mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-29 19:24:55 +08:00
This PR... Adds the following prims: - slice - slice_in_dim - transpose Adds the following refs: - cat - permute - transpose - swap_axes (alias for transpose) - tensor_split Makes the following test improvements: - adds reference inputs for torch.permute - adds a NumPy reference for torch.permute - adds reference inputs for torch.cat Fixes the following bugs: - adds support for scalars to the min and max prims Pull Request resolved: https://github.com/pytorch/pytorch/pull/76727 Approved by: https://github.com/ngimel
18132 lines
848 KiB
Python
18132 lines
848 KiB
Python
from functools import wraps, partial
|
|
from itertools import product, chain, islice
|
|
import itertools
|
|
import collections
|
|
import copy
|
|
from enum import Enum
|
|
import operator
|
|
import random
|
|
import unittest
|
|
import math
|
|
|
|
import torch
|
|
import numpy as np
|
|
from torch._six import inf
|
|
import collections.abc
|
|
|
|
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union, Iterable
|
|
from dataclasses import dataclass, asdict
|
|
|
|
from torch.testing import make_tensor
|
|
from torch.testing._internal.common_dtype import (
|
|
_dispatch_dtypes, floating_types, floating_types_and, complex_types, floating_and_complex_types,
|
|
floating_and_complex_types_and, all_types_and_complex_and, all_types_and, all_types_and_complex, integral_types_and,
|
|
all_types, double_types, empty_types
|
|
)
|
|
from torch.testing._internal.common_device_type import \
|
|
(onlyCPU, onlyCUDA, onlyNativeDeviceTypes, disablecuDNN, skipCUDAIfNoMagma, skipCUDAIfNoMagmaAndNoCusolver,
|
|
skipCUDAIfNoCusolver, skipCPUIfNoLapack, skipCPUIfNoFFT, skipCUDAIfRocm, skipCUDAIf, precisionOverride,
|
|
toleranceOverride, tol, has_cusolver)
|
|
from torch.testing._internal.common_cuda import (
|
|
CUDA11OrLater, SM53OrLater, SM60OrLater, with_tf32_off, TEST_CUDNN,
|
|
_get_torch_cuda_version, _get_magma_version)
|
|
from torch.testing._internal.common_utils import \
|
|
(is_iterable_of_tensors,
|
|
random_symmetric_matrix, random_symmetric_psd_matrix,
|
|
make_fullrank_matrices_with_distinct_singular_values,
|
|
random_symmetric_pd_matrix, make_symmetric_matrices,
|
|
make_symmetric_pd_matrices, random_square_matrix_of_rank,
|
|
TEST_WITH_ROCM, IS_WINDOWS, IS_MACOS, TEST_SCIPY,
|
|
torch_to_numpy_dtype_dict, TEST_WITH_ASAN,
|
|
GRADCHECK_NONDET_TOL, slowTest, noncontiguous_like,
|
|
freeze_rng_state)
|
|
import torch.testing._internal.opinfo_helper as opinfo_helper
|
|
|
|
import torch._refs as refs # noqa: F401
|
|
|
|
from distutils.version import LooseVersion
|
|
|
|
has_scipy_fft = False
|
|
if TEST_SCIPY:
|
|
from scipy import stats
|
|
import scipy.spatial
|
|
import scipy.special
|
|
try:
|
|
import scipy.fft
|
|
has_scipy_fft = True
|
|
except ModuleNotFoundError:
|
|
pass
|
|
|
|
|
|
# Reasonable testing sizes for dimensions
|
|
L = 20
|
|
M = 10
|
|
S = 5
|
|
|
|
# Unique value to distinguish default from anything else
|
|
_NOTHING = object()
|
|
|
|
|
|
class DecorateInfo(object):
|
|
"""Describes which test, or type of tests, should be wrapped in the given
|
|
decorators when testing an operator. Any test that matches all provided
|
|
arguments will be decorated. The decorators will only be applied if the
|
|
active_if argument is True."""
|
|
|
|
__slots__ = ['decorators', 'cls_name', 'test_name', 'device_type', 'dtypes', 'active_if']
|
|
|
|
def __init__(self, decorators, cls_name=None, test_name=None, *,
|
|
device_type=None, dtypes=None, active_if=True):
|
|
self.decorators = list(decorators) if isinstance(decorators, collections.abc.Sequence) else [decorators]
|
|
self.cls_name = cls_name
|
|
self.test_name = test_name
|
|
self.device_type = device_type
|
|
self.dtypes = dtypes
|
|
self.active_if = active_if
|
|
|
|
# Validate dtypes
|
|
if self.dtypes is not None:
|
|
for dtype in self.dtypes:
|
|
assert isinstance(dtype, torch.dtype)
|
|
|
|
def is_active(self, cls_name, test_name, device_type, dtype):
|
|
return (
|
|
self.active_if and
|
|
(self.cls_name is None or self.cls_name == cls_name) and
|
|
(self.test_name is None or self.test_name == test_name) and
|
|
(self.device_type is None or self.device_type == device_type) and
|
|
(self.dtypes is None or dtype in self.dtypes)
|
|
)
|
|
|
|
# FIXME
|
|
# Note: historically the 'input' kwarg had to be a Tensor or TensorList, but we are trying
|
|
# to support scalar inputs, too. Some tests still depend on 'input' being a Tensor
|
|
# or TensorList, however.
|
|
class SampleInput(object):
|
|
"""Represents sample inputs to a function."""
|
|
|
|
__slots__ = ['input', 'args', 'kwargs', 'output_process_fn_grad', 'broadcasts_input', 'name']
|
|
|
|
def __init__(self, input, *, args=tuple(), kwargs=None, output_process_fn_grad=lambda x: x, broadcasts_input=False, name=""):
|
|
# input is the first input to the op and is typically either a Tensor or TensorList (Sequence[Tensor]).
|
|
# This follows the typical pattern where for Tensor inputs op(t, ...) = t.op(...).
|
|
self.input = input
|
|
self.args = args
|
|
self.kwargs = kwargs if kwargs is not None else {}
|
|
self.output_process_fn_grad = output_process_fn_grad
|
|
self.name = name
|
|
|
|
# Specifies if `self.input` is broadcasted or not,
|
|
# given that the operator supports broadcasting.
|
|
# This field is used to verify the behavior for inplace variant.
|
|
#
|
|
# If a SampleInput is marked with `broadcasts_input=True`,
|
|
# it is verified that we get a `RuntimerError` with this sample,
|
|
# and inplace variant. Also inplace grad{grad} tests are skipped,
|
|
# for such inputs (as they will error out otherwise).
|
|
self.broadcasts_input = broadcasts_input
|
|
|
|
def _repr_helper(self, formatter):
|
|
# Helper function to return the details of the SampleInput as `str`
|
|
# It consolidates all the fields of SampleInput and allows,
|
|
# formatting the fields like `input`, `args`, etc with `formatter`
|
|
# callable to customize the representation.
|
|
# Look at `summary` method for example.
|
|
arguments = [
|
|
f'input={formatter(self.input)}',
|
|
f'args={formatter(self.args)}',
|
|
f'kwargs={formatter(self.kwargs)}',
|
|
f'output_process_fn_grad={self.output_process_fn_grad}',
|
|
f'broadcasts_input={self.broadcasts_input}',
|
|
f'name={repr(self.name)}']
|
|
|
|
return f'SampleInput({", ".join(a for a in arguments if a is not None)})'
|
|
|
|
def __repr__(self):
|
|
return self._repr_helper(lambda x: x)
|
|
|
|
def summary(self):
|
|
# Returns the SampleInput details in a more
|
|
# friendly format.
|
|
# It formats `Tensor` and `TensorList`
|
|
# in a more condensed representation.
|
|
def formatter(arg):
|
|
# Format any instance of `Tensor` (standalone, in list, or in dict)
|
|
# by Tensor[TensorShape]
|
|
# Eg. Tensor with shape (3, 4) is formatted as Tensor[3, 4]
|
|
if isinstance(arg, torch.Tensor):
|
|
shape = str(tuple(arg.shape)).replace('(', '').replace(')', '')
|
|
return f"Tensor[{shape}]"
|
|
elif isinstance(arg, dict):
|
|
return {k: formatter(v) for k, v in arg.items()}
|
|
elif is_iterable_of_tensors(arg):
|
|
return "TensorList[" + ", ".join(map(formatter, arg)) + "]"
|
|
elif isinstance(arg, (list, tuple)): # Handle list, tuple
|
|
return "(" + ",".join(map(formatter, arg)) + ")"
|
|
|
|
return repr(arg)
|
|
|
|
return self._repr_helper(formatter)
|
|
|
|
# Applies the transform f(t) -> t to each tensor and dtype in the SampleInput
|
|
def transform(self, f):
|
|
def tt(t):
|
|
def _tt(t):
|
|
return f(t)
|
|
|
|
if isinstance(t, torch.Tensor):
|
|
return _tt(t)
|
|
elif isinstance(t, torch.dtype):
|
|
return _tt(t)
|
|
elif isinstance(t, list):
|
|
return list(map(tt, t))
|
|
elif isinstance(t, tuple):
|
|
return tuple(map(tt, t))
|
|
elif isinstance(t, dict):
|
|
return {k: tt(v) for k, v in t.items()}
|
|
else:
|
|
return t
|
|
|
|
sample_tt_input, tt_args, tt_kwargs = tt(self.input), tt(self.args), tt(self.kwargs)
|
|
|
|
# Note the transformed SampleInput assumes metadata like output_process_fn_grad is still valid!
|
|
return SampleInput(
|
|
sample_tt_input,
|
|
args=tt_args,
|
|
kwargs=tt_kwargs,
|
|
output_process_fn_grad=self.output_process_fn_grad,
|
|
broadcasts_input=self.broadcasts_input,
|
|
name=self.name + "_transformed")
|
|
|
|
# Returns the NumPy version of the sample input object in the form of a tuple: (input, args, kwargs)
|
|
# Converts tensors to ndarrays by calling .detach().cpu().numpy() on them
|
|
# Converts dtypes by remapping them using torch_to_numpy_dtype_dict
|
|
def numpy(self):
|
|
def to_numpy(t):
|
|
if isinstance(t, torch.Tensor):
|
|
if t.dtype is torch.bfloat16:
|
|
return t.detach().cpu().to(torch.float32).numpy()
|
|
return t.detach().cpu().numpy()
|
|
elif isinstance(t, torch.dtype):
|
|
return torch_to_numpy_dtype_dict[t]
|
|
|
|
return t
|
|
|
|
return self.transform(to_numpy)
|
|
|
|
def noncontiguous(self):
|
|
def to_noncontiguous(t):
|
|
if isinstance(t, torch.Tensor):
|
|
return noncontiguous_like(t)
|
|
elif isinstance(t, torch.dtype):
|
|
return t
|
|
|
|
return t
|
|
|
|
return self.transform(to_noncontiguous)
|
|
|
|
|
|
class ErrorInput(object):
|
|
"""
|
|
A SampleInput that will cause the operation to throw an error plus information
|
|
about the resulting error.
