mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
Expands Pyrefly type checking to check the files outlined in the mypy-strict.ini configuration file: Pull Request resolved: https://github.com/pytorch/pytorch/pull/165697 Approved by: https://github.com/ezyang
1083 lines
41 KiB
Python
1083 lines
41 KiB
Python
# This is not a feature-complete compiler backend
|
|
# Just an early prototype that shows that one can compile elementwise ops into a Metal shader
|
|
from __future__ import annotations
|
|
|
|
import functools
|
|
import itertools
|
|
import logging
|
|
import math
|
|
from pathlib import Path
|
|
from typing import Any, Optional, TYPE_CHECKING
|
|
|
|
import sympy
|
|
from sympy.printing.precedence import PRECEDENCE
|
|
|
|
import torch
|
|
from torch.utils._cpp_embed_headers import _embed_headers
|
|
from torch.utils._ordered_set import OrderedSet
|
|
from torch.utils._sympy.printers import CppPrinter, ExprPrinter as ExprPrinter_
|
|
from torch.utils._sympy.value_ranges import ValueRanges
|
|
|
|
from ..utils import ceildiv, get_bounds_index_expr, get_kernel_metadata
|
|
from ..virtualized import ops, OpsWrapper, V
|
|
from .common import (
|
|
CSEVariable,
|
|
DeferredLine,
|
|
DTYPE_TO_COMPUTATION_DTYPE,
|
|
IndentedBuffer,
|
|
OpOverrides,
|
|
PythonPrinter,
|
|
)
|
|
from .simd import IterationRangesEntry, SIMDKernel, SIMDScheduling
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from typing import Union
|
|
|
|
from ..ops_handler import ReductionType, StoreMode
|
|
from ..scheduler import Scheduler, SchedulerNode
|
|
from .common import OpVarT
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
DTYPE_TO_METAL = {
|
|
torch.bool: "bool",
|
|
torch.int8: "char",
|
|
torch.int16: "short",
|
|
torch.int32: "int",
|
|
torch.int64: "long",
|
|
torch.uint8: "uchar",
|
|
torch.float: "float",
|
|
torch.half: "half",
|
|
torch.bfloat16: "bfloat",
|
|
}
|
|
|
|
|
|
def value_to_metal(val: Union[float, int, bool, str, CSEVariable]) -> str:
|
|
if isinstance(val, float):
|
|
if val == torch.inf:
|
|
return "HUGE_VALF"
|
|
elif val == -torch.inf:
|
|
return "-HUGE_VALF"
|
|
elif val != val: # Only float that not equal to self is nan
|
|
return "NAN"
|
|
return str(val)
|
|
elif isinstance(val, bool):
|
|
return "true" if val else "false"
|
|
return str(val)
|
|
|
|
|
|
class MetalExprPrinter(ExprPrinter_):
|
|
"""Converts sympy expression to Metal code snippet"""
|
|
|
|
def _print_FloorDiv(self, expr: sympy.Expr) -> str:
|
|
x, div = expr.args
|
|
x = self.doprint(x)
|
|
div = self.doprint(div)
|
|
if expr.is_integer:
|
|
return f"c10::metal::floor_divide({x}, {div})"
|
|
return f"metal::floor({x}) / ({div})"
|
|
|
|
def _print_ModularIndexing(self, expr: sympy.Expr) -> str:
|
|
x, div, mod = expr.args
|
|
x = self.doprint(x)
|
|
if div != 1:
|
|
div = self.doprint(div)
|
|
if expr.is_integer:
|
|
x = f"({x}) / ({div})"
|
|
else:
|
|
x = f"metal::floor({x}) / ({div})"
|
|
mod = self.doprint(mod)
|
|
return f"({x}) % ({mod})"
|
|
|
|
def _print_Min(self, expr: sympy.Expr) -> str:
|
|
if len(expr.args) != 2:
|
|
raise RuntimeError("metal::min only supported for 2 args")
|
|
a, b = map(self._print, expr.args)
|
|
typecast_a = f"static_cast<decltype({a}+{b})>({a})"
|
|
typecast_b = f"static_cast<decltype({a}+{b})>({b})"
|
|
return f"metal::min({typecast_a}, {typecast_b})"
|
|
|
|
def _print_Max(self, expr: sympy.Expr) -> str:
|
|
if len(expr.args) != 2:
|
|
raise RuntimeError("metal::max only supported for 2 args")
|
|
a, b = map(self._print, expr.args)
|
|
typecast_a = f"static_cast<decltype({a}+{b})>({a})"
|
|
typecast_b = f"static_cast<decltype({a}+{b})>({b})"
|
|
return f"metal::max({typecast_a}, {typecast_b})"
|
|
|
|
def _print_Abs(self, expr: sympy.Expr) -> str:
|
|
assert len(expr.args) == 1
|
|
return f"metal::abs({self._print(expr.args[0])})"
|
|
|
|
def _print_RoundToInt(self, expr: sympy.Expr) -> str:
|
|
assert len(expr.args) == 1
|
|
return f"static_cast<long>(metal::rint({self._print(expr.args[0])}))"
|
|
|
|
def _print_RoundDecimal(self, expr: sympy.Expr) -> str:
|
|
assert len(expr.args) == 2
|
|
number, ndigits = expr.args
|
|
if number.is_integer:
|
|
# ndigits < 0 should have been filtered by the sympy function
|
|
assert ndigits < 0
|
|
raise ValueError(
|
|
f"For integer inputs, only non-negative ndigits are currently supported, but got {ndigits}."
