import (
|
|
dtypes,
|
|
instantiate_device_type_tests,
|
|
)
|
|
|
|
from torch.testing._internal.common_dtype import all_types_and_complex
|
|
import torch._dynamo.test_case
|
|
|
|
from torch.testing._internal.common_utils import (
|
|
parametrize,
|
|
run_tests,
|
|
subtest,
|
|
TestCase,
|
|
TEST_WITH_ROCM,
|
|
IS_WINDOWS,
|
|
)
|
|
|
|
from torch.utils._triton import has_triton
|
|
|
|
CUSPARSELT_NUM_ALG_IDS = 4
|
|
|
|
SEMI_STRUCTURED_SUPPORTED_DTYPES = _DTYPE_TO_SEMI_STRUCTURED_SPARSE_CONFIG.keys()
|
|
SEMI_STRUCTURED_SUPPORTED_BACKENDS = []
|
|
|
|
_IS_SM8X = False
|
|
if torch.cuda.is_available():
|
|
_IS_SM8X = torch.cuda.get_device_capability(0)[0] == 8
|
|
SEMI_STRUCTURED_SUPPORTED_BACKENDS.append("cutlass")
|
|
|
|
# check if cslt is available for now using this:
|
|
# TODO when we add cusparselt as a backend, we can update this to be use torch.cusparselt.is_available()
|
|
try:
|
|
torch._cslt_compress(torch.ones(128, 256).cuda())
|
|
SEMI_STRUCTURED_SUPPORTED_BACKENDS.append("cusparselt")
|
|
except Exception:
|
|
pass
|
|
|
|
|
|
|
|
def rand_sparse_semi_structured_mask(
|
|
r, c, dtype=torch.float16, device="cuda", choice=None
|
|
):
|
|
"""
|
|
This function returns a 1:2 sparse matrix of size (r, c).
|
|
Note that this means this matrix will also be 2:4 and 4:8 sparse as well.
|
|
"""
|
|
|
|
choices = [[0, 1], [1, 0]]
|
|
mask_entries = [choice or random.choice(choices) for i in range(r * c // 2)]
|
|
|
|
return (
|
|
torch.tensor(mask_entries, dtype=dtype, device=device)
|
|
.reshape(r, c)
|
|
.contiguous()
|
|
)
|
|
|
|
def rand_sparse_semi_structured(r, c, dtype, device, choice=None):
|
|
pattern = '2by4' if dtype != torch.float32 else '1by2'
|
|
if pattern == '1by2':
|
|
ksparse = 2
|
|
choices = [
|
|
[0, 1],
|
|
[1, 0]
|
|
]
|
|
elif pattern == '2by4':
|
|
ksparse = 4
|
|
choices = [
|
|
[1, 1, 0, 0],
|
|
[1, 0, 1, 0],
|
|
[1, 0, 0, 1],
|
|
[0, 1, 1, 0],
|
|
[0, 1, 0, 1],
|
|
[0, 0, 1, 1]
|
|
]
|
|
mask_entries = [choice or random.choice(choices) for i in range(r * c // ksparse)]
|
|
mask = torch.tensor(mask_entries, dtype=torch.bool).view(r, c).to(device)
|
|
dense = make_tensor(r, c, dtype=dtype, device=device)
|
|
dense[dense == 0] = 1 # To prevent zeros except where mask applied.