|
|
"""
|
|
|
|
__slots__ = ['sample_input', 'error_type', 'error_regex']
|
|
|
|
def __init__(self, sample_input, *, error_type=RuntimeError, error_regex):
|
|
self.sample_input = sample_input
|
|
self.error_type = error_type
|
|
self.error_regex = error_regex
|
|
|
|
|
|
class AliasInfo(object):
|
|
"""Class holds alias information. For example, torch.abs ->
|
|
torch.absolute, torch.Tensor.absolute, torch.Tensor.absolute_
|
|
"""
|
|
|
|
def __init__(self, alias_name):
|
|
self.name = alias_name
|
|
self.op = _getattr_qual(torch, alias_name)
|
|
self.method_variant = getattr(torch.Tensor, alias_name, None)
|
|
self.inplace_variant = getattr(torch.Tensor, alias_name + "_", None)
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
return self.op(*args, **kwargs)
|
|
|
|
|
|
# Extension of getattr to support qualified names
|
|
# e.g. _getattr_qual(torch, 'linalg.norm') -> torch.linalg.norm
|
|
def _getattr_qual(obj, name, default=_NOTHING):
|
|
try:
|
|
for path in name.split('.'):
|
|
obj = getattr(obj, path)
|
|
return obj
|
|
except AttributeError:
|
|
if default is not _NOTHING:
|
|
return default
|
|
else:
|
|
raise
|
|
|
|
|
|
# test if a tensor is close to an integer
|
|
def close_to_int(x, eps=0.1):
|
|
if x.is_complex():
|
|
y = torch.abs(torch.view_as_complex(torch.frac(torch.view_as_real(x))))
|
|
else:
|
|
y = torch.abs(torch.frac(x))
|
|
return (y < eps) | (y > (1 - eps))
|
|
|
|
|
|
NumericsFilter = collections.namedtuple('NumericsFilter', ['condition', 'safe_val'])