|
|
)
|
|
number_str = self.parenthesize(number, PRECEDENCE["Mul"])
|
|
return f"static_cast<float>(metal::rint(1e{ndigits} * {number_str}) * 1e{-ndigits})"
|
|
|
|
def _print_IntTrueDiv(self, expr: sympy.Expr) -> str:
|
|
lhs, rhs = expr.args
|
|
# TODO: This is only accurate up to 2**23
|
|
return f"static_cast<float>({self._print(lhs)}) / static_cast<float>({self._print(rhs)})"
|
|
|
|
def _print_PowByNatural(self, expr: sympy.Expr) -> str:
|
|
assert len(expr.args) == 2
|
|
x, y = map(self.doprint, expr.args)
|
|
return f"metal::pow(static_cast<float>({x}), static_cast<float>({y}))"
|
|
|
|
def _print_ToFloat(self, expr: sympy.Expr) -> str:
|
|
assert len(expr.args) == 1
|
|
x = self.doprint(expr.args[0])
|
|
return f"static_cast<float>({x})"
|
|
|
|
def _print_FloorToInt(self, expr: sympy.Expr) -> str:
|
|
assert len(expr.args) == 1
|
|
x = self.doprint(expr.args[0])
|
|
return f"static_cast<int>(metal::floor(static_cast<float>({x})))"
|
|
|
|
_print_floor = _print_FloorToInt
|
|
|
|
def _print_TruncToInt(self, expr: sympy.Expr) -> str:
|
|
assert len(expr.args) == 1
|
|
x = self.doprint(expr.args[0])
|
|
return f"static_cast<int>(metal::trunc({x}))"
|
|
|
|
def _print_OpaqueUnaryFn_log2(self, expr: sympy.Expr) -> str:
|
|
assert len(expr.args) == 1
|
|
x = self.doprint(expr.args[0])
|
|
return f"metal::log2({x})"
|
|
|
|
|
|
class MetalOverrides(OpOverrides):
|
|
"""Implements Metal-specific overrides for ops. Base class emits Python-friendly overrides."""
|
|
|
|
@staticmethod
|
|
def to_dtype(
|
|
x: CSEVariable,
|
|
dtype: torch.dtype,
|
|
src_dtype: Optional[torch.dtype] = None,
|
|
use_compute_types: bool = True,
|
|
) -> str:
|
|
if dtype == torch.double:
|
|
log.warning(
|
|
"float64 cast requested, probably from tensorify_python_scalars"
|
|
)
|
|
return f"static_cast<float>({x})"
|
|
return f"static_cast<{DTYPE_TO_METAL[dtype]}>({x})"
|
|
|
|
@staticmethod
|
|
def to_dtype_bitcast(
|
|
x: CSEVariable, dtype: torch.dtype, src_dtype: torch.dtype
|
|
) -> str:
|
|
return f"as_type<{DTYPE_TO_METAL[dtype]}>(static_cast<{DTYPE_TO_METAL[src_dtype]}>({x}))"
|
|
|
|
@staticmethod
|
|
def constant(val: Union[bool, float, int], dtype: torch.dtype) -> str:
|
|
return value_to_metal(val)
|
|
|
|
@staticmethod
|
|
def index_expr(expr: sympy.Expr, dtype: torch.dtype) -> str:
|
|
idx_str = V.kernel.index_to_str(V.kernel.prepare_indexing(expr))
|
|
var = V.kernel.cse.generate(
|
|
V.kernel.compute, idx_str, bounds=get_bounds_index_expr(expr)
|
|
)
|
|
return ops.to_dtype(var, dtype)
|
|
|
|
@staticmethod
|
|
def masked(mask: CSEVariable, body: sympy.Expr, other: CSEVariable) -> str:
|
|
# TODO: Type annotation for other is wrong, it's often float or int
|
|
with V.kernel.mask_loads(mask, other) as new_mask:
|
|
result = body()
|
|
|
|
if result.bounds.is_bool:
|
|
other = bool(other) # type: ignore[assignment]
|
|
|
|
return ops.where(new_mask, result, other)
|
|
|
|
@staticmethod
|
|
def where(a: OpVarT, b: OpVarT, c: OpVarT) -> str:
|
|
return f"{a} ? {b} : {value_to_metal(c)}"
|
|
|
|
@staticmethod
|
|
def remainder(a: OpVarT, b: OpVarT) -> str:
|
|
return f"c10::metal::remainder({a}, {b})"
|
|
|
|
@staticmethod
|
|
def maximum(a: CSEVariable, b: CSEVariable) -> str:
|
|
typecast_a = f"static_cast<decltype({a}+{b})>({a})"
|
|
typecast_b = f"static_cast<decltype({a}+{b})>({b})"
|
|
return f"c10::metal::max({typecast_a}, {typecast_b})"
|
|
|
|
@staticmethod
|
|
def minimum(a: CSEVariable, b: CSEVariable) -> str:
|
|
typecast_a = f"static_cast<decltype({a}+{b})>({a})"
|
|
typecast_b = f"static_cast<decltype({a}+{b})>({b})"
|
|
return f"c10::metal::min({typecast_a}, {typecast_b})"
|
|
|
|
@staticmethod
|
|
def logical_or(a: CSEVariable, b: CSEVariable) -> str:
|
|
return f"{a} || {b}"
|
|
|
|
@staticmethod
|
|
def logical_and(a: CSEVariable, b: CSEVariable) -> str:
|
|
return f"{a} && {b}"
|
|
|
|
@staticmethod
|
|
def isnan(x: CSEVariable) -> str:
|
|
return f"metal::isnan({x})"
|
|
|
|
@staticmethod
|
|
def isinf(x: CSEVariable) -> str:
|
|
return f"metal::isinf({x})"
|
|
|
|
@staticmethod
|
|
def log(x: CSEVariable) -> str:
|
|
return f"metal::log({x})"
|
|
|
|
@staticmethod
|
|
def exp(x: CSEVariable) -> str:
|
|
return f"metal::exp({x})"
|
|
|
|
@staticmethod
|
|
def abs(x: CSEVariable) -> str:
|
|
return f"metal::abs({x})"
|
|
|
|
@staticmethod
|
|
def signbit(x: CSEVariable) -> str:
|
|
return f"metal::signbit({x})"
|
|
|
|
@staticmethod
|
|
def sin(x: CSEVariable) -> str:
|
|
return f"metal::precise::sin({x})"
|
|
|
|
@staticmethod
|
|
def sinc(x: CSEVariable) -> str:
|
|
return f"c10::metal::sinc({x})"
|
|
|
|
@staticmethod
|
|
def cos(x: CSEVariable) -> str:
|
|
return f"metal::precise::cos({x})"
|
|
|
|
@staticmethod
|
|
def tan(x: CSEVariable) -> str:
|
|
return f"metal::tan({x})"
|
|
|
|
@staticmethod
|
|
def asin(x: CSEVariable) -> str:
|
|
return f"metal::asin({x})"
|
|
|
|
@staticmethod
|
|
def acos(x: CSEVariable) -> str:
|
|
return f"metal::acos({x})"
|
|
|
|
@staticmethod
|
|
def atan(x: CSEVariable) -> str:
|
|
return f"metal::atan({x})"
|
|
|
|
@staticmethod
|
|
def atan2(x: CSEVariable, y: CSEVariable) -> str:
|
|
return f"::metal::atan2({x}, {y})"
|
|
|
|
@staticmethod
|
|
def sqrt(x: CSEVariable) -> str:
|
|
return f"metal::sqrt({x})"
|
|
|
|
@staticmethod
|
|
def neg(x: CSEVariable) -> str:
|
|
# TODO: Does it rely on undefined behavior?
|
|
# If so, add special logic for unsigned types
|
|
return f"static_cast<decltype({x})>(-{x})"
|
|
|
|
@staticmethod
|
|
def rsqrt(x: CSEVariable) -> str:
|
|
return f"metal::rsqrt({x})"
|
|
|
|
@staticmethod
|
|
def tanh(x: CSEVariable) -> str:
|
|
return f"metal::tanh({x})"
|
|
|
|
@staticmethod
|
|
def atanh(x: CSEVariable) -> str:
|
|
return f"metal::atanh({x})"
|
|
|
|
@staticmethod
|
|
def floordiv(a: CSEVariable, b: CSEVariable) -> str:
|
|
# a and b must be of integer type
|
|
return f"c10::metal::floor_divide({a}, {b})"
|
|
|
|
@staticmethod
|
|
def floor(x: CSEVariable) -> str:
|
|
return f"metal::floor({x})"
|
|
|
|
@staticmethod
|
|
def sign(x: CSEVariable) -> str:
|
|
return f"metal::sign({x})"
|
|
|
|
@staticmethod
|
|
def fmod(a: CSEVariable, b: CSEVariable) -> str:
|
|
typecast_a = f"static_cast<decltype({a}+{b})>({a})"
|
|
typecast_b = f"static_cast<decltype({a}+{b})>({b})"
|
|
return f"metal::fmod({typecast_a}, {typecast_b})"
|
|
|
|
@staticmethod
|
|
def trunc(x: CSEVariable) -> str:
|
|
return f"metal::trunc({x})"
|
|
|
|
@staticmethod
|
|
def truncdiv(a: CSEVariable, b: CSEVariable) -> str:
|
|
quot = f"{a} / {b}"
|
|
if (a.dtype is not None and a.dtype.is_floating_point) or (
|
|
b.dtype is not None and b.dtype.is_floating_point
|
|
):
|
|
return f"metal::trunc({quot})"
|
|
return quot
|
|
|
|
@staticmethod
|
|
def ceil(x: CSEVariable) -> str:
|
|
return f"metal::ceil({x})"
|
|
|
|
@staticmethod
|
|
def rand(seed: CSEVariable, offset: CSEVariable) -> str:
|
|
V.kernel.headers.add("random")
|
|
return f"c10::metal::rand({seed}, {offset})"
|
|
|
|
@staticmethod
|
|
def randn(seed: CSEVariable, offset: CSEVariable) -> str:
|
|
V.kernel.headers.add("random")
|
|
return f"c10::metal::randn({seed}, {offset})"
|
|
|
|
@staticmethod
|
|
def randint64(
|
|
seed: CSEVariable, offset: CSEVariable, low: CSEVariable, high: CSEVariable
|
|
) -> str:
|
|
V.kernel.headers.add("random")
|
|
return f"c10::metal::randint64({seed}, {offset}, {low}, {high})"
|
|
|
|
@staticmethod
|
|
def round(x: CSEVariable) -> str:
|
|
return f"metal::rint({x})"
|
|
|
|
@staticmethod
|
|
def pow(a: CSEVariable, b: CSEVariable) -> str:
|
|
cast_a = f"static_cast<decltype({a}+{b})>({a})"
|
|
cast_b = f"static_cast<decltype({a}+{b})>({b})"
|
|
return f"metal::pow({cast_a}, {cast_b})"
|
|
|
|
def _special_unary(self, a: CSEVariable, name: str) -> str:
|
|
V.kernel.headers.add("special_math")
|
|
return f"c10::metal::{name}({a})"
|
|
|
|
def _special_binary(self, a: CSEVariable, b: CSEVariable, name: str) -> str:
|
|
V.kernel.headers.add("special_math")
|
|
return f"c10::metal::{name}({a}, {b})"
|
|
|
|
@classmethod
|
|
def _initialize_special_ops(cls) -> None:
|
|
# Unary special ops
|
|
for name in [
|
|
"erf",
|
|
"erfinv",
|
|
"i0",
|
|
"i0e",
|
|
"i1",
|
|
"i1e",
|
|
"digamma",
|
|
"spherical_bessel_j0",
|
|
]:
|
|
setattr(cls, name, functools.partialmethod(cls._special_unary, name=name))
|
|
|
|
cls.lgamma = functools.partialmethod(cls._special_unary, name="log_gamma") # type: ignore[assignment]
|
|
|
|
# Unary special ops with forward in method name
|
|
for name in [
|
|
"bessel_j0",
|
|
"bessel_j1",
|
|
"bessel_y0",
|
|
"bessel_y1",
|
|
"modified_bessel_i0",
|
|
"modified_bessel_i1",
|
|
"modified_bessel_k0",
|
|
"modified_bessel_k1",
|
|
"scaled_modified_bessel_k0",
|
|
"scaled_modified_bessel_k1",
|
|
]:
|
|
setattr(
|
|
cls,
|
|
name,
|
|
functools.partialmethod(cls._special_unary, name=name + "_forward"),
|
|
)
|
|
|
|
# Binary special ops
|
|
for name in [
|
|
"polygamma",
|
|
"igamma",
|
|
"igammac",
|
|
"zeta",
|
|
]:
|
|
setattr(cls, name, functools.partialmethod(cls._special_binary, name=name))
|
|
|
|
# Binary special ops with forward in method name
|
|
for name in [
|
|
"chebyshev_polynomial_t",
|
|
"chebyshev_polynomial_u",
|
|
"chebyshev_polynomial_v",
|
|
"chebyshev_polynomial_w",
|
|
"hermite_polynomial_h",
|
|
"hermite_polynomial_he",
|
|
"shifted_chebyshev_polynomial_t",
|
|
"shifted_chebyshev_polynomial_u",
|
|
"shifted_chebyshev_polynomial_v",
|
|
"shifted_chebyshev_polynomial_w",
|
|
]:
|
|
setattr(
|
|
cls,
|
|
name,
|
|
functools.partialmethod(cls._special_binary, name=name + "_forward"),
|
|
)
|
|
|
|
|
|
MetalOverrides._initialize_pointwise_overrides("mps")
|
|
MetalOverrides._initialize_special_ops()
|
|
|
|
|
|
class MetalKernel(SIMDKernel):
|
|
"""Implement Metal codegen based on the SIMDKernel abstraction"""
|
|
|
|