|
|
dense = dense.masked_fill(~mask, 0)
|
|
return dense
|
|
|
|
def rand_sparse_semi_structured_all_patterns(r, c, dtype, device):
|
|
pattern = '2by4' if dtype != torch.float32 else '1by2'
|
|
if pattern == '1by2':
|
|
ksparse = 2
|
|
choices = [
|
|
[[0, 0], [0, 1]],
|
|
[[0, 1], [0, 1]],
|
|
[[1, 0], [1, 0]],
|
|
[[1, 1], [1, 0]]
|
|
]
|
|
elif pattern == '2by4':
|
|
ksparse = 4
|
|
choices = [
|
|
[[0, 0, 0, 0], [0, 0, 1, 1]],
|
|
[[0, 0, 0, 1], [0, 0, 1, 1]],
|
|
[[0, 0, 1, 0], [0, 0, 1, 1]],
|
|
[[0, 0, 1, 1], [0, 0, 1, 1]],
|
|
[[0, 1, 0, 0], [0, 1, 1, 0]],
|
|
[[0, 1, 0, 1], [0, 1, 0, 1]],
|
|
[[0, 1, 1, 0], [0, 1, 1, 0]],
|
|
[[0, 1, 1, 1], [0, 1, 0, 1]],
|
|
[[1, 0, 0, 0], [1, 0, 1, 0]],
|
|
[[1, 0, 0, 1], [1, 0, 0, 1]],
|
|
[[1, 0, 1, 0], [1, 0, 1, 0]],
|
|
[[1, 0, 1, 1], [1, 0, 0, 1]],
|
|
[[1, 1, 0, 0], [1, 1, 0, 0]],
|
|
[[1, 1, 0, 1], [1, 1, 0, 0]],
|
|
[[1, 1, 1, 0], [1, 1, 0, 0]],
|
|
[[1, 1, 1, 1], [1, 1, 0, 0]],
|
|
]
|
|
mask_rows = [random.randint(0, len(choices) - 1) for i in range(r * c // ksparse)]
|
|
|
|
COL_INV, COL_VAL = 0, 1
|
|
mask_entries_inv = [choices[i][COL_INV] for i in mask_rows]
|
|
mask_entries_val = [choices[i][COL_VAL] for i in mask_rows]
|
|
mask_inv = torch.tensor(mask_entries_inv, dtype=torch.bool).view(r, c).to(device)
|
|
mask_val = torch.tensor(mask_entries_val, dtype=torch.bool).view(r, c).to(device)
|
|
dense = make_tensor(r, c, dtype=dtype, device=device)
|
|
dense[dense == 0] = 1 # To prevent zeros except where mask below applied.
|
|
dense_inv = dense.masked_fill(~mask_inv, 0)
|
|
dense_val = dense_inv.masked_fill(~mask_val, 0)
|
|
|
|
return dense_inv, dense_val
|
|
|
|
|
|
class SparseSemiStructuredTensorCompileTest(torch._dynamo.test_case.TestCase):
|
|
|
|
def setUp(self):
|
|
if not _IS_SM8X:
|
|
self.skipTest('Only runs on SM80')
|
|
super().setUp()
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
|
|
@staticmethod
|
|
def _test_mlp_contiguous_relu_compile(backend, dense_input_shape):
|
|
"""
|
|
Test nn.Linear + .contiguous() + nn.ReLU with SparseSemiStructuredTensor + torch.compile
|
|
We expect:
|
|
(1) The sparse tensor subclass should turn nn.Linear into `aten._structured_sparse_linear` + `aten.contiguous()`
|
|
(2) Inductor should fuse the .contiguous() call into the relu
|
|
"""
|
|
|
|
class Model(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.linear = nn.Linear(128, 128)
|
|
|
|
def forward(self, x):
|
|
x = self.linear(x)
|
|
x = x.contiguous()
|
|
return torch.nn.functional.relu(x)
|
|
|
|
SparseSemiStructuredTensor._FORCE_CUTLASS = backend == "cutlass"
|
|
|
|
input = torch.rand(dense_input_shape, device="cuda").half()
|
|
model = Model().eval().cuda().half()
|
|
mod_linear = model.linear
|
|
m, n = mod_linear.weight.shape
|
|
mask = torch.Tensor([1, 0, 0, 1]).tile((m, n // 4)).bool().cuda()
|
|
# set masked weight
|
|
mod_linear.weight = nn.Parameter(mod_linear.weight * mask)
|
|
|
|
dense_result = model(input)
|
|
mod_linear.weight = nn.Parameter(to_sparse_semi_structured(mod_linear.weight))
|
|
sparse_result = model(input)
|
|
|
|
model = torch.compile(model, backend="inductor", fullgraph=True)
|
|
sparse_compile_result = model(input)
|
|
|
|
# test that sparse_compile_result and dense_result are numerically close
|
|
assert torch.allclose(dense_result, sparse_compile_result, rtol=1e-3, atol=1e-3)
|
|
# assert sparse and sparse_compile have the same strides,
|
|
# as meta registrations may return contiguous tensors when the output is transposed
|
|
# https://github.com/pytorch/pytorch/pull/114477
|
|
assert sparse_result.stride() == sparse_compile_result.stride()
|
|
|
|
@unittest.skipIf(IS_WINDOWS, "torch.compile not supported on windows")