|
|
|
|
|
|
# Note [OpInfos]
|
|
# ~~~~~~~~~~~~~~
|
|
#
|
|
# The majority of this note was written shortly after the PyTorch 1.9 release.
|
|
# If you notice it's out-of-date or think it could be improved then please
|
|
# file an issue.
|
|
#
|
|
# See also: the OpInfo tracker (https://github.com/pytorch/pytorch/issues/54261)
|
|
# See also: "Writing Test Templates" in common_device_type.py to learn how to
|
|
# parametrize a test template using OpInfos.
|
|
# See also: PyTorch's GitHub wiki on running and writing tests
|
|
# https://github.com/pytorch/pytorch/wiki/Running-and-writing-tests
|
|
# See also: ModuleInfos, OpInfo's sister class, defined in common_modules.py
|
|
#
|
|
# An OpInfo is a collection of metadata related to a PyTorch operator. This
|
|
# metadata is used to generate tests that validate properties of the operator,
|
|
# like if it implements the correct gradient formula.
|
|
#
|
|
# WHY OPINFOS?
|
|
# ~~~~~~~~~~~~
|
|
#
|
|
# OpInfos are principally intended to do three things:
|
|
#
|
|
# 1) to allow systematic testing over all PyTorch's operators
|
|
# 2) to simplify operating testing by autogenerating many tests
|
|
# 3) to allow systems (like autograd, torchscript, fx, nnc...) to test
|
|
# against every PyTorch operator
|
|
#
|
|
# All these goals are still a work in progress. Not every operator has an
|
|
# OpInfo, and some operator tests that could be automatically generated
|
|
# still have to be written manually.
|
|
#
|
|
# It's helpful to understand that OpInfos are both about test simplification and
|
|
# modularity. PyTorch is a complicated framework with many interrelated systems,
|
|
# too many for any one person to keep track of. An OpInfo can be thought of as the
|
|
# interface between an operator implementer and those other systems. Instead of
|
|
# requiring the implementer of torch.foo understand how to test its forward
|
|
# mode AD or NNC support that's typically handled automatically just by
|
|
# defining an OpInfo.
|
|
#
|
|
# It's often surprising to OpInfo writers that just implementing an OpInfo
|
|
# typically can't verify an operator is actually implemented correctly:
|
|
#
|
|
# "If an OpInfo doesn't validate my op works as expected, what's the point
|
|
# of it?"
|
|
#
|
|
# But the point of is the above. OpInfos are intended to let you focus on testing
|
|
# the operator logic you're familiar with instead of having to write tests for
|
|
# how the operator interacts with each of PyTorch's many systems.
|
|
#
|
|
# And, OK, it turns out that SOMETIMES just writing an OpInfo DOES
|
|
# validate your op works as expected, but that's only in special
|
|
# cases. See below for details.
|
|
#
|
|
# WHAT'S AN OPINFO?
|
|
# ~~~~~~~~~~~~~~~~~
|
|
#
|
|
# So what is an OpInfo? It's a Python class that describes an operator's properties,
|
|
# like which dtypes it supports on the CPU and whether it has any aliases.
|
|
# These properties can be divided into three categories:
|
|
#
|
|
# 1) Metadata describing the operator, like the operator's name and if it
|
|
# "supports" the out kwarg.
|
|
# 2) Test directives, like "skips" that tell the test suite to skip some
|
|
# tests.
|
|
# 3) A "sample inputs" function that generates valid inputs for the operator.
|
|
#
|
|
# OpInfo attributes are described in more detail below.
|
|
#
|
|
# THE SAMPLE INPUTS FUNCTION
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
#
|
|
# The "sample inputs" function merits special elaboration. This function is
|
|
# crucial to testing with OpInfos. A typical OpInfo test has to treat the operator
|
|
# as a black box. There's no structure for the test to understand or exploit.
|
|
# Without "sample inputs" it wouldn't even know how to call the OpInfo's
|
|
# operator. The sample input function saves the day by providing different
|
|
# "SampleInputs" that can be used to call the operator. A sample input
|
|
# function should have the following signature:
|
|
#
|
|
# def sample_inputs_foo(op_info, device, dtype, requires_grad, **kwargs):
|
|
#
|
|
# And should return an iterable of SampleInputs (see the class description
|
|
# above). Each SampleInput defines an "input", "args", "kwargs", an
|
|
# "output_process_fn_grad" function, the "broadcasts_input" bool and a
|
|
# "name".
|
|
#
|
|
# All the "sample_inputs" functions are invoked within a `torch.no_grad()`
|
|
# environment for efficiency and correctness. As such remember to set the the
|
|
# "requires_grad" flag on the inputs **after** performing any transformations
|
|
# on them.
|
|
#
|
|
# The "input" is the first argument to the operator, or the tensor that
|
|
# the method or inplace variants of the operator should be called on, and
|
|
# should be on the requested device, of the requested dtype, and its
|
|
# requires_grad attribute should be set to the requires_grad argument.
|
|
#
|
|
# "args" should contain positional arguments, and "kwargs" keyword arguments.
|
|
#
|
|
# "output_process_fn_grad" has an interesting name. It's a function that maps
|
|
# the operator's output (when given the input, args, and kwargs) to the
|
|
# portion of the output to gradcheck. For example, consider an operator
|
|
# like torch.linalg.slogdet
|
|
# (https://pytorch.org/docs/master/generated/torch.linalg.slogdet.html).
|
|
# This operator returns a tuple of two tensors, but the first tensor
|
|
# cannot be backwarded through. Its "output_process_fn_grad" filters
|
|
# this output tuple to just the second argument, which we can call backward
|
|
# on. Functions that produce a single tensor can ignore this argument.
|
|
#
|
|
# "broadcasts_input" is a bool indicated if the SampleInput causes the operator
|
|
# to broadcast the "input" argument. This is important for tests to understand
|
|
# because inplace variants of operations throw a runtime error if they
|
|
# would broadcast their input arguments, so tests that work with inplace
|
|
# variants filter SampleInputs that broadcast their input.
|
|
#
|
|
# "name" is a string that's just used for debugging. It appears when printing
|
|
# the SampleInput.
|
|
#
|
|
# Sample inputs are designed to be used with many tests, some
|
|
# that are very time consuming, so they should be a small
|
|
# set with small tensors. An elaborated set of sample inputs
|
|
# can be specified using the the "reference_inputs_func" attribute.
|
|
# The "reference inputs" for an operation are an extended
|
|
# set of sample inputs that can more exhausively test an
|
|
# operator. They are used by only a few tests that are careful
|
|
# not to take too long to run. Adding reference inputs
|
|
# is highly encouraged!
|
|
#
|
|
# THE (OPTIONAL) ERROR INPUTS FUNCTION
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
#
|
|
# OpInfos may optionally specify "error inputs" through an error function. If
|
|
# specified test_errors in test_ops.py will call the op with these inputs
|
|
# and validate that the desired error is thrown.
|
|
#
|
|
# Error inputs automate a common testing pattern where multiple inputs are
|
|
# passed to an operation and the errors they thrown are reviewed. Tests
|
|
# written in this style should be ported to the new OpInfo pattern.
|
|
#
|
|
# Error inputs are specified using the ErrorInputs class, which contains
|
|
# a SampleInput (see above) and data about the expected error.
|
|
#
|
|
# OPINFO FILE ORGANIZATION
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~
|
|
#
|
|
# All OpInfos are currently defined in this file. Most OpInfo tests are defined
|
|
# in test_ops.py, but some system-specific tests are defined in those
|
|
# systems' test files, and subclass-specific tests are defined in the test
|
|
# file that corresponds to that subclass (see the below).
|
|
# Expect a reorganization in the future.
|
|
#
|
|
# WHAT'S TESTED?
|
|
# ~~~~~~~~~~~~~~
|
|
#
|
|
# Every OpInfo in the op_db sequence has the following properties validated in
|
|
# test_ops.py:
|
|
#
|
|
# - that its supported dtypes are specified correctly
|
|
# - that the operation produces the same results when called with noncontiguous inputs
|
|
# - that it supports the out= argument properly (if it allows out=),
|
|
# see https://github.com/pytorch/pytorch/wiki/Developer-FAQ#how-does-out-work-in-pytorch
|
|
# - that it works with the conjugate view bit properly
|
|
# - that its function, method, and inplace variants perform the same operation
|
|
# (that is, that torch.add, torch.Tensor.add, and torch.Tensor.add_ all
|
|
# do the same thing).
|
|
# - that its inplace variant preserves the input's storage
|
|
# - that its gradient formula is implemented correctly, and that it supports
|
|
# gradgrad and complex grad and gradgrad and forward mode AD properly for
|
|
# the op's function and inplace variants (method variants are skipped
|
|
# to reduce test time).
|
|
# - that the operation performs the same operation when traced or scripted
|
|
# using the jit
|
|
# - that the operation is autodifferentiated by the jit as expected
|
|
# - that the operator's aliases, if any, perform the same operation and that
|
|
# the jit understands the alias
|
|
# - that the operator throws the correct errors (if error_inputs is defined)
|
|
# - that the operator produces the same results as a NumPy reference (if ref is defined)
|
|
# - that the operator produces the same results as a NumPy reference on an extended
|
|
# set of "reference inputs" (if both ref and reference_inputs_func are defined)
|
|
# (NOTE: elementwise unary and elementwise binary OpInfos do this even if only
|
|
# ref is defined, because they effectively autogenerate reference inputs)
|
|
# - that the operator works on different CUDA devices
|
|
#
|
|
# Additional OpInfo tests are in test_jit_fuser_te.py, test_fx_experimental.py,
|
|
# and test_fx.py. These tests validate that operators work with NNC and FX
|
|
# as expected.
|
|
#
|
|
# For performance, some of the above tests may only run on the first
|
|
# SampleInput returned by an OpInfo's sample input function.
|
|
#
|
|
# In addition to these tests, some subclasses (discussed in the next section)
|
|
# define additional tests.
|
|
#
|
|
# Critically, as mentioned above, what's not necessarily tested is that the operator
|
|
# works as expected. When implementing an OpInfo an engineer must still
|
|
# typically write one or more tests validating the operator's behavior.
|
|
# The exception to this is if reference testing is sufficient, or if
|
|
# the operation belongs to an OpInfo subclass that has more exhaustive
|
|
# operator testing. Elementwise unary and elementwise binary operators,
|
|
# in particular, usually don't require additional testing beyond
|
|
# writing an Opinfo.
|
|
#
|
|
#
|
|
# OPINFO (SUB)CLASSES
|
|
# ~~~~~~~~~~~~~~~~~~~
|
|
#
|
|
# In addition to the OpInfo base class there are several specialized OpInfo
|
|
# subclasses. For example, the UnaryUfuncInfo subclass is used for
|
|
# unary elementwise operations. These operations have a common structure
|
|
# that test_unary_ufuncs.py exploits with additional automated testing.
|
|
# The automated testing in test_unary_ufuncs.py is so thorough, comparing
|
|
# the operator to a NumPy reference function on a plethora of values, that
|
|
# just implementing an OpInfo for a unary elementwise operation is often
|
|
# sufficient testing.
|
|
#
|
|
# The ForeachFuncInfo is another OpInfo subclass that is hyper-specialized to a
|
|
# very unique class of operations. These OpInfos aren't included in the
|
|
# op_db sequence and have their own tests.
|
|
#
|
|
# Other OpInfo subclasses, like SpectralFuncInfo, are just for convenience
|
|