overrides = MetalOverrides # type: ignore[assignment]
|
|
suffix = ";"
|
|
newvar_prefix = "auto "
|
|
max_threadgroup_size = 1024
|
|
simd_group_size = 32
|
|
pexpr = PythonPrinter().doprint
|
|
cexpr = CppPrinter().doprint
|
|
sexpr = MetalExprPrinter().doprint
|
|
kexpr = sexpr
|
|
headers: OrderedSet[str] = OrderedSet(["utils"])
|
|
multistage_reduction_entry: list[IterationRangesEntry] = []
|
|
|
|
def __init__(
|
|
self,
|
|
tiling: dict[str, sympy.Expr],
|
|
**kwargs: Any,
|
|
) -> None:
|
|
super().__init__(tiling, **kwargs)
|
|
self.acc_var_ids = itertools.count()
|
|
|
|
def dtype_to_str(self, dtype: torch.dtype) -> str:
|
|
return DTYPE_TO_METAL[dtype]
|
|
|
|
def load(self, name: str, index: sympy.Expr) -> CSEVariable:
|
|
"""Codegen a load from an InputBuffer"""
|
|
var = self.args.input(name)
|
|
index = self.prepare_indexing(index)
|
|
dtype = V.graph.get_dtype(name)
|
|
line = f"{var}[{self.index_to_str(index)}]"
|
|
if dtype in [torch.float16, torch.bfloat16]:
|
|
# TODO(NS): Figure out the right balance between optype casts
|
|
# op_math_t for half-precision floats should be float32
|
|
# Otherwise it can lead to a correctness issues with eager
|
|
line = f"static_cast<float>({line})"
|
|
dtype = torch.float32
|
|
return self.cse.generate(self.loads, line, dtype=dtype)
|
|
|
|
def store(
|
|
self, name: str, index: sympy.Expr, value: CSEVariable, mode: StoreMode = None
|
|
) -> None:
|
|
var = self.args.output(name)
|
|
index = self.prepare_indexing(index)
|
|
dtype_str = self.dtype_to_str(V.graph.get_dtype(name))
|
|
cast_val = f"static_cast<{dtype_str}>({value})"
|
|
if mode is None:
|
|
line = f"{var}[{self.index_to_str(index)}] = {cast_val};"
|
|
elif mode == "atomic_add":
|
|
self.headers.add("atomic")
|
|
atomic_type = f"c10::metal::AtomicType<{dtype_str}>"
|
|
cast_var = f"reinterpret_cast<device {atomic_type}::type *>({var})"
|
|
line = f"{atomic_type}::atomic_add({cast_var}, {self.index_to_str(index)}, {cast_val});"
|
|
else:
|
|
raise RuntimeError(f"Unimplemented store mode {mode}")
|
|
if self.inside_reduction:
|
|
self.compute.writeline(DeferredLine(name, line))
|
|
else:
|
|
self.stores.writeline(DeferredLine(name, line))
|
|
|
|
def store_reduction(self, name: str, index: sympy.Expr, value: CSEVariable) -> None:
|
|
var = self.args.output(name)
|
|
index = self.prepare_indexing(index)
|
|
dtype_str = self.dtype_to_str(V.graph.get_dtype(name))
|
|
# pyrefly: ignore # missing-argument
|
|
reduction_dim = next(t for t in self.range_trees if t.is_reduction)
|
|
# Only one thread in the reduction group needs to store the results
|
|
line = f"{var}[{self.index_to_str(index)}] = static_cast<{dtype_str}>({value});"
|
|
line = f"if ({reduction_dim.name} == 0) {line}"
|
|
self.stores.writeline(DeferredLine(name, line))
|
|
|
|
def _new_idxvar(
|
|
self,
|
|
dtype: Union[str | torch.dtype],
|
|
elem_count: Optional[int] = None,
|
|
default_value: Optional[Any] = None,
|
|
is_threadgroup: bool = True,
|
|
bounds: ValueRanges[Any] = ValueRanges.unknown(),
|
|
) -> CSEVariable:
|
|
if isinstance(dtype, torch.dtype):
|
|
dtype = self.dtype_to_str(dtype)
|
|
var_name = f"tmp_acc_{next(self.acc_var_ids)}"
|
|
var = V.kernel.create_cse_var(var_name, bounds, dtype)
|
|
var_def = "threadgroup " if is_threadgroup else ""
|
|
var_def += f"{dtype} {var_name}"
|
|
if elem_count:
|
|
var_def += f"[{self.sexpr(elem_count)}]"
|
|
if default_value is not None:
|
|
assert not is_threadgroup, "Thread group var can not have default value"
|
|
var_def += f" = {default_value}"
|
|
self.indexing_code.writeline(var_def + self.suffix)
|
|
return var
|
|
|
|
def reduction(
|
|
self,
|
|
dtype: torch.dtype,
|
|
src_dtype: torch.dtype,
|
|
reduction_type: ReductionType,
|
|
value: Union[CSEVariable, tuple[CSEVariable, ...]],
|
|
) -> Union[CSEVariable, tuple[CSEVariable, ...]]:
|
|
"Caching wrapper around _reduction_nocache"
|
|
cache_key = (src_dtype, reduction_type, value)
|
|
# Return cached reduction
|
|
if cache_key in self.cse.reduction_cache:
|
|
return self.cse.reduction_cache[cache_key]
|
|
result = self._reduction_nocache(dtype, src_dtype, reduction_type, value)
|
|
self.cse.reduction_cache[cache_key] = result # type: ignore[assignment]
|
|
return result
|
|
|
|
def _reduction_nocache(
|
|
self,
|
|
dtype: torch.dtype,
|
|
src_dtype: torch.dtype,
|
|
reduction_type: ReductionType,
|
|
value: Union[CSEVariable, tuple[CSEVariable, ...]],
|
|
) -> Union[CSEVariable, tuple[CSEVariable, ...]]:
|
|
"""Codegen a reduction operation.