|
|
@unittest.skipIf("cusparselt" not in SEMI_STRUCTURED_SUPPORTED_BACKENDS, "cusparselt not supported on this machine")
|
|
def test_mlp_contiguous_relu_compile_cusparselt(self):
|
|
"""
|
|
test for cuSPASRELt meta registrations (_cslt_sparse_mm) + torch.compile
|
|
"""
|
|
for dense_input_shape in [(1, 128), (64, 128), (128, 128), (64, 128, 128)]:
|
|
SparseSemiStructuredTensorCompileTest._test_mlp_contiguous_relu_compile("cusparselt", dense_input_shape)
|
|
|
|
@unittest.skipIf(IS_WINDOWS, "torch.compile not supported on windows")
|
|
def test_mlp_contiguous_relu_compile_cutlass(self):
|
|
"""
|
|
test for CUTLASS meta registrations (_sparse_semi_structured_linear) + torch.compile
|
|
"""
|
|
for dense_input_shape in [(1, 128), (64, 128), (128, 128), (64, 128, 128)]:
|
|
SparseSemiStructuredTensorCompileTest._test_mlp_contiguous_relu_compile("cutlass", dense_input_shape)
|
|
|
|
|
|
class TestSparseSemiStructured(TestCase):
|
|
|
|
def setUp(self):
|
|
if not _IS_SM8X:
|
|
self.skipTest('Only runs on SM80')
|
|
|
|
@dtypes(*SEMI_STRUCTURED_SUPPORTED_DTYPES)
|
|
@parametrize("backend", SEMI_STRUCTURED_SUPPORTED_BACKENDS)
|
|
def test_to_sparse_semi_structured(self, dtype, backend):
|
|
SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass")
|
|
|
|
A = rand_sparse_semi_structured_mask(128, 256, dtype=dtype)
|
|
A_sparse = to_sparse_semi_structured(A)
|
|
|
|
assert A.shape == A_sparse.shape
|
|
assert A.device == A_sparse.device
|
|
assert A.dtype == A_sparse.dtype
|
|
|
|
assert isinstance(A, torch.Tensor)
|
|
assert isinstance(A_sparse, SparseSemiStructuredTensor)
|
|
|
|
|
|
@dtypes(*SEMI_STRUCTURED_SUPPORTED_DTYPES)
|
|
@parametrize("dense_input_shape", [(128, 1), (128, 64), (128, 128)])
|
|
@parametrize("backend", SEMI_STRUCTURED_SUPPORTED_BACKENDS)
|
|
def test_mm_sparse_first_NN(self, dense_input_shape, dtype, device, backend):
|
|
"""
|
|
Ensure torch.mm(A_sparse, B) is correct for float16 and will throw error for int8
|
|
"""
|
|
SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass")
|
|
|
|
A = rand_sparse_semi_structured_mask(256, 128, dtype=dtype)
|
|
A_sparse = to_sparse_semi_structured(A)
|
|
|
|
B = torch.rand(dense_input_shape, device=A_sparse.device).to(dtype)
|
|
|
|
# Currently we don't support int matmul on GPU, so evaluate on CPU and copy over
|
|
if dtype is torch.int8:
|
|
# This should fail
|
|
if backend == "cutlass":
|
|
with self.assertRaisesRegex(RuntimeError, "two_four_sgemm_cutlass_dispatch_layouts"):
|
|
sparse_result = torch.mm(A_sparse, B)
|
|
else:
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
"CUDA error: operation not supported when calling `cusparseLtMatmulDescriptorInit"):
|
|
sparse_result = torch.mm(A_sparse, B)
|
|
else:
|
|
dense_result = torch.mm(A, B)
|
|
sparse_result = torch.mm(A_sparse, B)
|
|
assert torch.allclose(dense_result, sparse_result, rtol=1e-3, atol=1e-3)
|
|
|
|
@dtypes(*SEMI_STRUCTURED_SUPPORTED_DTYPES)
|
|
@parametrize("dense_input_shape", [(1, 128), (64, 128), (128, 128)])
|
|
@parametrize("backend", SEMI_STRUCTURED_SUPPORTED_BACKENDS)
|
|
def test_mm_sparse_first_NT(self, dense_input_shape, dtype, device, backend):
|
|
"""
|
|
Ensure torch.mm(A_sparse, B.t()) is correct for float16/bfloat16
|
|
and will throw an error for int8 + padding
|
|
"""
|
|
SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass")
|
|
|
|
A = rand_sparse_semi_structured_mask(256, 128, dtype=dtype)
|
|
A_sparse = to_sparse_semi_structured(A)
|
|
|
|
B = torch.rand(dense_input_shape, device=A_sparse.device).to(dtype)
|
|
|
|
# Currently we don't support int matmul on GPU, so evaluate on CPU and copy over
|
|
if dtype is torch.int8 and dense_input_shape in {(1, 128)}:
|
|
# padding with int8 throws an error because transposing B yields a contiguous output
|
|
# and row-row 2:4 sparse @ dense with NN is not supported by cuSPARSELt or CUTLASS.
|
|
if backend == "cutlass":
|
|
with self.assertRaisesRegex(RuntimeError, "two_four_sgemm_cutlass_dispatch_layouts"):
|
|
sparse_result = torch.mm(A_sparse, B.t())
|
|
else:
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
"CUDA error: operation not supported when calling `cusparseLtMatmulDescriptorInit"):
|
|
sparse_result = torch.mm(A_sparse, B.t())
|
|
elif dtype is torch.int8:
|
|
# test transpose
|
|
dense_result = torch.mm(A.cpu(), B.t().cpu()).to(device, dtype=torch.int8)
|
|
sparse_result = torch.mm(A_sparse, B.t())
|
|
assert torch.allclose(dense_result, sparse_result, rtol=1e-3, atol=1e-3)
|
|
else:
|
|
# test transpose
|
|
dense_result = torch.mm(A, B.t())
|
|
sparse_result = torch.mm(A_sparse, B.t())
|
|
assert torch.allclose(dense_result, sparse_result, rtol=1e-3, atol=1e-3)
|
|
|
|
@dtypes(*SEMI_STRUCTURED_SUPPORTED_DTYPES)
|
|
@parametrize("dense_input_shape", [(1, 128), (64, 128), (128, 128)])
|
|
@parametrize("backend", SEMI_STRUCTURED_SUPPORTED_BACKENDS)
|
|
def test_mm_sparse_first_TN(self, dtype, dense_input_shape, device, backend):
|
|
"""
|
|
Ensure torch.mm(A_sparse.t(), B) throws error
|
|
"""
|
|
SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass")
|
|
A = rand_sparse_semi_structured_mask(128, 256, dtype=dtype)
|
|
A_sparse = to_sparse_semi_structured(A)
|
|
|
|
B = torch.rand(dense_input_shape, device=A_sparse.device).to(dtype)
|
|
|
|
with self.assertRaisesRegex(
|
|
NotImplementedError,
|
|
r"arg0: SparseSemiStructuredTensor\(.*transposed=True",
|
|
):
|
|
torch.mm(A_sparse.t(), B)
|
|
|
|
@dtypes(*SEMI_STRUCTURED_SUPPORTED_DTYPES)
|
|
@parametrize("dense_input_shape", [(1, 128), (64, 128), (128, 128)])
|
|
@parametrize("backend", SEMI_STRUCTURED_SUPPORTED_BACKENDS)
|
|
def test_mm_sparse_second_NT(self, dense_input_shape, dtype, device, backend):
|
|
"""
|
|
Ensure torch.mm(A, B_sparse.t()) is correct
|
|
"""
|
|
SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass")
|
|
B = rand_sparse_semi_structured_mask(256, 128, dtype=dtype)
|
|
B_sparse = to_sparse_semi_structured(B)
|
|
|
|
A = torch.rand(dense_input_shape, device=B_sparse.device).to(dtype)
|
|
|
|
# Currently we don't support int matmul on GPU, so evaluate on CPU and copy over
|
|
if dtype is torch.int8:
|
|
dense_result = torch.mm(A.cpu(), B.t().cpu()).to(device, dtype=torch.int8)
|
|
sparse_result = torch.mm(A, B_sparse.t())
|
|
else:
|
|
dense_result = torch.mm(A, B.t())
|
|
sparse_result = torch.mm(A, B_sparse.t())
|
|
|
|
assert torch.allclose(dense_result, sparse_result, rtol=1e-3, atol=1e-3)
|
|
|
|
@dtypes(*SEMI_STRUCTURED_SUPPORTED_DTYPES)
|
|
@parametrize("dense_input_shape", [(1, 128), (64, 128), (128, 128)])
|
|
@parametrize("backend", SEMI_STRUCTURED_SUPPORTED_BACKENDS)
|
|
def test_mm_sparse_second_NN(self, dense_input_shape, dtype, device, backend):
|
|
"""
|
|
Ensure torch.mm(A, B_sparse) throws error
|
|
"""
|
|
SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass")
|
|
B = rand_sparse_semi_structured_mask(256, 128, dtype=dtype)
|
|
B_sparse = to_sparse_semi_structured(B)
|
|
|
|
A = torch.rand(dense_input_shape, device=B_sparse.device).to(dtype)
|
|
|
|
with self.assertRaisesRegex(