# when writing OpInfos.
|
|
#
|
|
# TESTING A NEW OPERATOR
|
|
# ~~~~~~~~~~~~~~~~~~~~~~
|
|
#
|
|
# If you're adding a new operator to any of the following namespaces:
|
|
# - torch
|
|
# - torch.fft
|
|
# - torch.linalg,
|
|
# - torch.special
|
|
# - torch.nn.functional
|
|
# then you should typically add an OpInfo for it.
|
|
#
|
|
# As mentioned a couple times above, implementing an OpInfo is not
|
|
# usually sufficient testing (unless the operator is a unary or binary elementwise
|
|
# operator). The OpInfo will only test the properties described in the
|
|
# "WHAT'S TESTED" section. It DOES NOT necessarily verify that the operator is
|
|
# implemented correctly.
|
|
#
|
|
# TIPS FOR WRITING AN OPINFO AND OPINFO TESTS
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
#
|
|
# Writing an OpInfo can be a little daunting. Since the point of an OpInfo is to
|
|
# be consumed by a variety of systems it can be hard to understand how to
|
|
# deal with test failures or how to set the OpInfo metadata properly.
|
|
#
|
|
# Before adding an OpInfo it helps to look at other OpInfos. A sample inputs
|
|
# function must be defined, and the operator's dtypes must be specified.
|
|
# Once that's done you should run the operator's tests in test_ops.py
|
|
# (these can be filtered using the "-k" argument in pytest). Tests that
|
|
# fail should provide an error message that describes what to change about
|
|
# your OpInfo. You don't need to worry about changing an OpInfo's default
|
|
# values unless a test yells at you.
|
|
#
|
|
# Similarly, if you're writing a test that consumes OpInfos then it's critical
|
|
# your test provides a clear error message describing what to do when it
|
|
# fails. You should not assume the OpInfo implementer is familiar with your
|
|
# system.
|
|
#
|
|
# If you see a confusing error message while developing an OpInfo then please
|
|
# file an issue describing what happened.
|
|
#
|
|
# This trial-and-error approach to writing an OpInfo can be frustrating,
|
|
# but it's probably necessary as long as OpInfos don't require
|
|
# learning about all the systems that consume them. One thing that can help
|
|
# is the get_supported_dtypes() function defined in opinfo_helper.py. This
|
|
# function can be used to programmatically specify the dtypes an operator
|
|
# supports, and is especially useful if writing an OpInfo on a machine
|
|
# without a CUDA device. See its documentation for more details.
|
|
#
|
|
# THE FUTURE OF OPINFOS AND OPINFO TESTING
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
#
|
|
# In the future we expect OpInfo coverage to improve and cover
|
|
# the great majority of PyTorch's (public) operators.
|
|
#
|
|
|
|
# Classes and methods for the operator database
|
|
@dataclass
|
|
class OpInfo(object):
|
|
"""Operator information and helper functions for acquiring it."""
|
|
|
|
# the string name of the function
|
|
name: str
|
|
|
|
# An optional reference function that accepts ndarrays (AKA "NumPy arrays").
|
|
# If given, the op will be compared with its reference on each of its sample inputs.
|
|
ref: Callable = None
|
|
|
|
# the following metadata describes the operator, its variants, and its aliases, if any
|
|
|
|
# iterable of aliases, e.g. ("absolute",) for torch.abs
|
|
aliases: Iterable = None
|
|
|
|
# additional string to include in the test name
|
|
# this is useful when an op needs multiple OpInfos,
|
|
# like divide does, often because it's really several
|
|
# different ops behind the scenes
|
|
variant_test_name: str = ''
|
|
|
|
# the function variant of the operation, populated as torch.<name> if None
|
|
op: Callable = None
|
|
|
|
# explicitly specifies the method variant of the operator
|
|
# if _NOTHING (default), the method variant will be autopopulated
|
|
# if None, then the OpInfo specifies no method variant
|
|
method_variant: Callable = _NOTHING
|
|
|
|
# explicitly specifies the inplace variant of the operator
|
|
# if _NOTHING (default), the method variant will be autopopulated
|
|
# if None, then the OpInfo specifies no method variant
|
|
inplace_variant: Callable = _NOTHING
|
|
|
|
# the following metadata are test directives for skipping or modifying tests
|
|
|
|
# information about which tests to skip
|
|
skips: Tuple = tuple()
|
|
|
|
# decorators to apply to generated tests
|
|
decorators: Tuple = tuple()
|
|
|
|
# the following are pointers to functions to generate certain classes of inputs
|
|
|
|
# function to generate sample inputs with strided layouts
|
|
sample_inputs_func: Callable = None
|
|
|
|
# function to generate a more thorough set of samples inputs with strided layouts
|
|
reference_inputs_func: Callable = None
|
|
|
|
# function to generate inputs that will throw errors
|
|
error_inputs_func: Callable = None
|
|
|
|
# function to generate sample inputs with sparse coo layouts
|
|
sample_inputs_sparse_coo_func: Callable = None
|
|
|
|
# function to generate sample inputs with sparse csr layouts
|
|
sample_inputs_sparse_csr_func: Callable = None
|
|
|
|
# the following metadata relates to dtype support and is tested for correctness in test_ops.py
|
|
|
|
# dtypes this function works with on the CPU,
|
|
# inherited by other device types that don't specify their own dtypes
|
|
dtypes: _dispatch_dtypes = None
|
|
|
|
# the following dtypesIf... options override the dtypes value on their respective device types
|
|
|
|
# dtypes this function is expected to work with on CUDA
|
|
dtypesIfCUDA: _dispatch_dtypes = None
|
|
|
|
# dtypes this function is expected to work with on ROCM
|
|
dtypesIfROCM: _dispatch_dtypes = None
|
|
|
|
# backward dtypes this function is expected to work with
|
|
backward_dtypes: _dispatch_dtypes = None
|
|
|
|
# backward dtypes this function is expected to work with on CUDA
|
|
backward_dtypesIfCUDA: _dispatch_dtypes = None
|
|
|
|
# backward dtypes this function is expected to work with on ROCM
|
|
backward_dtypesIfROCM: _dispatch_dtypes = None
|
|
|
|
# the following metadata describes the operators out= support
|
|
|
|
# whether the op supports the out kwarg
|
|
# defaults to True, if the op does not allow the out kwarg or
|
|
# supports it incorrectly then test_out in test_ops.py should fail
|
|
supports_out: bool = True
|
|
|
|
# the following metadata relates to autograd support
|
|
# whether the operation supports backward mode AD
|
|
# if true, gradient correctness is tested in test_ops.py
|
|
# using the op's sample inputs
|
|
supports_autograd: bool = True
|
|
|
|
# whether the op supports second order gradients
|
|
# if true, gradgrad correctness is tested in test_ops.py
|
|
# defaults to support_autograd's value
|
|
# TODO: rename this to supports_bwgrad_bwgrad to be consistent with below
|
|
supports_gradgrad: bool = None
|
|
|
|
# whether the ops supports second order gradients via
|
|
# forward-over-reverse. If True, forward-over-reverse gradgrad correctness
|
|
# is tested. If False, test that forward grad is not implemented.
|
|
# Defaults to False.
|
|
supports_fwgrad_bwgrad: bool = False
|
|
|
|
# whether the operation supports inplace autograd
|
|
# if true, tested in test_ops.py
|
|
# defaults to supports_autograd's value
|
|
supports_inplace_autograd: bool = None
|
|
|
|
# Whether the operation support forward mode AD
|
|
# If the value is True, we check that the gradients are correct
|
|
# If the value is False, we test that forward grad is not implemented
|
|
supports_forward_ad: bool = False
|
|
|
|
# wrapper function for gradcheck
|
|
gradcheck_wrapper: Callable = lambda op, *args, **kwargs: op(*args, **kwargs)
|
|
|
|
# whether to check batched grad when doing gradcheck
|
|
# defaults to support_autograd's value
|
|
check_batched_grad: bool = None
|
|
|
|
# whether to check batched grad grad when doing gradgradcheck
|
|
# default's to support_gradgrad's value
|
|
check_batched_gradgrad: bool = None
|
|
|
|
# whether to check batched forward grad when doing gradcheck
|
|
# defaults to the value of `supports_forward_ad`
|
|
check_batched_forward_grad: bool = None
|
|
|
|
# whether to check batched forward grad when doing gradcheck
|
|
# defaults to the value of `check_batched_forward_grad`
|
|
check_inplace_batched_forward_grad: bool = None
|
|
|
|
# tolerance for nondeterminism while performing gradcheck
|
|
gradcheck_nondet_tol: float = 0.0
|
|
|
|
# Whether to use the fast implmentation for gradcheck/gradgradcheck.
|
|
# When set to None, defers to the default value provided by the wrapper
|
|
# function around gradcheck (testing._internal.common_utils.gradcheck)
|
|
gradcheck_fast_mode: bool = None
|
|
|
|
# the following metadata relates to JIT support and is tested for correctness in test_ops.py
|
|
|
|
# name of the corresponding aten:: operator
|
|
aten_name: str = None
|
|
|
|
# if this is a composite implicit autograd op, the decomposed op
|
|
decomp_aten_name: Optional[str] = None
|
|
|
|
# name of the corresponding aten:: operator for backwards
|
|
aten_backward_name: Optional[str] = None
|
|
|
|
# if a op's aten::node is expected to be symbolically autodiffed
|
|
assert_autodiffed: bool = False
|
|
|
|
# a list of strings with node names that are expected to be in a
|
|
# DifferentiableGraph when autodiffed. Ex: ['aten::add', 'aten::mm'],
|
|
# default is populated to be ['aten::(name of Python operator)']
|
|
autodiff_nonfusible_nodes: List[str] = None
|
|
|
|
# a list of strings with node names that are expected to be in FusionGroups
|
|
# inside of DifferentiableGraphs when this operation is autodiffed.
|
|
# Ex: ['aten::add', 'aten::mm'], defaults to an empty list
|
|
# Note: currently no ops use fusible nodes
|
|
autodiff_fusible_nodes: List[str] = None
|
|
|
|
# the following metadata relates to sparse support and is used in test_sparse.py
|
|
|
|
# whether the op supports sparse inputs
|
|
supports_sparse: bool = False
|
|
|
|
# only run tracing tests
|
|
supports_scripting: bool = True
|
|
|
|
# the following metadata relates to sparse csr support and is used in test_sparse_csr.py
|
|
|
|
# whether the op supports sparse csr inputs
|
|
supports_sparse_csr: bool = False
|
|
|
|
# the following metadata relates to complex support and is checked in test_ops.py
|
|
|
|
test_conjugated_samples: bool = True
|
|
|
|
test_neg_view: bool = True
|
|
|
|
# assert that jit shape analysis fully propagates shape
|
|
assert_jit_shape_analysis: bool = False
|
|
|
|
# the following metadata relates to ExpandedWeights support and is checked in test_expanded_weights.py
|
|
|
|
supports_expanded_weight: bool = False
|
|
|
|
def __post_init__(self):
|
|
self._original_opinfo_args = asdict(self).copy()
|
|
|
|
assert self.dtypes is not None, "OpInfo for {0} has no dtypes!".format(self.name)
|
|
|
|
dtypes_args = (self.dtypes, self.dtypesIfCUDA, self.dtypesIfROCM)
|
|
# Validates the dtypes are generated from the dispatch-related functions
|
|
for dtype_list in dtypes_args:
|
|
assert isinstance(dtype_list, (_dispatch_dtypes, type(None)))
|
|
|
|
if self.aten_name is None:
|
|
self.aten_name = self.name
|
|
|
|
# Attribute to verify dynamic_dtypes are used.
|
|
self.dynamic_dtypes = any(map(lambda dtypes: isinstance(
|
|
dtypes, opinfo_helper._dynamic_dispatch_dtypes), dtypes_args))
|
|
|
|
if self.dynamic_dtypes:
|
|
# Make sure `dtyesIfCUDA` is dynamic, if dynamic dispatch is used for CPU
|
|
# This is because, below we set dtypesIfCUDA to dtypes if they are None.
|
|
assert isinstance(self.dtypesIfCUDA, opinfo_helper._dynamic_dispatch_dtypes), \
|
|
(f"To use dynamic dypes for operator {self.name}, "
|
|
"acquire the dtypes dynamically for argument `dtypesIfCUDA`."