|
|
Only sum and prod operations are somewhat reasonable optimized"""
|
|
assert self.inside_reduction
|
|
assert not self._load_mask
|
|
|
|
def _unwrap_helper(res3: CSEVariable) -> tuple[CSEVariable, ...]:
|
|
# Uwraps vec3 dtype into individual components
|
|
return OpsWrapper._unwrap(
|
|
[CSEVariable(f"{res3}.{t}", res3.bounds, res3.dtype) for t in "xyz"]
|
|
)
|
|
|
|
# Establish reduction buffer size and index expression
|
|
reduction_idx = ""
|
|
acc_buf_size = 1
|
|
for rd in self.range_trees:
|
|
# pyrefly: ignore # missing-argument
|
|
if not rd.is_reduction:
|
|
continue
|
|
if reduction_idx:
|
|
reduction_idx += " + "
|
|
reduction_idx += f"{rd.name} * {acc_buf_size}"
|
|
|
|
if isinstance(rd.numel, sympy.Integer):
|
|
acc_buf_size *= rd.numel
|
|
else:
|
|
acc_buf_size *= sympy.Symbol(
|
|
f"{rd.prefix}numel", integer=True, positive=True
|
|
)
|
|
|
|
acc_buf_size = sympy.Min(acc_buf_size, self.max_threadgroup_size)
|
|
acc_buf_size_str = self.sexpr(acc_buf_size)
|
|
shmem_buf_size = (
|
|
ceildiv(acc_buf_size, self.simd_group_size)
|
|
if isinstance(acc_buf_size, sympy.Integer)
|
|
else self.simd_group_size
|
|
)
|
|
|
|
if reduction_type == "any":
|
|
acc = self._new_idxvar(dtype)
|
|
self.indexing_code.writeline(f"{acc} = false;")
|
|
self.indexing_code.writeline(
|
|
"threadgroup_barrier(metal::mem_flags::mem_threadgroup);"
|
|
)
|
|
self.compute.splice(
|
|
f"""
|
|
if ({value}) {{
|
|
{acc} = true;
|
|
}}
|
|
"""
|
|
)
|
|
self.stores.writeline(
|
|
"threadgroup_barrier(metal::mem_flags::mem_threadgroup);"
|
|
)
|
|
return acc
|
|
|
|
self.headers.add("reduction_utils")
|
|
|
|
if reduction_type in ["prod", "sum"]:
|
|
acc_dtype = DTYPE_TO_COMPUTATION_DTYPE[src_dtype]
|
|
acc_buf = self._new_idxvar(acc_dtype, shmem_buf_size)
|
|
if not self.multistage_reduction_entry:
|
|
val = value
|
|
else:
|
|
default_val, reduction_op = (
|
|
(0, "+") if reduction_type == "sum" else (1, "*")
|
|
)
|
|
val = self._new_idxvar(
|
|
acc_dtype, default_value=default_val, is_threadgroup=False
|
|
)
|
|
self.compute.splice(f"{val} {reduction_op}= {value};")
|
|
|
|
return self.cse.generate(
|
|
self.stores,
|
|
f"c10::metal::threadgroup_{reduction_type}({acc_buf}, {val}, {reduction_idx}, {acc_buf_size_str})",
|
|
dtype=DTYPE_TO_COMPUTATION_DTYPE[dtype],
|
|
)
|
|
if reduction_type in ["max", "min"]:
|
|
acc_buf = self._new_idxvar(src_dtype, shmem_buf_size)
|
|
src_metal_type = DTYPE_TO_METAL[src_dtype]
|
|
cast_value = f"static_cast<{src_metal_type}>({value})"
|
|
if not self.multistage_reduction_entry:
|
|
val = cast_value # type: ignore[assignment]
|
|
else:
|
|
lim_fn = "lowest" if reduction_type.endswith("max") else "max"
|
|
limit_val = f"::metal::numeric_limits<{src_metal_type}>::{lim_fn}()"
|
|
val = self._new_idxvar(
|
|
src_dtype, default_value=limit_val, is_threadgroup=False
|
|
)
|
|
self.compute.splice(
|
|
f"{val} = ::c10::metal::{reduction_type}({val}, {cast_value});"
|
|
)
|
|
return self.cse.generate(
|
|
self.stores,
|
|
f"c10::metal::threadgroup_{reduction_type}({acc_buf}, {val}, {reduction_idx}, {acc_buf_size_str})",
|
|
dtype=DTYPE_TO_COMPUTATION_DTYPE[dtype],
|
|
)
|
|
if reduction_type in ["argmin", "argmax"]:
|
|
data_acc_buf = self._new_idxvar(src_dtype, shmem_buf_size)
|
|
idx_acc_buf = self._new_idxvar(dtype, shmem_buf_size)
|
|
src_metal_type = DTYPE_TO_METAL[src_dtype]
|
|
cast_value = f"static_cast<{src_metal_type}>({value})"
|
|
if not self.multistage_reduction_entry:
|
|
val = cast_value # type: ignore[assignment]
|
|
idx_val = f"static_cast<{DTYPE_TO_METAL[dtype]}>({reduction_idx})"
|
|
else:
|
|
lim_fn = "lowest" if reduction_type.endswith("max") else "max"
|
|
limit_val = f"::metal::numeric_limits<{src_metal_type}>::{lim_fn}()"
|
|
val = self._new_idxvar(
|
|
src_dtype, default_value=limit_val, is_threadgroup=False
|
|
)
|
|
idx_val = self._new_idxvar(dtype, default_value=0, is_threadgroup=False) # type: ignore[assignment]
|
|
idx_var = next(
|
|
# pyrefly: ignore # missing-argument
|
|
t
|
|
for t in self.range_tree_nodes.values()
|
|
# pyrefly: ignore # missing-argument
|
|
if t.is_reduction
|
|
)
|
|
cmp_op = ">" if reduction_type == "argmax" else "<"
|
|
nan_suffix = (
|
|
f" || ::metal::isnan({value}) "
|
|