|
|
NotImplementedError,
|
|
r"arg1: SparseSemiStructuredTensor\(.*transposed=False",
|
|
):
|
|
sparse_result = torch.mm(A, B_sparse)
|
|
|
|
@parametrize("dense_input_shape", [(1, 128), (64, 128), (128, 128), (64, 128, 128)])
|
|
@parametrize("inference_mode", [subtest(True), subtest(False)])
|
|
@parametrize("backend", SEMI_STRUCTURED_SUPPORTED_BACKENDS)
|
|
def test_linear(self, dense_input_shape, inference_mode, device, backend):
|
|
"""
|
|
Test nn.Linear has the same numerics
|
|
"""
|
|
SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass")
|
|
input = torch.rand((dense_input_shape), device=device).half()
|
|
model = nn.Linear(128, 256).to(device).half()
|
|
m, n = model.weight.shape
|
|
mask = rand_sparse_semi_structured_mask(m, n, device=device, dtype=torch.bool)
|
|
# set masked weight
|
|
model.weight = nn.Parameter(model.weight * mask)
|
|
|
|
dense_result = model(input)
|
|
|
|
model.weight = nn.Parameter(to_sparse_semi_structured(model.weight))
|
|
|
|
if inference_mode:
|
|
with torch.inference_mode():
|
|
sparse_result = model(input)
|
|
else:
|
|
sparse_result = model(input)
|
|
|
|
assert torch.allclose(dense_result, sparse_result, rtol=1e-3, atol=1e-3)
|
|
|
|
@parametrize("dense_input_shape", [(1, 128), (64, 128), (128, 128), (64, 128, 128)])
|
|
@parametrize("backend", SEMI_STRUCTURED_SUPPORTED_BACKENDS)
|
|
def test_mlp(self, device, dense_input_shape, backend):
|
|
SparseSemiStructuredTensor._FORCE_CUTLASS = backend == "cutlass"
|
|
input = torch.rand(dense_input_shape, device=device).half()
|
|
model = (
|
|
nn.Sequential(
|
|
nn.Linear(128, 256),
|
|
nn.Linear(256, 128),
|
|
)
|
|
.half()
|
|
.to(device)
|
|
)
|
|
|
|
for i in range(2):
|
|
m, n = model[i].weight.shape
|
|
mask = rand_sparse_semi_structured_mask(
|
|
m, n, device=device, dtype=torch.bool
|
|
)
|
|
# set masked weight
|
|
model[i].weight = nn.Parameter(model[i].weight * mask)
|
|
|
|
dense_result = model(input)
|
|
|
|
for i in range(2):
|
|
model[i].weight = nn.Parameter(to_sparse_semi_structured(model[i].weight))
|
|
|
|
sparse_result = model(input)
|
|
|
|
assert torch.allclose(dense_result, sparse_result, rtol=1e-3, atol=1e-3)
|
|
|
|
@parametrize("backend", SEMI_STRUCTURED_SUPPORTED_BACKENDS)
|
|
def test_values(self, backend):
|
|
SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass")
|
|
A = rand_sparse_semi_structured_mask(128, 128)
|
|
A_sparse = to_sparse_semi_structured(A)
|
|
assert A_sparse.values().shape == (128, 64)
|
|
assert (A_sparse.values() == 1).all()
|
|
|
|
@parametrize("backend", SEMI_STRUCTURED_SUPPORTED_BACKENDS)
|
|
def test_indices(self, backend):
|
|
SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass")
|
|
A = rand_sparse_semi_structured_mask(128, 128)
|
|
A_sparse = to_sparse_semi_structured(A)
|
|
assert A_sparse.indices().shape == (128, 8)
|
|
|
|
@dtypes(*SEMI_STRUCTURED_SUPPORTED_DTYPES)
|
|
@parametrize("backend", SEMI_STRUCTURED_SUPPORTED_BACKENDS)
|
|
def test_min_sparse_shape(self, dtype, device, backend):
|
|
SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass")
|
|
config = _DTYPE_TO_SEMI_STRUCTURED_SPARSE_CONFIG[dtype]
|
|
A = rand_sparse_semi_structured_mask(config.sparse_min_rows, config.sparse_min_cols, dtype=dtype, device=device)
|
|
A_sparse = to_sparse_semi_structured(A)
|
|