|
|
"This is to ensure that CUDA dtypes are acquired correctly as they"
|
|
"differ from CPU dtypes occasionally")
|
|
|
|
self.dtypes = set(self.dtypes)
|
|
|
|
# NOTE: backward dtypes must be acquired before forward dtypes
|
|
# since they fallback to explicit (not implicit!) specifications of
|
|
# forward dtypes
|
|
self.backward_dtypesIfROCM = set(self.backward_dtypesIfROCM) if self.backward_dtypesIfROCM is not None else (
|
|
self.backward_dtypesIfCUDA if self.backward_dtypesIfCUDA is not None
|
|
else self.backward_dtypes if self.backward_dtypes is not None
|
|
else self.dtypesIfROCM if self.dtypesIfROCM is not None
|
|
else self.dtypesIfCUDA if self.dtypesIfCUDA is not None
|
|
else self.dtypes)
|
|
self.backward_dtypesIfCUDA = set(self.backward_dtypesIfCUDA) if self.backward_dtypesIfCUDA is not None else (
|
|
self.backward_dtypes if self.backward_dtypes is not None
|
|
else self.dtypesIfCUDA if self.dtypesIfCUDA is not None
|
|
else self.dtypes)
|
|
self.backward_dtypes = set(self.backward_dtypes) if self.backward_dtypes is not None else self.dtypes
|
|
|
|
self.dtypesIfCUDA = set(self.dtypesIfCUDA) if self.dtypesIfCUDA is not None else self.dtypes
|
|
self.dtypesIfROCM = set(self.dtypesIfROCM) if self.dtypesIfROCM is not None else self.dtypesIfCUDA
|
|
|
|
# NOTE: if the op is unspecified it is assumed to be under the torch namespace
|
|
if not self.op:
|
|
self.op = _getattr_qual(torch, self.name)
|
|
|
|
if self.method_variant is _NOTHING:
|
|
self.method_variant = getattr(torch.Tensor, self.name, None)
|
|
|
|
# attributes like real, imag are not callable
|
|
if not callable(self.method_variant):
|
|
self.method_variant = None
|
|
|
|
if self.inplace_variant is _NOTHING:
|
|
inplace_name = self.name + "_"
|
|
self.inplace_variant = getattr(torch.Tensor, inplace_name, None)
|
|
|
|
self.operator_variant = getattr(operator, self.name, None)
|
|
|
|
self.decorators = (*self.decorators, *self.skips)
|
|
|
|
# We run the sampling functions without tracking the gradiends of the creation of inputs
|
|
self.sample_inputs_func = torch.no_grad()(self.sample_inputs_func)
|
|
self.sample_inputs_sparse_coo_func = torch.no_grad()(self.sample_inputs_sparse_coo_func)
|
|
self.sample_inputs_sparse_csr_func = torch.no_grad()(self.sample_inputs_sparse_csr_func)
|
|
if self.reference_inputs_func is not None:
|
|
self.reference_inputs_func = torch.no_grad()(self.reference_inputs_func)
|
|
|
|
if not self.autodiff_fusible_nodes:
|
|
self.autodiff_fusible_nodes = []
|
|
|
|
if self.autodiff_nonfusible_nodes is None:
|
|
self.autodiff_nonfusible_nodes = ['aten::' + self.name]
|
|
|
|
# Autograd support
|
|
|
|
# Autograd flags that depend on backward AD only
|
|
# - If setting has been explicitly set, raise error if inconsistent
|
|
if self.supports_gradgrad is None:
|
|
self.supports_gradgrad = self.supports_autograd
|
|
else:
|
|
assert not (self.supports_gradgrad and not self.supports_autograd), (
|
|
"supports_gradgrad refines the part of autograd is supported, so it should "
|
|
"not be set if supports_autograd is False")
|
|
if self.check_batched_grad is None:
|
|
self.check_batched_grad = self.supports_autograd or self.supports_forward_ad
|
|
else:
|
|
assert not (self.check_batched_grad and not (self.supports_autograd or self.supports_forward_ad)), (
|
|
"check_batched_grad refines the part of autograd that will be checked (by gradcheck), so "
|
|
"it should not be set if supports_autograd is False")
|
|
if self.check_batched_gradgrad is None:
|
|
self.check_batched_gradgrad = self.supports_gradgrad
|
|
else:
|
|
assert not (self.check_batched_gradgrad and not self.supports_gradgrad), (
|
|
"check_batched_gradgrad refines the part of autograd that will be checked (by "
|
|
"gradgradcheck), so it should not be set if either supports_gradgrad or supports_autograd "
|
|
"is False.")
|
|
if self.check_batched_forward_grad is None:
|
|
self.check_batched_forward_grad = self.supports_forward_ad
|
|
else:
|
|
assert not (self.check_batched_forward_grad and not self.supports_forward_ad), (
|
|
"check_batched_forward_grad should only be used when supports_forward_ad "
|
|
"is True. It is used to disable the test in the specific cases "
|
|
"where the op supports forward ad but fails to compute "
|
|
"batched forward grad.")
|
|
|
|
if self.check_inplace_batched_forward_grad is None:
|
|
self.check_inplace_batched_forward_grad = self.check_batched_forward_grad
|
|
else:
|
|
assert not (self.check_inplace_batched_forward_grad and not self.check_batched_forward_grad), (
|
|
"check_batched_forward_grad should only be used when check_batched_forward_grad "
|
|
"is True. It is used to disable the test in the specific cases "
|
|
"where the op supports batched forward grad but fails to compute batched forward "
|
|
"grad for the inplace variant of the op.")
|
|
|
|
assert not (self.supports_fwgrad_bwgrad and not self.supports_autograd), (
|
|
"supports_fwgrad_bwgrad enables forward-over-backward gradgrad checks and should only be "
|
|
"True if backward ad is also checked, i.e., supports_forward_ad should be True.", self.name)
|
|
|
|
# Autograd flags that depend on both forward AD and backward AD
|
|
if self.supports_inplace_autograd is None:
|
|
self.supports_inplace_autograd = self.supports_autograd or self.supports_forward_ad
|
|
else:
|
|
assert not (self.supports_inplace_autograd and not self.supports_autograd and not self.supports_forward_ad), (
|
|
"supports_inplace_autograd refines the part of autograd that is supported, so "
|
|
"it should not be set if both supports_autograd and supports_forward_ad are False")
|
|
|
|
if self.aliases is not None:
|
|
self.aliases = tuple(AliasInfo(a) for a in self.aliases) # type: ignore[assignment]
|
|
else:
|
|
self.aliases = ()
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
"""Calls the function variant of the operator."""
|
|
return self.op(*args, **kwargs)
|
|
|
|
def get_op(self):
|
|
"""Returns the function variant of the operator, torch.<op_name>."""
|
|
return self.op
|
|
|
|
def get_method(self):
|
|
"""Returns the method variant of the operator, torch.Tensor.<op_name>.
|
|
Returns None if the operator has no method variant.
|
|
"""
|
|
return self.method_variant
|
|
|
|
def get_inplace(self):
|
|
"""Returns the inplace variant of the operator, torch.Tensor.<op_name>_.
|
|
Returns None if the operator has no inplace variant.
|
|
"""
|
|
return self.inplace_variant
|
|
|
|
def get_operator_variant(self):
|
|
"""Returns operator variant of the operator, e.g. operator.neg
|
|
Returns None if the operator has no operator variant.
|
|
"""
|
|
return self.operator_variant
|
|
|
|
def conjugate_sample_inputs(self, device, dtype, requires_grad=False, **kwargs):
|
|
"""Returns an iterable of SampleInputs but with the tensor input or first
|
|
tensor in a sequence input conjugated.
|
|
"""
|
|
|
|
samples = self.sample_inputs_func(self, device, dtype, requires_grad, **kwargs)
|
|
conj_samples = list(samples)
|
|
|
|
def conjugate(tensor):
|
|
_requires_grad = tensor.requires_grad
|
|
tensor = tensor.conj()
|
|
return tensor.requires_grad_(_requires_grad)
|
|
|
|
for i, sample in enumerate(samples):
|
|
sample = conj_samples[i]
|
|
# Note: it is assumed that the input here is either a tensor or tensorlist
|
|
if isinstance(sample.input, torch.Tensor):
|
|
sample.input = conjugate(sample.input)
|
|
else:
|
|
sample.input[0] = conjugate(sample.input[0])
|
|
|
|
return tuple(conj_samples)
|
|
|
|
def sample_inputs(self, device, dtype, requires_grad=False, **kwargs):
|
|
"""
|
|
Returns an iterable of SampleInputs.
|
|
|
|
These samples should be sufficient to test the function works correctly
|
|
with autograd, TorchScript, etc.
|
|
"""
|
|
samples = self.sample_inputs_func(self, device, dtype, requires_grad, **kwargs)
|
|
|
|
if kwargs.get('include_conjugated_inputs', False):
|
|
conj_samples = self.conjugate_sample_inputs(device, dtype, requires_grad, **kwargs)
|
|
samples_list = list(samples)
|
|
samples_list.extend(conj_samples)
|
|
samples = tuple(samples_list)
|
|
|
|
return samples
|
|
|
|
def reference_inputs(self, device, dtype, requires_grad=False, **kwargs):
|
|
"""
|
|
Returns an iterable of SampleInputs.
|
|
|
|
Distinct from sample_inputs() above because this returns an expanded set
|
|
of inputs when reference_inputs_func is defined. If undefined this returns
|
|
the sample inputs.
|
|
"""
|
|
if self.reference_inputs_func is None:
|
|
return self.sample_inputs_func(self, device, dtype, requires_grad, **kwargs)
|
|
|
|
if kwargs.get('include_conjugated_inputs', False):
|
|
raise NotImplementedError
|
|
|
|
return self.reference_inputs_func(self, device, dtype, requires_grad, **kwargs)
|
|
|
|
def error_inputs(self, device, **kwargs):
|
|
"""
|
|
Returns an iterable of ErrorInputs.
|
|
"""
|
|
return self.error_inputs_func(self, device, **kwargs)
|
|
|
|
def sample_inputs_sparse_coo(self, device, dtype, requires_grad=False, **kwargs):
|
|
"""Returns an iterable of SampleInputs that contain inputs with sparse
|
|
coo layout.
|
|
"""
|
|
return self.sample_inputs_sparse_coo_func(self, device, dtype, requires_grad, **kwargs)
|
|
|
|
def sample_inputs_sparse_csr(self, device, dtype, requires_grad=False, **kwargs):
|
|
"""Returns an iterable of SampleInputs that contain inputs with sparse
|
|
csr layout.
|
|
"""
|
|
return self.sample_inputs_sparse_csr_func(self, device, dtype, requires_grad, **kwargs)
|
|
|
|
def get_decorators(self, test_class, test_name, device, dtype):
|
|
'''Returns the decorators targeting the given test.'''
