Files
pytorch/torch/_inductor/runtime/runtime_utils.py
PyTorch MergeBot 2928c5c572 Revert "Pyrefly suppressions 2 (#165692)"
This reverts commit 43d78423ac224cce432bf34ed9627035169d5433.

Reverted https://github.com/pytorch/pytorch/pull/165692 on behalf of https://github.com/seemethere due to This is causing merge conflicts when attempting to land internally, see D84890919 for more details ([comment](https://github.com/pytorch/pytorch/pull/165692#issuecomment-3416397240))
2025-10-17 17:13:04 +00:00

185 lines
4.9 KiB
Python

from __future__ import annotations
import functools
import operator
from typing import Any, TYPE_CHECKING
import torch
# NOTE: other files rely on the imports below
from torch._dynamo import callback as compilation_callback # noqa: F401
from torch._inductor.runtime.cache_dir_utils import ( # noqa: F401
cache_dir,
default_cache_dir,
triton_cache_dir,
)
if TYPE_CHECKING:
from collections.abc import Hashable
from .triton_compat import Config
def conditional_product(*args: int) -> int:
return functools.reduce(operator.mul, [x for x in args if x])
def ceildiv(number: int, denom: int) -> int:
return -(number // -denom)
def is_power_of_2(n: int) -> bool:
"""Returns whether n = 2 ** m for some integer m."""
return n > 0 and n & n - 1 == 0
def next_power_of_2(n: int) -> int:
"""Return the smallest power of 2 greater than or equal to n"""
n -= 1
n |= n >> 1
n |= n >> 2
n |= n >> 4
n |= n >> 8
n |= n >> 16
n |= n >> 32
n += 1
return n
def get_num_bytes(*args: torch.Tensor, num_in_out_args: int = 0) -> int:
"""
Return the total number of bytes the arguments of tensor type takes.
For in/out args, tensor sizes are counted twice: once for reading and
once for writing.
The first num_in_out_args arguments are in out tensors.
"""
return sum(
arg.numel() * arg.element_size() * (1 + int(i < num_in_out_args))
for i, arg in enumerate(args)
if isinstance(arg, torch.Tensor)
)
def triton_config_to_hashable(cfg: Config) -> Hashable:
"""
Convert triton config to a tuple that can uniquely identify it. We can use
the return value as a dictionary key.
"""
items = sorted(cfg.kwargs.items())
items.append(("num_warps", cfg.num_warps))
items.append(("num_stages", cfg.num_stages))
return tuple(items)
def validate_triton_config(cfg: Config) -> None:
# [Note: Triton pre_hook in inductor]
# pre-hook is a lambda function, which we don't attempt to serialize.
# right now, if a pre-hook is attached to the config, it will not be saved;
# and then it won't be used when the config is loaded from cache.
# So we assert - if we do get a pre_hook, it might get ignored after caching.
assert getattr(cfg, "pre_hook", None) is None, (
"triton configs with pre_hooks not supported"
)
def create_bandwidth_info_str(
ms: float,
num_gb: float,
gb_per_s: float,
prefix: str = "",
suffix: str = "",
color: bool = True,
) -> str:
info_str = f"{prefix}{ms:.3f}ms \t{num_gb:.3f} GB \t {gb_per_s:7.2f}GB/s{suffix}"
slow = ms > 0.012 and gb_per_s < 650
return red_text(info_str) if color and slow else info_str
def get_max_y_grid() -> int:
return 65535
try:
import colorama
HAS_COLORAMA = True
except ModuleNotFoundError:
HAS_COLORAMA = False
colorama = None # type: ignore[assignment]
if HAS_COLORAMA:
def _color_text(msg: str, color: str) -> str:
return getattr(colorama.Fore, color.upper()) + msg + colorama.Fore.RESET
else:
def _color_text(msg: str, color: str) -> str:
return msg
def green_text(msg: str) -> str:
return _color_text(msg, "green")
def yellow_text(msg: str) -> str:
return _color_text(msg, "yellow")
def red_text(msg: str) -> str:
return _color_text(msg, "red")
def blue_text(msg: str) -> str:
return _color_text(msg, "blue")
def get_first_attr(obj: Any, *attrs: str) -> Any:
"""
Return the first available attribute or throw an exception if none is present.
"""
for attr in attrs:
if hasattr(obj, attr):
return getattr(obj, attr)
raise AssertionError(f"{obj} does not has any of the attributes: {attrs}")
dynamo_timed = torch._dynamo.utils.dynamo_timed # type: ignore[has-type]
def triton_hash_to_path_key(key: str) -> str:
# In early versions of Triton, the hash is directly used in the path name.
# Later, the hash is converted to base64 before being used in the path name.
# Later, the base64 conversion was replaced to the base32
#
# This code tries to import _base64 and falls back to _base32 if _base64 is unavailable.
#
# To handle this, try to import the to-base64-conversion function.
# If it exists, use it; otherwise, try using _base32; if both are unavailable, use the hash directly.
try:
from triton.runtime.cache import _base64
return _base64(key)
except Exception:
try:
from triton.runtime.cache import _base32
return _base32(key)
except Exception:
return key
def compile_mps_shader(source: str) -> Any:
"""
Compiles shader source but raise more actionable error message when needed
"""
try:
return torch.mps.compile_shader(source)
except SyntaxError as err:
raise SyntaxError(f"failed to compile {source} with {err.msg}") from err