if src_dtype.is_floating_point
|
|
else ""
|
|
)
|
|
self.compute.splice(f"""
|
|
if ({value} {cmp_op} {val}{nan_suffix}) {{
|
|
{val} = {value};
|
|
{idx_val} = {idx_var.name};
|
|
}}
|
|
""")
|
|
return self.cse.generate(
|
|
self.stores,
|
|
f"c10::metal::threadgroup_{reduction_type}({data_acc_buf}, {idx_acc_buf}, "
|
|
f"{val}, {idx_val}, {reduction_idx}, {acc_buf_size_str})",
|
|
dtype=dtype,
|
|
)
|
|
if reduction_type == "welford_reduce":
|
|
if not self.multistage_reduction_entry:
|
|
acc_buf = self._new_idxvar(src_dtype, acc_buf_size)
|
|
self.compute.splice(f"{acc_buf}[{reduction_idx}] = {value};")
|
|
wf_res = self.cse.generate(
|
|
self.compute,
|
|
f"c10::metal::threadgroup_{reduction_type}({acc_buf}, {acc_buf_size_str})",
|
|
dtype=torch.float32,
|
|
)
|
|
return _unwrap_helper(wf_res)
|
|
acc_buf = self._new_idxvar("float3", acc_buf_size)
|
|
acc_thread_var = f"{acc_buf}[{reduction_idx}]"
|
|
self.indexing_code.splice(f"{acc_thread_var} = 0.0;")
|
|
self.compute.writeline(
|
|
f"{acc_thread_var} = ::c10::metal::welford_combine({acc_thread_var}, float3({value}, 0.0, 1.0));"
|
|
)
|
|
wf_res = self.cse.generate(
|
|
self.stores,
|
|
f"c10::metal::threadgroup_welford_combine({acc_buf}, {acc_buf_size})",
|
|
dtype=torch.float32,
|
|
)
|
|
return _unwrap_helper(wf_res)
|
|
if reduction_type == "welford_combine":
|
|
assert isinstance(value, tuple), "Input to welford combine must be tuple"
|
|
acc_buf = self._new_idxvar("float3", acc_buf_size)
|
|
acc_thread_var = f"{acc_buf}[{reduction_idx}]"
|
|
inp_value = f"float3({value[0]}, {value[1]}, {value[2]})"
|
|
self.indexing_code.splice(f"{acc_thread_var} = 0.0;")
|
|
if self.multistage_reduction_entry:
|
|
self.indexing_code.splice(f"{acc_thread_var} = 0.0;")
|
|
self.compute.writeline(
|
|
f"{acc_thread_var} = ::c10::metal::welford_combine({acc_thread_var}, {inp_value});"
|
|
)
|
|
else:
|
|
self.compute.writeline(f"{acc_thread_var} = {inp_value};")
|
|
wf_res = self.cse.generate(
|
|
self.stores if self.multistage_reduction_entry else self.compute,
|
|
f"c10::metal::threadgroup_{reduction_type}({acc_buf}, {acc_buf_size_str})",
|
|
dtype=torch.float32,
|
|
)
|
|
return _unwrap_helper(wf_res)
|
|
raise NotImplementedError(reduction_type)
|
|
|
|
def codegen_iteration_ranges_entry(self, entry: IterationRangesEntry) -> None:
|
|
index_expr = self.rename_indexing(entry.expr)
|
|
index_str = self.sexpr(index_expr) # type: ignore[misc]
|
|
|
|
# pyrefly: ignore # missing-argument
|
|
if not entry.is_reduction or (
|
|
isinstance(entry.root.numel, sympy.Integer)
|
|
and entry.root.numel <= self.max_threadgroup_size
|
|
):
|
|
self.indexing_code.writeline(
|
|
f"{self.index_dtype} {entry.name} = {index_str};"
|
|
)
|
|
return
|
|
|
|
acc_size = (
|
|
entry.root.numel
|
|
if isinstance(entry.root.numel, sympy.Integer)
|
|
else sympy.Symbol(f"{entry.root.prefix}numel", integer=True, positive=True)
|
|
)
|
|
|
|
self.multistage_reduction_entry.append(entry)
|
|
# When reducing the tensor whose size exceeds max threadgroup size
|
|
# loop over extra indices per reduction thread and perform part of the operation
|
|
# using values in the shared memory
|
|
|
|
# Use floats so that it doesn't do integer division
|
|
loop_size = (acc_size + float(self.max_threadgroup_size - 1)) // float(
|
|
self.max_threadgroup_size
|
|
)
|
|
loop_size_str = self.sexpr(loop_size)
|
|
|
|
self.body.writeline(
|
|
f"for(auto {entry.name}_cnt = 0; {entry.name}_cnt < {loop_size_str}; ++{entry.name}_cnt) {{"
|
|
)
|
|
with self.body.indent():
|
|
if isinstance(acc_size, sympy.Symbol):
|
|
self.body.writeline(
|
|
f"{self.index_dtype} {entry.name} = {self.max_threadgroup_size} * {entry.name}_cnt + {index_str};"
|
|
)
|
|
else:
|
|
self.body.writeline(
|
|
f"{self.index_dtype} {entry.name} = {loop_size_str} * {index_str} + {entry.name}_cnt;"
|
|
)
|
|
|
|
# Check that reduction is performed only within tensor boundary
|
|
if (
|
|
isinstance(acc_size, sympy.Symbol)
|
|
or loop_size * self.max_threadgroup_size != acc_size
|
|
):
|
|
self.body.writeline(f"if ({entry.name} >= {acc_size}) break;")
|
|
|
|
def codegen_body(self) -> None:
|
|
"""
|
|
Concat output code from index_code, loads, compute, stores,
|
|
suffix into self.body.