|
|
result = []
|
|
for decorator in self.decorators:
|
|
if isinstance(decorator, DecorateInfo):
|
|
if decorator.is_active(test_class, test_name, device, dtype):
|
|
result.extend(decorator.decorators)
|
|
else:
|
|
result.append(decorator)
|
|
return result
|
|
|
|
def supported_dtypes(self, device_type):
|
|
if device_type == 'cpu':
|
|
return self.dtypes
|
|
if device_type == 'cuda':
|
|
return self.dtypesIfROCM if TEST_WITH_ROCM else self.dtypesIfCUDA
|
|
else:
|
|
return self.dtypes
|
|
|
|
def supported_backward_dtypes(self, device_type):
|
|
if not self.supports_autograd:
|
|
return set()
|
|
|
|
backward_dtypes = None
|
|
if device_type == 'cpu':
|
|
backward_dtypes = self.backward_dtypes
|
|
elif device_type == 'cuda':
|
|
backward_dtypes = self.backward_dtypesIfROCM if TEST_WITH_ROCM else self.backward_dtypesIfCUDA
|
|
else:
|
|
backward_dtypes = self.backward_dtypes
|
|
|
|
allowed_backward_dtypes = floating_and_complex_types_and(torch.bfloat16, torch.float16, torch.complex32)
|
|
return set(allowed_backward_dtypes).intersection(backward_dtypes)
|
|
|
|
def supports_dtype(self, dtype, device_type):
|
|
return dtype in self.supported_dtypes(device_type)
|
|
|
|
@property
|
|
def formatted_name(self):
|
|
"""Returns a formatted full name for this OpInfo that can be used in test names."""
|
|
variant = '_' + self.variant_test_name.replace('.', '_') if self.variant_test_name else ''
|
|
return '{}{}'.format(self.name.replace('.', '_'), variant)
|
|
|
|
|
|
def _generate_reduction_inputs(device, dtype, requires_grad, **kwargs):
|
|
"""Generates input tensors for testing reduction operators"""
|
|
yield make_tensor([], dtype=dtype, device=device, requires_grad=requires_grad)
|
|
yield make_tensor([2], dtype=dtype, device=device, requires_grad=requires_grad)
|
|
yield make_tensor([3, 5], dtype=dtype, device=device, requires_grad=requires_grad)
|
|
yield make_tensor([3, 2, 1, 2], dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
|
|
def _generate_reduction_kwargs(ndim, supports_multiple_dims=True):
|
|
"""Generates a subset of all valid dim and keepdim kwargs given ndim that
|
|
is appropriate for testing reduction operators.
|
|
"""
|
|
|
|
# Test default dim and keepdim
|
|
yield {}
|
|
|
|
# Test reducing inner and outer most dimensions
|
|
yield {'dim': 0, 'keepdim': True}
|
|
yield {'dim': -1, 'keepdim': False}
|
|
|
|
# Test reducing middle dimension
|
|
if ndim > 2:
|
|
yield {'dim': ndim // 2, 'keepdim': True}
|
|
|
|
if supports_multiple_dims:
|
|
# Test reducing all dimensions
|
|
yield {'dim': tuple(range(ndim)), 'keepdim': False}
|
|
|
|
# Test reducing both first and last dimensions
|
|
if ndim > 1:
|
|
yield {'dim': (0, -1), 'keepdim': True}
|
|
|
|
# Test reducing every other dimension starting with the second
|
|
if ndim > 3:
|
|
yield {'dim': tuple(range(1, ndim, 2)), 'keepdim': False}
|
|
|
|
|
|
def sample_inputs_reduction(op_info, device, dtype, requires_grad, **kwargs):
|
|
"""Sample inputs for reduction operators."""
|
|
|
|
# TODO(@heitorschueroff) Once all reduction operators are using
|
|
# ReductionOpInfo use op_info.supports_multiple_dims directly.
|
|
supports_multiple_dims: bool = kwargs.get('supports_multiple_dims', True)
|
|
|
|
# TODO(@heitorschueroff) Once all reduction operators are using ReductionOpInfo
|
|
# use op_info.genearte_args_kwargs directly.
|
|
generate_args_kwargs = kwargs.get('generate_args_kwargs', lambda *args, **kwargs: (yield tuple(), {}))
|
|
|
|
inputs: List[SampleInput] = []
|
|
for t in _generate_reduction_inputs(device, dtype, requires_grad):
|
|
for reduction_kwargs in _generate_reduction_kwargs(t.ndim, supports_multiple_dims):
|
|
for args, kwargs in generate_args_kwargs(t, **reduction_kwargs):
|
|
kwargs.update(reduction_kwargs)
|
|
inputs.append(SampleInput(
|
|
t.clone().requires_grad_(requires_grad),
|
|
args=args,
|
|
kwargs=kwargs))
|
|
|
|
return inputs
|
|
|
|
|
|
def _generate_masked_op_mask(input_shape, device, **kwargs):
|
|
yield None
|
|
yield make_tensor(input_shape, dtype=torch.bool, device=device, requires_grad=False)
|
|
if len(input_shape) > 2:
|
|
# broadcast last mask dimension:
|
|
yield make_tensor(input_shape[:-1] + (1,), dtype=torch.bool, device=device, requires_grad=False)
|
|
# broadcast middle mask dimension:
|
|
yield make_tensor(input_shape[:1] + (1,) + input_shape[2:], dtype=torch.bool, device=device, requires_grad=False)
|
|
# broadcast first mask dimension:
|
|
yield make_tensor((1,) + input_shape[1:], dtype=torch.bool, device=device, requires_grad=False)
|
|
# mask.ndim < input.ndim
|
|
yield make_tensor(input_shape[1:], dtype=torch.bool, device=device, requires_grad=False)
|
|
# mask.ndim == 1
|
|
yield make_tensor(input_shape[-1:], dtype=torch.bool, device=device, requires_grad=False)
|
|
# masks that require broadcasting of inputs (mask.ndim >
|
|
# input.ndim) will not be supported, however, we may
|
|
# reconsider this if there will be demand on this kind of
|
|
# degenerate cases.
|
|
|
|
|
|
def sample_inputs_masked_reduction(op_info, device, dtype, requires_grad, **kwargs):
|
|
"""Sample inputs for masked reduction operators.
|
|
|
|
Masked reduction operator is a reduction operator with trailing
|
|
mask optional argument. A mask is a bool tensor with the same
|
|
shape as input or a shape that is broadcastable to input shape.
|
|
"""
|
|
inputs: List[SampleInput] = []
|
|
kwargs['supports_multiple_dims'] = op_info.supports_multiple_dims
|
|
|
|
for sample_input in sample_inputs_reduction(op_info, device, dtype, requires_grad, **kwargs):
|
|
for mask in _generate_masked_op_mask(sample_input.input.shape, device, **kwargs):
|
|
sample_input_args, sample_input_kwargs = sample_input.args, dict(mask=mask, **sample_input.kwargs)
|
|
inputs.append(SampleInput(sample_input.input.clone().requires_grad_(requires_grad),
|
|
args=sample_input_args, kwargs=sample_input_kwargs))
|
|
if(not requires_grad and dtype.is_floating_point and
|
|
sample_input.input.ndim == 2 and mask is not None and
|
|
mask.shape == sample_input.input.shape):
|
|
for v in [torch.inf, -torch.inf, torch.nan]:
|
|
t = sample_input.input.clone()
|
|
t.diagonal()[:] = v
|
|
inputs.append(SampleInput(t.detach().requires_grad_(requires_grad),
|
|
args=sample_input_args,
|
|
kwargs=sample_input_kwargs))
|
|
return inputs
|
|
|
|
|
|
def sample_inputs_sparse_coo_masked_reduction(op_info, device, dtype, requires_grad, **kwargs):
|
|
"""Sample inputs for masked reduction operators that support inputs
|
|
with sparse coo layouts.
|
|
"""
|
|
inputs: List[SampleInput] = []
|
|
|
|
if op_info.supports_sparse:
|
|
op_name = op_info.name.replace('_masked.', '')
|
|
for sample_input in sample_inputs_masked_reduction(op_info, device, dtype, requires_grad, **kwargs):
|
|
mask = sample_input.kwargs.get('mask')
|
|
if mask is not None:
|
|
sample_input_kwargs = sample_input.kwargs.copy()
|
|
sample_input_kwargs.update(mask=mask.to_sparse())
|
|
inputs.append(SampleInput(sample_input.input.to_sparse(),
|
|
args=sample_input.args, kwargs=sample_input_kwargs))
|
|
else:
|
|
if op_name in {'prod', 'amax', 'amin'}:
|
|
# FIXME: for now reductions with non-zero reduction identity and
|
|
# unspecified mask are not supported for sparse COO
|
|
# tensors, see torch._masked.prod implementation
|
|
# for details.
|
|
continue
|
|
inputs.append(SampleInput(sample_input.input.to_sparse(),
|
|
args=sample_input.args, kwargs=sample_input.kwargs))
|
|
return inputs
|
|
|
|
|
|
def sample_inputs_sparse_csr_masked_reduction(op_info, device, dtype, requires_grad, **kwargs):
|
|
"""Sample inputs for masked reduction operators that support inputs
|
|
with sparse csr layouts.
|
|
"""
|
|
inputs: List[SampleInput] = []
|
|
if op_info.supports_sparse_csr:
|
|
for sample_input in sample_inputs_masked_reduction(op_info, device, dtype, requires_grad, **kwargs):
|
|
if not (sample_input.input.ndim == 2 and sample_input.kwargs.get('keepdim')):
|
|
# - sparse CSR tensors are always 2-D tensors
|
|
# - masked reduction on CSR tensors are defined only if keepdim is True.
|
|
continue
|
|
mask = sample_input.kwargs.get('mask')
|
|
if mask is not None:
|
|
sample_input_kwargs = sample_input.kwargs.copy()
|
|
sample_input_kwargs.update(mask=mask.to_sparse_csr())
|
|
inputs.append(SampleInput(sample_input.input.to_sparse_csr(),
|
|
args=sample_input.args, kwargs=sample_input_kwargs))
|
|
else:
|
|
if op_info.name.lstrip('_masked.') in ['prod']:
|
|
# reductions with non-zero reduction identity and
|
|
# unspecified mask is not supported for sparse CSR
|
|
# tensors, see torch._masked.prod implementation
|
|
# for details.
|
|
continue
|
|
inputs.append(SampleInput(sample_input.input.to_sparse_csr(),
|
|
args=sample_input.args, kwargs=sample_input.kwargs))
|
|
if sample_input.kwargs['dim'] == 0:
|
|
# Reductions of CSR tensors use different implementations for
|
|
# inner and/or outer dimensions. So, as a minimum of testing CSR
|
|
# implementations the following kwargs must be generated:
|
|
# dict(dim=0, keepdim=True)
|
|
# dict(dim=1, keepdim=True)
|
|
# dict(dim=(0, 1), keepdim=True)
|
|
# Here we generate the dim=1 case from the dim=0 case.
|
|
sample_input = inputs[-1]
|
|
sample_input_kwargs = sample_input.kwargs.copy()
|
|
sample_input_kwargs.update(dim=1)
|
|
inputs.append(SampleInput(sample_input.input.clone(),
|
|
args=sample_input.args, kwargs=sample_input_kwargs))
|
|
return inputs
|
|
|
|
|
|
def sample_inputs_masked_norm(op_info, device, dtype, requires_grad, **kwargs):
|
|
"""Sample inputs for masked norm.
|
|
"""
|
|
inputs: List[SampleInput] = []
|
|
for ord in [2.0, 1, float('inf'), float('-inf'), 0]:
|
|
for sample_input in sample_inputs_masked_reduction(op_info, device, dtype, requires_grad, **kwargs):
|
|
sample_input_args, sample_input_kwargs = (ord,) + sample_input.args, sample_input.kwargs.copy()
|
|
inputs.append(SampleInput(sample_input.input.clone().requires_grad_(requires_grad),
|
|
args=sample_input_args, kwargs=sample_input_kwargs))
|
|
return inputs
|
|
|
|
|
|
def sample_inputs_masked_std_var(op_info, device, dtype, requires_grad, **kwargs):
|
|
"""Sample inputs for masked std/var.