B = torch.rand((config.sparse_min_cols, config.dense_min_cols), device=device).to(dtype)
|
|
if dtype == torch.int8:
|
|
dense_res = torch.mm(A.cpu(), B.cpu()).to(device, dtype=torch.int8)
|
|
# int8 sparse matmul not supported for R/R -> R layout, so we transpose one of the arguments to get R/C -> R
|
|
B_t = B.t().contiguous()
|
|
sparse_res = torch.mm(A_sparse, B_t.t())
|
|
else:
|
|
dense_res = torch.mm(A, B)
|
|
sparse_res = torch.mm(A_sparse, B)
|
|
assert torch.allclose(sparse_res, dense_res, rtol=1e-3, atol=1e-3)
|
|
|
|
@dtypes(*SEMI_STRUCTURED_SUPPORTED_DTYPES)
|
|
@parametrize("backend", SEMI_STRUCTURED_SUPPORTED_BACKENDS)
|
|
def test_unsupported_shape(self, dtype, device, backend):
|
|
SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass")
|
|
A = rand_sparse_semi_structured_mask(2, 2, dtype=dtype, device=device)
|
|
with self.assertRaisesRegex(RuntimeError, "Error original_tensor.shape"):
|
|
A_sparse = to_sparse_semi_structured(A)
|
|
|
|
@dtypes(*all_types_and_complex())
|
|
@parametrize("backend", SEMI_STRUCTURED_SUPPORTED_BACKENDS)
|
|
def test_unsupported_dtype(self, dtype, device, backend):
|
|
SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass")
|
|
A = rand_sparse_semi_structured_mask(128, 128, dtype=dtype, device=device)
|
|
|
|
if dtype not in SEMI_STRUCTURED_SUPPORTED_DTYPES:
|
|
with self.assertRaisesRegex(RuntimeError, "Error original_tensor.dtype"):
|
|
A_sparse = to_sparse_semi_structured(A)
|
|
else:
|
|
A_sparse = to_sparse_semi_structured(A)
|
|
|
|
@parametrize("backend", SEMI_STRUCTURED_SUPPORTED_BACKENDS)
|
|
def test_unsupported_dim(self, device, backend):
|
|
SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass")
|
|
A = torch.rand(128, 128, 128, device=device, dtype=torch.float16)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "Error original_tensor.dim"):
|
|
A_sparse = to_sparse_semi_structured(A)
|
|
|
|
@unittest.skipIf(TEST_WITH_ROCM, "ROCm doesn't support CUTLASS")
|
|
@parametrize("backend", ["cutlass"])
|
|
@dtypes(*SEMI_STRUCTURED_SUPPORTED_DTYPES)
|
|
def test_linear_cutlass(self, device, dtype, backend):
|
|
SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass")
|
|
|
|
def run_test(batch_shape, m, n, k, device, dtype, dtype_out, add_bias, activation, rtol, atol):
|
|
weight = rand_sparse_semi_structured(m, k, dtype, device)
|
|
input = make_tensor((*batch_shape, n, k), dtype=dtype, device=device)
|
|
bias = make_tensor((m,), dtype=dtype_out, device=device) if add_bias else None
|
|
|
|
dtype_dense = torch.float32
|
|
input_dense = input.to(dtype_dense)
|
|
weight_dense = weight.to(dtype_dense)
|
|
bias_dense = bias.to(dtype_dense) if add_bias else None
|
|
output0 = torch.nn.functional.linear(input_dense, weight_dense, bias=bias_dense)
|
|
if activation == "relu":
|
|
relu = torch.nn.ReLU()
|
|
output0 = relu(output0)
|
|
elif activation == "silu":
|
|
silu = torch.nn.SiLU()
|
|
output0 = silu(output0)
|
|
|
|
compressed = to_sparse_semi_structured(weight)
|
|
|
|
weight_sparse = compressed.values()
|
|
meta = compressed.indices()
|
|
|
|
output1 = torch._sparse_semi_structured_linear(input, weight_sparse, meta, bias=bias, activation=activation,
|
|
out_dtype=dtype_out if dtype == torch.int8 else None)
|
|
torch.testing.assert_close(output1.to(dtype_dense), output0, rtol=rtol, atol=atol)
|
|
|
|
if dtype == torch.float32:
|
|
# Inputs are converted to TF32 internally for sparse GEMM,
|
|
# so make dense GEMM to do the same for matching results.
|
|
orig = torch.backends.cuda.matmul.allow_tf32
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
|
batch_shapes = [[], [3], [3, 1]]
|
|
dtype_out = {torch.int8: torch.int32, torch.half: torch.half, torch.bfloat16: torch.bfloat16, torch.float32: torch.float32}
|
|
activations = [None, "relu", "silu"]
|
|
rtol, atol = 1e-3, 1e-3
|
|
if dtype == torch.bfloat16:
|
|
rtol, atol = 5e-3, 5e-3
|
|
elif dtype == torch.float32:
|
|
rtol, atol = 1e-3, 75e-2
|
|
for batch_shape, m, n, k, add_bias, activation in \
|
|
itertools.product(batch_shapes, range(3), range(3), range(3), (False, True), activations):
|
|
if activation == "silu" and dtype == torch.int8:
|
|
continue # SiLU not supported for integer inputs
|
|
|
|
m = 2 ** m * 32
|
|
n = 2 ** n * 32
|
|
k = 2 ** k * 128
|
|
run_test(batch_shape, m, n, k, device, dtype, dtype_out[dtype], add_bias, activation, rtol, atol)
|
|
|
|
if dtype == torch.float32:
|
|
torch.backends.cuda.matmul.allow_tf32 = orig
|
|
|
|
|
|
@unittest.skipIf(not has_triton(), "Test needs triton and recent GPU arch")
|
|
@parametrize("backend", ["cutlass"])
|
|
@dtypes(*SEMI_STRUCTURED_SUPPORTED_DTYPES)
|
|
def test_conversions(self, device, dtype, backend):
|
|
SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass")
|
|
|
|
def run_test(r, c, device, dtype):
|
|
dense_ref = rand_sparse_semi_structured(r, c, dtype, device)
|
|
|
|
compressed = to_sparse_semi_structured(dense_ref)
|
|
|
|
# The torch.ops.aten._to_sparse_semi_structured operator
|
|
# uses CUTLASS to perform conversion from given dense
|
|
# matrix to the pair of corresponding sparse and metadata
|
|
# matrices, with the later used here as a reference to
|
|
# compare the metadata matrix produced by conversion
|
|
# performed by SparseSemiStructuredTensor class
|
|
# constructor against.
|
|
_, meta_ref = torch.ops.aten._to_sparse_semi_structured(dense_ref)
|
|
|
|
meta = compressed.indices()
|
|
torch.testing.assert_close(meta, meta_ref, rtol=0, atol=0)
|
|
|
|
dense = compressed.to_dense()
|
|
torch.testing.assert_close(dense, dense_ref, rtol=0, atol=0)
|
|
|
|
shapes = [[32, 128], [32, 256], [64, 128], [64, 256]]
|
|
for r, c in shapes:
|
|
run_test(r, c, device, dtype)
|
|
|
|
@unittest.skipIf(not has_triton(), "Test needs triton and recent GPU arch")
|
|
@parametrize("backend", ["cutlass"])
|
|
@dtypes(*SEMI_STRUCTURED_SUPPORTED_DTYPES)
|
|
def test_conversions_all_patterns(self, device, dtype, backend):
|
|
SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass")
|
|
r, c = 32, 128
|
|
|
|
dense_inv, dense_val = rand_sparse_semi_structured_all_patterns(r, c, dtype, device)
|
|
|
|
compressed = to_sparse_semi_structured(dense_inv)
|
|
dense = compressed.to_dense()
|
|
|
|
torch.testing.assert_close(dense, dense_val, rtol=0, atol=0)
|
|
|
|
class TestCUSPARSELT(TestCase):
|
|
"""
|
|
This contains cuSPARSELt specific tests.