|
|
|
|
For pointwise kernels, this is called just once at the end.
|
|
|
|
For reduction kernels, this generates a loop over the reduction
|
|
axis.
|
|
"""
|
|
if self.multistage_reduction_entry:
|
|
with self.body.indent():
|
|
self.body.splice(self.loads)
|
|
self.body.splice(self.compute)
|
|
self.body.writeline("}" * len(self.multistage_reduction_entry))
|
|
# Invalidate variables instantiated inside loop
|
|
# But results of reduction alive. Reduction cache values can be
|
|
# either CSEVariable or tuple of CSEVariables, in which case all
|
|
# variables in the tuple must be preserved
|
|
self.cse.invalidate(
|
|
OrderedSet(
|
|
v
|
|
for item in self.cse.reduction_cache.values()
|
|
for v in (item if isinstance(item, tuple) else (item,))
|
|
)
|
|
)
|
|
# And loop codegen
|
|
while self.multistage_reduction_entry:
|
|
self.multistage_reduction_entry.pop().cache_clear()
|
|
else:
|
|
self.body.splice(self.loads)
|
|
self.body.splice(self.compute)
|
|
self.body.splice(self.stores)
|
|
self.loads.clear()
|
|
self.compute.clear()
|
|
self.stores.clear()
|
|
|
|
def codegen_kernel(self, name: Optional[str] = None) -> str:
|
|
"""Called at the end to generate a final kernel string"""
|
|
self.codegen_body()
|
|
code = IndentedBuffer()
|
|
|
|
if V.graph.cpp_wrapper:
|
|
code.writeline('(R"MTL(')
|
|
else:
|
|
code.writeline("compile_mps_shader('''")
|
|
|
|
idx_vars = self.active_range_trees()
|
|
with code.indent():
|
|
if not V.graph.cpp_wrapper:
|
|
for header in self.headers:
|
|
code.writeline(f"#include <c10/metal/{header}.h>")
|
|
else:
|
|
headers = [
|
|
f"#include <c10/metal/{header}.h>" for header in self.headers
|
|
]
|
|
header_contents = _embed_headers(
|
|
headers,
|
|
[Path(__file__).parent.parent.parent / "include"],
|
|
OrderedSet(), # type: ignore[arg-type]
|
|
)
|
|
code.writeline(header_contents)
|
|
|
|
if self.inside_reduction:
|
|
total_reduction_size = math.prod(
|
|
# pyrefly: ignore # missing-argument
|
|
t.numel
|
|
for t in self.range_trees
|
|
# pyrefly: ignore # missing-argument
|
|
if t.is_reduction
|
|
)
|
|
# If using dynamic shapes, set the threadgroup size to be the
|
|
# max possible size
|
|
threadgroup_size = (
|
|
min(total_reduction_size, self.max_threadgroup_size)
|
|
if isinstance(total_reduction_size, sympy.Integer)
|
|
else self.max_threadgroup_size
|
|
)
|
|
code.writeline(
|
|
f"[[max_total_threads_per_threadgroup({threadgroup_size})]]"
|
|
)
|
|
code.writeline("kernel void generated_kernel(")
|
|
with code.indent():
|
|
for outer, inner in self.args.output_buffers.items():
|
|
if outer in self.removed_buffers:
|
|
continue
|
|
dtype_str = self.dtype_to_str(V.graph.get_dtype(outer))
|
|
code.writeline(f"device {dtype_str}* {inner},")
|
|
for outer, inner in self.args.input_buffers.items():
|
|
dtype = V.graph.get_dtype(outer)
|
|
# MPS does not support float64, but scalar inputs are fine
|
|
if dtype == torch.float64:
|
|
outer_buf = V.graph.try_get_buffer(outer)
|
|
if outer_buf is None or outer_buf.get_size() != []:
|
|
raise RuntimeError("float64 is not supported by MPS")
|
|
dtype_str = "float"
|
|
else:
|
|
dtype_str = self.dtype_to_str(dtype)
|
|
code.writeline(f"constant {dtype_str}* {inner},")
|
|
for outer, inner in self.args.sizevars.items():
|
|
code.writeline(f"constant long& {inner},")
|
|
|
|
# Write dynamic values as inputs
|
|
for idx_var in idx_vars:
|
|
if isinstance(idx_var.numel, sympy.Integer):
|
|
pass
|
|
else:
|
|
code.writeline(f"constant long& {idx_var.prefix}numel,")
|
|
|
|
assert len(idx_vars) < 4, "Up to 3 index variables are supported"
|
|
thread_pos_dtype = (
|
|
f"uint{len(idx_vars)}" if len(idx_vars) > 1 else "uint"
|
|
)
|
|
thread_pos_var_name = (
|
|
idx_vars[0].name if len(idx_vars) == 1 else "thread_pos"
|
|
)
|
|
thread_pos_suffix = "," if self.inside_reduction else ""
|
|
code.writeline(
|
|
f"{thread_pos_dtype} {thread_pos_var_name} [[thread_position_in_grid]]{thread_pos_suffix}"
|
|
)
|
|
if self.inside_reduction:
|
|
code.writeline(
|
|
f"{thread_pos_dtype} group_pos [[thread_position_in_threadgroup]]"
|
|
)
|
|
code.writeline(") {")
|
|
with code.indent():
|
|
if len(idx_vars) > 1:
|
|
for idx, var in enumerate(idx_vars):
|
|
code.writeline(
|
|
f"auto {var.name} = thread_pos.{chr(120 + idx)};"
|
|
)
|
|
code.splice(self.indexing_code)
|
|
code.splice(self.body)
|
|
code.writeline("}")
|
|
|
|
if V.graph.cpp_wrapper:
|
|
code.writeline(')MTL");')
|
|
else:
|
|
code.writeline("''')")
|
|
|
|
return code.getvalue()
|
|
|
|
def call_kernel(self, name: str, node: Any = None) -> None:
|
|
"""
|
|
Codegens a call to this kernel
|
|
"""
|
|
wrapper = V.graph.wrapper_code
|
|
# Make sure sizevars has been computed
|