|
|
"""
|
|
inputs: List[SampleInput] = []
|
|
for unbiased in [False, True]:
|
|
for sample_input in sample_inputs_masked_reduction(op_info, device, dtype, requires_grad, **kwargs):
|
|
if sample_input.args:
|
|
dim = sample_input.args[0]
|
|
sample_input_args = sample_input.args[:1] + (unbiased,) + sample_input.args[1:]
|
|
sample_input_kwargs = sample_input.kwargs.copy()
|
|
else:
|
|
dim = sample_input.kwargs.get('dim')
|
|
sample_input_args = sample_input.args
|
|
sample_input_kwargs = dict(sample_input.kwargs, unbiased=unbiased)
|
|
if requires_grad:
|
|
if sample_input_kwargs.get('mask') is None:
|
|
orig_count = torch._masked.sum(torch.ones(sample_input.input.shape, dtype=torch.int64), dim, keepdim=True)
|
|
else:
|
|
inmask = torch._masked._input_mask(sample_input.input, *sample_input_args, **sample_input_kwargs)
|
|
orig_count = torch._masked.sum(inmask.new_ones(sample_input.input.shape, dtype=torch.int64),
|
|
dim, keepdim=True, mask=inmask)
|
|
if orig_count.min() <= int(unbiased) + 1:
|
|
# Skip samples that lead to singularities in var
|
|
# computation resulting nan values both in var and
|
|
# autograd output that test_grad_fn cannot handle
|
|
# correctly. Also, skip samples when the autograd output
|
|
# for std could not be handled correctly due to torch.sqrt
|
|
continue
|
|
inputs.append(SampleInput(sample_input.input.clone().requires_grad_(requires_grad),
|
|
args=sample_input_args, kwargs=sample_input_kwargs))
|
|
return inputs
|
|
|
|
# NOTE [Reductions]:
|
|
#
|
|
# For testing purposes, we relax the definition of a reduction operator
|
|
# as defined in the docstring below. We do this to capture operators with
|
|
# a similar API so they can be tested automatically. However...
|
|
#
|
|
# Strictly speaking a reduction operator is an operator that can reduce an
|
|
# array to a single scalar value and that can be computed from the partial
|
|
# result of reducing subarrays. This usually means that the reduction operation
|
|
# should be commutative and associative. This definition is important when it
|
|
# comes to implementation as it determines how a reduction can be parallelized.
|
|
#
|
|
# For example, many summary statistics such as median, mode and quantile cannot
|
|
# be computed from partial results because these are sorting and counting based
|
|
# algorithms that need information that would be lost in the reduced value.
|
|
class ReductionOpInfo(OpInfo):
|
|
"""Reduction operator information.
|
|
|
|
An operator is a reduction operator if it reduces one or more dimensions of
|
|
the input tensor to a single value. Reduction operators must implement the
|
|
following signature:
|
|
|
|
- `op(input, *args, *, dim=None, keepdim=False, **kwargs) -> Tensor`
|
|
|
|
ReductionOpInfo tests that reduction operators implement a consistent API.
|
|
Optional features such as reducing over multiple dimensions are captured in
|
|
the optional keyword parameters of the ReductionOpInfo constructor.
|
|
|
|
If a reduction operator does not yet implement the full required API of
|
|
reduction operators, this should be documented by skipping the failing
|
|
tests rather than adding optional parameters to ReductionOpInfo.
|
|
|
|
NOTE
|
|
The API for reduction operators has not yet been finalized and some
|
|
requirements may change.
|
|
|
|
See tests in test/test_reductions.py
|
|
"""
|
|
|
|
def __init__(
|
|
self, name, *,
|
|
|
|
# The identity value for the operator if it has one.
|
|
identity: Optional[Any] = None,
|
|
|
|
# The nan policy for the operator if it implements one.
|
|
# - propagate: NaN values are propagated to the output
|
|
# - omit: NaN values are discarded during the reduction
|
|
nan_policy: Optional[str] = None,
|
|
|
|
# Whether the operator supports reducing multiple dimensions.
|
|
supports_multiple_dims: bool = True,
|
|
|
|
# Whether the operator promotes integral to floating point dtypes.
|
|
promotes_int_to_float: bool = False,
|
|
|
|
# Whether the operator promotes all integral dtypes to int64.
|
|
promotes_int_to_int64: bool = False,
|
|
|
|
# If a specific dtype is given, then the operator always returns that
|
|
# dtype irrespective of the input dtype. If None, the operator returns
|
|
# the dtype according to the type promotion rules above.
|
|
result_dtype: Optional[torch.dtype] = None,
|
|
|
|
# ReductionOpInfo tests generate their own input, dim and keepdim
|
|
# arguments and call this function to generate tuples of extra args and
|
|
# kwargs to use when calling the op. This is required for operators that
|
|
# have other required parameters besides the input tensor.
|
|
generate_args_kwargs: Callable = lambda t, dim=None, keepdim=False: (yield tuple(), {}),
|
|
|
|
# Options from the OpInfo base class
|
|
**kwargs,
|
|
):
|
|
self._original_reduction_args = locals().copy()
|
|
assert nan_policy in (None, 'propagate', 'omit')
|
|
|
|
# These are mutually exclusive options
|
|
assert not (result_dtype and promotes_int_to_float)
|
|
assert not (result_dtype and promotes_int_to_int64)
|
|
assert not (promotes_int_to_float and promotes_int_to_int64)
|
|
|
|
# Default sample_inputs_func for ReductionOpInfo which augments sample
|
|
# inputs from sample_inputs_reduction with the args and kwargs from
|
|
# generate_args_kwargs. This is only used if sample_inputs_func is None.
|
|
def sample_inputs_func(*args, **kwargs):
|
|
kwargs['supports_multiple_dims'] = supports_multiple_dims
|
|
kwargs['generate_args_kwargs'] = generate_args_kwargs
|
|
return sample_inputs_reduction(*args, **kwargs)
|
|
|
|
# Override OpInfo defaults and call base class __init__
|
|
kwargs.setdefault('inplace_variant', None)
|
|
kwargs.setdefault('sample_inputs_func', sample_inputs_func)
|
|
super().__init__(name, **kwargs)
|
|
|
|
self.identity = identity
|
|
self.nan_policy = nan_policy
|
|
self.supports_multiple_dims = supports_multiple_dims
|
|
self.promotes_int_to_float = promotes_int_to_float
|
|
self.promotes_int_to_int64 = promotes_int_to_int64
|
|
self.result_dtype = result_dtype
|
|
self.generate_args_kwargs = generate_args_kwargs
|
|
|
|
def sample_inputs_tensor_split(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_input = partial(make_tensor, device=device, dtype=dtype,
|
|
low=None, high=None, requires_grad=requires_grad)
|
|
|
|
args_cases = (
|
|
# Cases with tensor indices.
|
|
(torch.tensor([1, 2, 3]),),
|
|
(torch.tensor(1),),
|
|
(torch.tensor([1, 2, 3]), 1),
|
|
(torch.tensor([1, 4, 2, 5, 3, 6])[::2], 1),
|
|
# Cases with list of indices.
|
|
((2, 4),),
|
|
((2, 4), 1),
|
|
((2, 4), -1),
|
|
# Cases with integer section.
|
|
(3,),
|
|
(3, 1),
|
|
(3, -1),
|
|
)
|
|
|
|
for args in args_cases:
|
|
yield SampleInput(make_input((S, S, S)), args=args)
|
|
|
|
|
|
def sample_inputs_linalg_det(op_info, device, dtype, requires_grad, **kwargs):
|
|
kw = dict(device=device, dtype=dtype)
|
|
inputs = [
|
|
make_tensor((S, S), **kw),
|
|
make_tensor((1, 1), **kw), # 1x1
|
|
random_symmetric_matrix(S, **kw), # symmetric
|
|
random_symmetric_psd_matrix(S, **kw), # symmetric_psd
|
|
random_symmetric_pd_matrix(S, **kw), # symmetric_pd
|
|
|
|
random_square_matrix_of_rank(S, S - 2, **kw), # dim2_null
|
|
random_square_matrix_of_rank(S, 1, **kw), # rank1
|
|
random_square_matrix_of_rank(S, 2, **kw), # rank2
|
|
|
|
make_fullrank_matrices_with_distinct_singular_values(S, S, **kw), # full rank
|
|
make_tensor((3, 3, S, S), **kw), # batched
|
|
make_tensor((3, 3, 1, 1), **kw), # batched_1x1
|
|
random_symmetric_matrix(S, 3, **kw), # batched_symmetric
|
|
random_symmetric_psd_matrix(S, 3, **kw), # batched_symmetric_psd
|
|
random_symmetric_pd_matrix(S, 3, **kw), # batched_symmetric_pd
|
|
make_fullrank_matrices_with_distinct_singular_values(S, 3, 3, **kw), # batched fullrank
|
|
make_tensor((0, 0), **kw),
|
|
make_tensor((0, S, S), **kw),
|
|
]
|
|
for t in inputs:
|
|
t.requires_grad = requires_grad
|
|
return [SampleInput(t) for t in inputs]
|
|
|
|
def sample_inputs_linalg_det_singular(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype)
|
|
|
|
def make_singular_matrix_batch_base(size, rank):
|
|
assert size[-1] == size[-2]
|
|
assert rank > 0 and rank < size[-1]
|
|
|
|
n = size[-1]
|
|
a = make_arg(size[:-2] + (n, rank)) / 10
|
|
b = make_arg(size[:-2] + (rank, n)) / 10
|
|
x = a @ b
|
|
lu, pivs, _ = torch.linalg.lu_factor_ex(x)
|
|
p, l, u = torch.lu_unpack(lu, pivs)
|
|
u_diag_abs = u.diagonal(0, -2, -1).abs()
|
|
u_diag_abs_largest = u_diag_abs.max(dim=-1, keepdim=True).values
|
|
u_diag_abs_smallest_idxs = torch.topk(u_diag_abs, k=(n - rank), largest=False).indices
|
|
u.diagonal(0, -2, -1).div_(u_diag_abs_largest)
|
|
u.diagonal(0, -2, -1)[..., u_diag_abs_smallest_idxs] = torch.finfo(dtype).eps
|
|
matrix = p @ l @ u
|
|
|
|
matrix.requires_grad_(requires_grad)
|
|
return matrix
|
|
|
|
def sample_generator():
|
|
for batch, size in product(((), (2,), (2, 2)), range(6)):
|
|
shape = batch + (size, size)
|
|
for rank in range(1, size):
|
|
yield make_singular_matrix_batch_base(shape, rank)
|
|
|
|
return [SampleInput(t) for t in sample_generator()]
|
|
|
|
|
|
def sample_inputs_linalg_matrix_power(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_fullrank = make_fullrank_matrices_with_distinct_singular_values
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
make_arg_fullrank = partial(make_fullrank, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
# (<matrix_size>, (<batch_sizes, ...>))
|
|
test_sizes = [
|
|
(1, ()),
|
|
(2, (0,)),
|
|
(2, (2,)),
|
|
]
|
|
|
|
for matrix_size, batch_sizes in test_sizes:
|
|
size = batch_sizes + (matrix_size, matrix_size)
|
|
for n in (0, 3, 5):
|
|
yield SampleInput(make_arg(size), args=(n,))
|
|
for n in [-4, -2, -1]:
|
|
yield SampleInput(make_arg_fullrank(*size), args=(n,))
|
|
|
|
def sample_inputs_hsplit(op_info, device, dtype, requires_grad, **kwargs):
|
|
return (SampleInput(make_tensor((6,), dtype=dtype, device=device,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=(2,),),
|
|
SampleInput(make_tensor((S, S, S), dtype=dtype, device=device,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=([1, 2, 3],),),)
|
|
|
|
def sample_inputs_vsplit(op_info, device, dtype, requires_grad, **kwargs):
|
|
return (SampleInput(make_tensor((6, S), dtype=dtype, device=device,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=(2,),),
|
|
SampleInput(make_tensor((S, S, S), dtype=dtype, device=device,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=([1, 2, 3],),),)
|
|
|
|
def sample_inputs_dsplit(op_info, device, dtype, requires_grad, **kwargs):
|
|
return (SampleInput(make_tensor((S, S, S), dtype=dtype, device=device,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=([1, 2, 3],),),
|
|
SampleInput(make_tensor((S, S, 6), dtype=dtype, device=device,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=(2,),),)
|
|
|
|
def error_inputs_hsplit(op_info, device, **kwargs):
|
|
err_msg1 = ("torch.hsplit requires a tensor with at least 1 dimension, "
|
|
"but got a tensor with 0 dimensions!")