|
|
"""
|
|
|
|
def setUp(self):
|
|
if not _IS_SM8X:
|
|
self.skipTest('Only runs on SM80')
|
|
if "cusparselt" not in SEMI_STRUCTURED_SUPPORTED_BACKENDS:
|
|
self.skipTest('cuSPARSELt not enabled')
|
|
else:
|
|
SparseSemiStructuredTensor._FORCE_CUTLASS = False
|
|
|
|
|
|
@parametrize("dense_input_shape", [(128, 128)])
|
|
def test_cslt_sparse_mm_int8_in_fp16_out(self, dense_input_shape, device):
|
|
A = rand_sparse_semi_structured_mask(128, 128, dtype=torch.int8)
|
|
A_compressed = torch._cslt_compress(A)
|
|
|
|
B = torch.rand(dense_input_shape, device=device).to(torch.int8)
|
|
|
|
dense_result = torch.mm(A.cpu().to(torch.int64), B.t().cpu().to(torch.int64)).to(device, dtype=torch.float16)
|
|
sparse_result = torch._cslt_sparse_mm(A_compressed, B.t(), out_dtype=torch.float16)
|
|
assert torch.allclose(dense_result, sparse_result, rtol=1e-3, atol=1e-3)
|
|
|
|
@dtypes(torch.float16, torch.bfloat16)
|
|
def test_cslt_sparse_mm_alpha(self, dtype, device):
|
|
A = torch.Tensor([0, 0, 1, 1]).tile((128, 64)).to(dtype).cuda()
|
|
B = torch.ones((256, 128), device=device).to(dtype)
|
|
alpha = torch.Tensor([2**(-i) for i in range(128)]).cuda()
|
|
|
|
A_compressed = torch._cslt_compress(A)
|
|
sparse_result = torch._cslt_sparse_mm(A_compressed, B, alpha=alpha)
|
|
|
|
alpha_scaled = torch.stack([alpha] * 128).t()
|
|
dense_result = alpha_scaled * torch.mm(A.to(torch.float32), B.to(torch.float32))
|
|
dense_result = dense_result.to(dtype)
|
|
|
|
assert torch.allclose(sparse_result, dense_result, rtol=1e-3, atol=1e-3)
|
|
|
|
def test_cslt_sparse_mm_alpha_int8_in_f16_out(self, device):
|
|
A = torch.Tensor([0, 0, 10, 10]).tile((128, 64)).to(torch.int8).cuda()
|
|
B = torch.ones((128, 256), device=device).to(torch.int8).t()
|
|
alpha = torch.Tensor([2**(-i) for i in range(128)]).cuda()
|
|
|
|
A_compressed = torch._cslt_compress(A)
|
|
sparse_result = torch._cslt_sparse_mm(A_compressed, B, alpha=alpha, out_dtype=torch.float16).cpu()
|
|
|
|
alpha_scaled = torch.stack([alpha] * 128).t()
|
|
dense_result = alpha_scaled.cpu() * torch.mm(A.to(torch.int32).cpu(), B.to(torch.int32).cpu())
|
|
dense_result = dense_result.to(torch.float16)
|
|
|
|
assert torch.allclose(sparse_result, dense_result, rtol=1e-3, atol=1e-3)
|
|
|
|
@parametrize("alg_id", range(CUSPARSELT_NUM_ALG_IDS))
|
|
@dtypes(*SEMI_STRUCTURED_SUPPORTED_DTYPES)
|
|
def test_cslt_sparse_mm_alg_id(self, device, dtype, alg_id):
|
|
# alg_id=3 not supported for float32 dtype
|
|
if dtype == torch.float32 and alg_id == 3:
|
|
return
|
|
A = rand_sparse_semi_structured_mask(128, 128, dtype=dtype)
|
|
A_compressed = torch._cslt_compress(A)
|
|
B = torch.ones((128, 128), device=device).to(dtype)
|
|
|
|
A_compressed = torch._cslt_compress(A)
|
|
sparse_result = torch._cslt_sparse_mm(A_compressed, B.t(), alg_id=alg_id)
|
|
|
|
dense_result = torch.mm(A.to(torch.float32), B.to(torch.float32))
|
|
dense_result = dense_result.to(dtype)
|
|
|
|
assert torch.allclose(sparse_result, dense_result, rtol=1e-3, atol=1e-3)
|
|
|
|
@dtypes(*SEMI_STRUCTURED_SUPPORTED_DTYPES)
|
|
def test_cslt_sparse_mm_search(self, device, dtype):
|
|
A = rand_sparse_semi_structured_mask(128, 128, dtype=dtype)
|
|
A_compressed = torch._cslt_compress(A)
|
|
B = torch.ones((128, 128), device=device).to(dtype)
|
|
|
|
A_compressed = torch._cslt_compress(A)
|
|
alg_id = torch._cslt_sparse_mm_search(A_compressed, B.t())
|
|
# for cuSPARSELt v0.4.0 there is a bug where although there are 5 alg_ids, we run into an error
|
|
# when setting using the last one (4)
|
|
# in cuSPARSELt v0.5.0 there are only 4 alg_ids total, so we should remove the +1 here when we update.
|
|
assert alg_id in range(CUSPARSELT_NUM_ALG_IDS + 1)
|
|
|
|
|
|
instantiate_device_type_tests(TestSparseSemiStructured, globals(), only_for="cuda")
|
|
instantiate_device_type_tests(TestCUSPARSELT, globals(), only_for="cuda")
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|