|
for v in self.args.sizevars.keys():
|
|
wrapper.ensure_size_computed(v)
|
|
|
|
_, call_args, _, arg_types = self.args.python_argdefs()
|
|
arg_name_to_type = {
|
|
str(call_arg): arg_type for call_arg, arg_type in zip(call_args, arg_types)
|
|
}
|
|
|
|
args = [*self.args.output_buffers.keys(), *self.args.input_buffers.keys()]
|
|
args = [arg for arg in args if arg not in self.removed_buffers]
|
|
args += [str(v) for v in self.args.sizevars.keys()]
|
|
arg_types = [arg_name_to_type[arg] for arg in args]
|
|
|
|
# Add any dynamic ints as inputs
|
|
for tree in self.range_trees:
|
|
if isinstance(tree.numel, (sympy.Integer, int)):
|
|
# Don't need to pass in integers as inputs
|
|
continue
|
|
elif isinstance(tree.numel, sympy.Symbol):
|
|
expr = tree.numel
|
|
else:
|
|
expr = V.graph.wrapper_code.generate_numel_expr(name, tree).inner
|
|
|
|
# pyrefly: ignore # missing-argument
|
|
if not tree.is_reduction or self.inside_reduction:
|
|
args.append(str(expr))
|
|
arg_types.append(int)
|
|
|
|
expr_printer = self.cexpr if V.graph.cpp_wrapper else self.pexpr
|
|
|
|
def format_threads(threads: list[str], kwarg: str) -> str:
|
|
if V.graph.cpp_wrapper:
|
|
threads = [f"static_cast<uint64_t>({t})" for t in threads]
|
|
return f"{{{', '.join(threads)}}}"
|
|
else:
|
|
return f"{kwarg}=[{', '.join(threads)}]"
|
|
|
|
# For reduction kernels, limit the maximum size over reduction dimensions to
|
|
# a maximum threadgroup size
|
|
if len(self.active_range_trees()) > 0:
|
|
threads = [
|
|
expr_printer(
|
|
sympy.Min(v.numel, self.max_threadgroup_size) # type: ignore[misc]
|
|
# pyrefly: ignore # missing-argument
|
|
if v.is_reduction
|
|
else v.numel
|
|
)
|
|
for v in self.active_range_trees()
|
|
]
|
|
|
|
args.append(format_threads(threads, "threads"))
|
|
arg_types.append(list)
|
|
else:
|
|
if V.graph.cpp_wrapper:
|
|
raise RuntimeError("We should always have threads?")
|
|
|
|
if self.inside_reduction:
|
|
threads = [
|
|
expr_printer(sympy.Min(v.numel, self.max_threadgroup_size)) # type: ignore[misc]
|
|
# pyrefly: ignore # missing-argument
|
|
if v.is_reduction
|
|
else "1"
|
|
for v in self.active_range_trees()
|
|
]
|
|
args.append(format_threads(threads, "group_size"))
|
|
arg_types.append(list)
|
|
else:
|
|
if V.graph.cpp_wrapper:
|
|
# Add a None so that we always have a group_size in the
|
|
# arguments. We won't use it if the value is None.
|
|
args += [None] # type: ignore[list-item]
|
|
arg_types.append(None)
|
|
|
|
wrapper.generate_kernel_call(
|
|
name,
|
|
args,
|
|
device=torch.device("mps"),
|
|
triton=False,
|
|
arg_types=arg_types,
|
|
)
|
|
|
|
def check_bounds(
|
|
self, expr: sympy.Expr, size: sympy.Expr, lower: bool, upper: bool
|
|
) -> None:
|
|
if not (lower or upper):
|
|
return
|
|
# TODO(malfet): support asserts
|
|
# See https://github.com/pytorch/pytorch/issues/144634
|
|
expr_str = self.index_to_str(expr)
|
|
lower_expr = f"{expr_str} < 0" if lower else ""
|
|
# TODO(malfet): Is upper bound inclusive or exclusive?
|
|
upper_expr = f"{expr_str} > {self.index_to_str(size)}" if upper else ""
|
|
if lower and upper:
|
|
line = f"if (({lower_expr}) && ({upper_expr})) return"
|
|
else:
|
|
line = f"if ({lower_expr}{upper_expr}) return"
|
|
self.cse.generate(self.compute, line, assignment=False)
|
|
|
|
|
|
class MetalScheduling(SIMDScheduling):
|
|
kernel_type = MetalKernel # type: ignore[assignment]
|
|
|
|
def __init__(self, scheduler: Optional[Scheduler]) -> None:
|
|
super().__init__(scheduler)
|
|
wrapper = V.graph.wrapper_code
|
|
if wrapper is not None:
|
|
if not V.graph.cpp_wrapper:
|
|
wrapper.header.splice(
|
|
"from torch._inductor.runtime.runtime_utils import compile_mps_shader"
|
|
)
|
|
|
|
def define_kernel(
|
|
self, src_code: str, node_schedule: list[SchedulerNode], kernel: MetalKernel
|
|
) -> str:
|
|
wrapper = V.graph.wrapper_code
|
|
if src_code in wrapper.src_to_kernel:
|
|
kernel_name = wrapper.src_to_kernel[src_code]
|
|
else:
|
|
# TODO: Merge multiple kernels into a single library
|
|
# Either using MultiKernel concept or overriding SIMDScheduling.codegen_node_scheduling
|
|
mps_lib_name = f"mps_lib_{wrapper.next_kernel_suffix()}"
|
|
|
|
kernel_name = f"{mps_lib_name}"
|
|
wrapper.src_to_kernel[src_code] = kernel_name
|
|
|
|
if V.graph.cpp_wrapper:
|
|
# For shimified version, generate source constant instead of direct instantiation
|
|
src_code = f"const char* {mps_lib_name}_source = " + src_code
|
|
|
|
origins, detailed_origins = get_kernel_metadata(node_schedule, wrapper)
|
|
metadata_comment = f"{origins}\n{detailed_origins}"
|
|
wrapper.define_kernel(mps_lib_name, src_code, metadata_comment, gpu=False)
|
|
|
|
return kernel_name
|