|
|
si1 = SampleInput(make_tensor((),
|
|
dtype=torch.float32,
|
|
device=device),
|
|
args=(0,),)
|
|
err_msg2 = (f"torch.hsplit attempted to split along dimension 1, "
|
|
f"but the size of the dimension {S} "
|
|
f"is not divisible by the split_size 0!")
|
|
si2 = SampleInput(make_tensor((S, S, S),
|
|
dtype=torch.float32,
|
|
device=device),
|
|
args=(0,),)
|
|
return (ErrorInput(si1, error_regex=err_msg1),
|
|
ErrorInput(si2, error_regex=err_msg2),)
|
|
|
|
def error_inputs_vsplit(op_info, device, **kwargs):
|
|
err_msg1 = ("torch.vsplit requires a tensor with at least 2 dimension, "
|
|
"but got a tensor with 1 dimensions!")
|
|
si1 = SampleInput(make_tensor((S,),
|
|
dtype=torch.float32,
|
|
device=device),
|
|
args=(0,),)
|
|
err_msg2 = (f"torch.vsplit attempted to split along dimension 0, "
|
|
f"but the size of the dimension {S} "
|
|
f"is not divisible by the split_size 0!")
|
|
si2 = SampleInput(make_tensor((S, S, S),
|
|
dtype=torch.float32,
|
|
device=device),
|
|
args=(0,),)
|
|
return (ErrorInput(si1, error_regex=err_msg1),
|
|
ErrorInput(si2, error_regex=err_msg2),)
|
|
|
|
def error_inputs_dsplit(op_info, device, **kwargs):
|
|
err_msg1 = ("torch.dsplit requires a tensor with at least 3 dimension, "
|
|
"but got a tensor with 1 dimensions!")
|
|
si1 = SampleInput(make_tensor((S,),
|
|
dtype=torch.float32,
|
|
device=device),
|
|
args=(0,),)
|
|
err_msg2 = (f"torch.dsplit attempted to split along dimension 2, "
|
|
f"but the size of the dimension {S} "
|
|
f"is not divisible by the split_size 0!")
|
|
si2 = SampleInput(make_tensor((S, S, S),
|
|
dtype=torch.float32,
|
|
device=device),
|
|
args=(0,),)
|
|
return (ErrorInput(si1, error_regex=err_msg1),
|
|
ErrorInput(si2, error_regex=err_msg2),)
|
|
|
|
def sample_inputs_linalg_multi_dot(op_info, device, dtype, requires_grad, **kwargs):
|
|
# Each test case consists of the sizes in the chain of multiplications
|
|
# e.g. [2, 3, 4, 5] generates matrices (2, 3) @ (3, 4) @ (4, 5)
|
|
test_cases = [
|
|
[1, 2, 1],
|
|
[2, 0, 2],
|
|
[0, 2, 2],
|
|
[2, 2, 2, 2],
|
|
[2, 3, 4, 5],
|
|
[5, 4, 0, 2],
|
|
[2, 4, 3, 5, 3, 2]
|
|
]
|
|
|
|
result = []
|
|
for sizes in test_cases:
|
|
tensors = []
|
|
for size in zip(sizes[:-1], sizes[1:]):
|
|
t = make_tensor(size, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
tensors.append(t)
|
|
result.append(SampleInput(tensors))
|
|
|
|
return result
|
|
|
|
def sample_inputs_linalg_matrix_norm(op_info, device, dtype, requires_grad, **kwargs):
|
|
sizes = ((2, 2), (2, 3, 2))
|
|
ords = ('fro', 'nuc', inf, -inf, 1, -1, 2, -2)
|
|
dims = ((-2, -1), (-1, 0))
|
|
|
|
inputs: List[SampleInput] = []
|
|
for size, ord, dim, keepdim in product(sizes, ords, dims, [True, False]):
|
|
t = make_tensor(size, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
inputs.append(SampleInput(t, args=(ord, dim, keepdim)))
|
|
|
|
return inputs
|
|
|
|
def sample_inputs_linalg_norm(op_info, device, dtype, requires_grad, *, variant=None, **kwargs):
|
|
if variant is not None and variant not in ('subgradient_at_zero',):
|
|
raise ValueError(f"Unsupported variant, expected variant to be 'subgradient_at_zero' but got: {variant}")
|
|
|
|
test_sizes = [
|
|
(S,),
|
|
(0,),
|
|
(S, S),
|
|
(0, 0),
|
|
(S, 0),
|
|
(0, S),
|
|
(S, S, S),
|
|
(0, S, S),
|
|
(S, 0, S),
|
|
(0, 0, 0),
|
|
]
|
|
|
|
vector_ords = (None, 0, 0.5, 1, 2, 3.5, inf, -0.5, -1, -2, -3.5, -inf)
|
|
matrix_ords = (None, 'fro', 'nuc', 1, 2, inf, -1, -2, -inf)
|
|
|
|
inputs = []
|
|
|
|
for test_size in test_sizes:
|
|
is_vector_norm = len(test_size) == 1
|
|
is_matrix_norm = len(test_size) == 2
|
|
|
|
for keepdim in [False, True]:
|
|
if not variant == 'subgradient_at_zero':
|
|
inputs.append(SampleInput(
|
|
make_tensor(
|
|
test_size, dtype=dtype, device=device, low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
kwargs=dict(
|
|
keepdim=keepdim)))
|
|
|
|
if not (is_vector_norm or is_matrix_norm):
|
|
continue
|
|
|
|
ords = vector_ords if is_vector_norm else matrix_ords
|
|
|
|
for ord in ords:
|
|
if variant == 'subgradient_at_zero':
|
|
inputs.append(SampleInput(
|
|
torch.zeros(
|
|
test_size, dtype=dtype, device=device,
|
|
requires_grad=requires_grad),
|
|
args=(ord,),
|
|
kwargs=dict(keepdim=keepdim)))
|
|
else:
|
|
inputs.append(SampleInput(
|
|
make_tensor(
|
|
test_size, dtype=dtype, device=device,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=(ord,),
|
|
kwargs=dict(
|
|
keepdim=keepdim)))
|
|
|
|
if ord in ['nuc', 'fro']:
|
|
inputs.append(SampleInput(
|
|
make_tensor(
|
|
test_size, dtype=dtype, device=device,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
kwargs=dict(
|
|
ord=ord,
|
|
keepdim=keepdim,
|
|
dim=(0, 1))))
|
|
|
|
return inputs
|
|
|
|
def sample_inputs_as_strided(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# input shape, output shape, output stride, output storage offset
|
|
test_cases = [
|
|
((1,), (1,), (1,), 0),
|
|
((3, 3), (2, 2), (1, 2), 0),
|
|
((3, 3), (2, 2), (1, 2), 1),
|
|
((16,), (2, 2, 2, 2), (1, 1, 1, 1), 0),
|
|
((16,), (2, 1, 1, 2), (1, 7, 7, 1), 0),
|
|
]
|
|
|
|
samples = []
|
|
|
|
for input_shape, output_shape, stride, storage_offset in test_cases:
|
|
input_t = make_arg(input_shape)
|
|
kwargs = dict(storage_offset=storage_offset)
|
|
samples.append(SampleInput(input_t, args=(output_shape, stride), kwargs=kwargs))
|
|
|
|
return samples
|
|
|
|
def sample_inputs_combinations(op_info, device, dtype, requires_grad, **kwargs):
|
|
inputs = (
|
|
(0,),
|
|
(0, 1),
|
|
(0, 1, 2, 3),
|
|
)
|
|
|
|
rvals = [1, 2, 4]
|
|
|
|
products = product(inputs, rvals, [False, True])
|
|
|
|
samples = []
|
|
|
|
for input_data, r, with_replacement in products:
|
|
input_t = torch.tensor(input_data, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
kwargs = dict(r=r, with_replacement=with_replacement)
|
|
|
|
samples.append(SampleInput(input_t, kwargs=kwargs))
|
|
|
|
return tuple(samples)
|
|
|
|
def sample_inputs_cartesian_prod(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(torch.tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# constructs 1-D tensors with varying number of elements
|
|
a = make_arg((0,))
|
|
b = make_arg((0, 1))
|
|
c = make_arg((0, 1, 2, 3))
|
|
|
|
samples = []
|
|
|
|
# sample with only 1 tensor
|
|
samples.append(SampleInput(
|
|
a
|
|
))
|
|
|
|
# sample with 2 tensors
|
|
samples.append(SampleInput(
|
|
a,
|
|
args=(b,)
|
|
))
|
|
|
|
# sample with 3 tensors
|
|
samples.append(SampleInput(
|
|
a,
|
|
args=(b, c)
|
|
))
|
|
|
|
return tuple(samples)
|
|
|
|
def sample_inputs_cosine_similarity(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# Ordered as input_shape, dict of dim and eps
|
|
cases: Tuple[tuple, dict] = ( # type: ignore[assignment]
|
|
((S, S), {'dim': 1}),
|
|
((S, 2), {'dim': -1}),
|
|
((S,), {'dim': 0, 'eps': 0.5}),
|
|
((), {'dim': 0}),
|
|
((S, S, M), {'dim': 2}),
|
|
((S, S), {})
|
|
)
|
|
|
|
for input_shape, kwargs in cases:
|
|
yield SampleInput(make_arg(input_shape), args=(make_arg(input_shape),), kwargs=kwargs)
|
|
# Test for Broadcasting
|
|
yield SampleInput(make_arg((1, 2, 3)), args=(make_arg((2, 1, 3)),), kwargs={'dim': -1})
|
|
yield SampleInput(make_arg((1, 2, 3)), args=(make_arg((2, 1, 3)),), kwargs={'dim': -2})
|
|
yield SampleInput(make_arg((2, 3)), args=(make_arg((2, 1, 3)),), kwargs={'dim': -1})
|
|
|
|
def sample_inputs_batch_norm(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
make_arg_without_requires_grad = partial(make_tensor, device=device, dtype=dtype, requires_grad=False)
|
|
|
|
# Ordered as: input shape, kwargs for training, momentum, eps
|
|
cases: Tuple[Tuple[int], dict] = ( # type: ignore[assignment]
|
|
((S, S, S), {'training': True, 'momentum': 0.5, 'eps': 0.6}),
|
|
((3, 2, 4), {'training': False, 'momentum': -1.2}),
|
|
((3, 1), {'training': True, 'momentum': 0.0}),
|
|
((0,), {'training': True}),
|
|
((0,), {'training': False}),
|
|
((3, 2, 3, 4), {'training': True, 'momentum': -1.0, 'eps': 0.5}),
|
|
((3, 2, 3, 4), {'training': False, 'momentum': -1.0, 'eps': 0.5}),
|
|
((2, 1), {}),
|
|
)
|
|
|
|
for input_shape, kwargs in cases:
|
|
# args: running mean, running var, weight and bias should necessarily be of shape: (channels,)
|
|
channels = input_shape[1] if len(input_shape) > 1 else 0
|
|
weight = make_arg(channels) if channels > 0 else None
|
|
bias = make_arg(channels) if channels > 0 else None
|
|
running_mean = make_arg_without_requires_grad(channels, low=0)
|
|
running_var = make_arg_without_requires_grad(channels, low=0)
|
|
|
|
yield SampleInput(
|
|
make_arg(input_shape),
|
|
args=(
|
|
running_mean,
|
|
running_var,
|
|
weight,
|
|
bias
|
|
),
|
|
kwargs=kwargs
|
|
)
|
|
|
|
# Checking for permutations of weights and biases as `None`
|
|
weights = [channels, None, None]
|
|
biases = [None, channels, None]
|
|
is_training = [True, False, False]
|
|
|
|
for weight, bias, training in zip(weights, biases, is_training):
|
|
yield SampleInput(
|
|
make_arg(input_shape),
|
|
args=(
|
|
running_mean,
|
|
running_var,
|
|
make_arg(channels),
|
|
make_arg(channels)
|
|
),
|
|
kwargs={'training': training}
|
|
)
|
|
|
|
# Test case for no optional kwargs
|
|
# running_mean and running_var are required in evaluation mode (training: False) but not in training mode
|
|
yield SampleInput(make_arg((1, 2, 3)), args=(None, None), kwargs={'training': True})
|
|
|
|
def sample_inputs_nn_activation_relu(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
cases = (
|
|
(()),
|
|
((S, )),
|
|
((S, S)),
|
|
((S, M, S))
|
|
)
|
|
|
|
for shape in cases:
|
|
yield SampleInput(make_arg(shape))
|
|
|
|
def sample_inputs_nn_functional_prelu(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
cases = (
|
|
(()),
|
|
((S, )),
|
|
((S, S)),
|
|
((S, M, S))
|
|
)
|
|
|
|
for shape in cases:
|
|
for weight in [-1., 0., 0.8, 1.]:
|
|
weight_tensor = torch.tensor(weight, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
yield SampleInput(make_arg(shape), args=(weight_tensor,))
|
|
|
|
if len(shape) >= 2:
|
|
channel_size = shape[1]
|
|
yield SampleInput(make_arg(shape), args=(make_arg((channel_size,)),))
|
|
weight_tensor = torch.tensor(1., device=device, dtype=dtype, requires_grad=requires_grad)
|
|
yield SampleInput(make_arg((S, S)), kwargs=dict(weight=weight_tensor,))
|
|
yield SampleInput(make_arg((S, S)), kwargs=dict(weight=make_arg((S,)),))
|
|
|
|
def sample_inputs_norm(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
cases = (
|
|
((S, S), (2,), '2'),
|
|
((S, S), (0,), '0'),
|
|
((S, S), (0.5,), '0_5'),
|
|
((S, S), (1,), '1'),
|
|
((S, S), (3,), '3'),
|
|
((S, S), (-1,), 'neg_1'),
|
|
((S, S), (-2,), 'neg_2'),
|
|
((S, S), (-0.5,), 'neg_0_5'),
|
|
((S, S), (-1.5,), 'neg_1_5'),
|
|
)
|
|
|
|
cases_nonzero_input = (
|
|
((S, S, S), (1.5,), '1_5_default'),
|
|
((S, S, S), (1.5, 1), '1_5_dim'),
|
|
((S, S, S), (1.5, -1), '1_5_neg_dim'),
|
|
((S, S, S), (1.5, 1, True), 'keepdim_1_5_dim'),
|
|
((S, S, S), (1.5, -1, True), 'keepdim_1_5_neg_dim'),
|
|
)
|
|
|
|
cases_negdim_base = (
|
|
((S, S), (-2, 1,), 'neg_2_2_dim'),
|
|
((S, S), (-1, 1,), 'neg_1_2_dim'),
|
|
((S, S), (0, 1,), '0_2_dim'),
|
|
((S, S), (1, 1,), '1_2_dim'),
|
|
((S, S), (2, 1,), '2_2_dim'),
|
|
((S, S), (3, 1,), '3_2_dim'),
|
|
((S, S, S), (2, 1), '2_dim'),
|
|
((S, S, S), (3, 1), '3_dim'),
|
|
((S, S, S), (2, 1, True), 'keepdim_2_dim'),
|
|
((S, S, S), (3, 1, True), 'keepdim_3_dim'),
|
|
((), (2, 0), '2_dim_scalar'),
|
|
((), (3, 0), '3_dim_scalar'),
|
|
((), (2, 0, True), 'keepdim_2_dim_scalar'),
|
|
((), (3, 0, True), 'keepdim_3_dim_scalar'),
|
|
)
|
|
|
|
cases_negdim = []
|
|
for case in cases_negdim_base:
|
|
cases_negdim.append(case)
|
|
shape, args, name = case
|
|
new_args = copy.deepcopy(list(args))
|
|
new_args[1] *= -1
|
|
cases_negdim.append((shape, tuple(new_args), name.replace("_dim", "_neg_dim")))
|
|
|
|
for shape, args, name in itertools.chain(cases, cases_negdim):
|
|
yield SampleInput(make_arg(shape), args=args, name=name)
|
|
|
|
for shape, args, name in cases_nonzero_input:
|
|
yield SampleInput(make_arg(shape, exclude_zero=True), args=args, name=name)
|
|
|
|
|
|
def sample_inputs_norm_fro(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
cases = (
|
|
((S, S), (), 'default'),
|
|
((S, S), ('fro',), 'fro_default'),
|
|
((S, S), ('fro', [0, 1],), 'fro'),
|
|
)
|
|
|
|
for shape, args, name in cases:
|
|
yield SampleInput(make_arg(shape), args=args, name=name)
|
|
|
|
|
|
def sample_inputs_norm_nuc(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
cases = (
|
|
((S, S), ('nuc',), 'nuc'),
|
|
((S, S, S), ('nuc', [1, 2]), 'nuc_batched'),
|
|
)
|
|
|
|
for shape, args, name in cases:
|
|
yield SampleInput(make_arg(shape), args=args, name=name)
|
|
|
|
|
|
def sample_inputs_norm_inf(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
cases = (
|
|
((S, S), (-inf,), '-inf'),
|
|
((S, S), (inf,), 'inf'),
|
|
((S, S), (inf, 1,), 'inf_2_dim'),
|
|
((S, S), (inf, -1,), 'inf_2_neg_dim'),
|
|
)
|
|
|
|
for shape, args, name in cases:
|
|
yield SampleInput(make_arg(shape), args=args, name=name)
|
|
|
|
|
|
def sample_inputs_linalg_vector_norm(op_info, device, dtype, requires_grad, **kwargs):
|
|
size_1D = (S,)
|
|
size_2D = (2, 2)
|
|
|
|
test_cases = [
|
|
# input size, ord, dim args
|
|
(size_1D, 2, None),
|
|
(size_1D, 2, (0,)),
|
|
(size_1D, 0, None),
|
|
(size_1D, 0, (0,)),
|
|
(size_1D, 0.9, None),
|
|
(size_1D, 0.9, (0,)),
|
|
(size_1D, 1, None),
|
|
(size_1D, 1, (0,)),
|
|
(size_1D, -2.1, None),
|
|
(size_1D, -2.1, (0,)),
|
|
(size_1D, inf, None),
|
|
(size_1D, inf, (0,)),
|
|
(size_1D, -inf, None),
|
|
(size_1D, -inf, (0,)),
|
|
|
|
(size_2D, 2, None),
|
|
(size_2D, 2, (0,)),
|
|
(size_2D, 2, (-1, 0)),
|
|
(size_2D, 0, None),
|
|
(size_2D, 0, (0,)),
|
|
(size_2D, 0, (-1, 0)),
|
|
(size_2D, 0.9, None),
|
|
(size_2D, 0.9, (0,)),
|
|
(size_2D, 0.9, (-1, 0)),
|
|
(size_2D, 1, None),
|
|
(size_2D, 1, (0,)),
|
|
(size_2D, 1, (-1, 0)),
|
|
(size_2D, -2.1, None),
|
|
(size_2D, -2.1, (0,)),
|
|
(size_2D, -2.1, (-1, 0)),
|
|
(size_2D, inf, None),
|
|
(size_2D, inf, (0,)),
|
|
(size_2D, inf, (-1, 0)),
|
|
(size_2D, -inf, None),
|
|
(size_2D, -inf, (0,)),
|
|
(size_2D, -inf, (-1, 0)),
|
|
]
|
|
inputs = []
|
|
|
|
for test_size, ord, dim in test_cases:
|
|
for keepdim in [False, True]:
|
|
inputs.append(SampleInput(
|
|
make_tensor(
|
|
test_size, dtype=dtype, device=device,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=(ord,),
|
|
kwargs=dict(
|
|
keepdim=keepdim,
|
|
dim=dim)))
|
|
|
|
return inputs
|
|
|
|
# The following functions and classes are for testing elementwise binary operators.
|
|
|
|
# Returns a generator of pairs of contiguous tensors on the requested device
|
|
# and with the requested dtype.
|
|
#
|
|
# This function is intended to test the non-vectorized and vectorized code
|
|
# paths of elementwise binary functions, as well as their handling of odd tensor
|
|
# sizes (like zero-dim tensors and tensors with zero elements).
|
|
#
|
|
# Each iterable will include an a tensor with no elements,
|
|
# zero dim (scalar) tensors, small 1D tensors, a medium 1D tensor, and
|
|
# a large 2D tensor.
|
|
def generate_elementwise_binary_tensors(op, *, device, dtype, requires_grad=False):
|
|
shapes = (
|
|
# tensors with no elements
|
|
(0,),
|
|
(1, 0, 3),
|
|
# zero dim (scalar) tensor
|
|
(),
|
|
# small 1D tensor
|
|
(20,),
|
|
# medium 1D tensor
|
|
(812,),
|
|
# large 2D tensor
|
|
(1029, 917),
|
|
)
|
|
|
|
make_arg = partial(
|
|
make_tensor, device=device, dtype=dtype, requires_grad=requires_grad
|
|
)
|
|
for shape in shapes:
|
|
lhs = make_arg(shape, **op.lhs_make_tensor_kwargs)
|
|
rhs = make_arg(shape, **op.rhs_make_tensor_kwargs)
|
|
yield SampleInput(lhs, args=(rhs,))
|
|
|
|
|
|
# Returns a generator of pairs of contiguous tensors on the requested device and with
|
|
# the requested dtype.
|
|
#
|
|
# Unlike the previous function, the values in these tensors are specified manually.
|
|
def generate_elementwise_binary_small_value_tensors(
|
|
op, *, device, dtype, requires_grad=False, exclude_zero=None
|
|
):
|
|
if exclude_zero is None:
|
|
if hasattr(op, "rhs_make_tensor_kwargs"):
|
|
exclude_zero = op.rhs_make_tensor_kwargs.get("exclude_zero", False)
|
|
|
|
# defines interesting values
|
|
_unsigned_int_vals = (0, 1, 55, 127, 128, 190, 210, 220, 254)
|
|
_int_vals = (0, -1, 1, -55, 55, -127, 127, -128)
|
|
_float_vals = (
|
|
0.0,
|
|
-0.001,
|
|
0.001,
|
|
-0.25,
|
|
0.25,
|
|
-1.0,
|
|
1.0,
|
|
-math.pi / 2,
|
|
math.pi / 2,
|
|
-math.pi + 0.00001,
|
|
math.pi - 0.00001,
|
|
-math.pi,
|
|
math.pi,
|
|
-math.pi - 0.00001,
|
|
math.pi + 0.00001,
|
|
)
|
|
|
|
l_vals = []
|
|
r_vals = []
|
|
|
|
if dtype.is_floating_point:
|
|
prod = product(_float_vals, _float_vals)
|
|
elif dtype.is_complex:
|
|
complex_vals = product(_float_vals, _float_vals)
|
|
# Note the use of list is required here or the map generator will be
|
|
# emptied by the following product and it won't produce the desired cross-product
|
|
complex_vals = list(map(lambda x: complex(*x), complex_vals))
|
|
prod = product(complex_vals, complex_vals)
|
|
elif dtype in (torch.int8, torch.int16, torch.int32, torch.int64):
|
|
prod = product(_int_vals, _int_vals)
|
|
elif dtype is torch.uint8:
|
|
prod = product(_unsigned_int_vals, _unsigned_int_vals)
|
|
else:
|
|
raise ValueError("Unsupported dtype!")
|
|
|
|
for l, r in prod:
|
|
l_vals.append(l)
|
|
if r == 0 and exclude_zero:
|
|
r_vals.append(1)
|
|
else:
|
|
r_vals.append(r)
|
|
|
|
lhs = torch.tensor(l_vals, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
rhs = torch.tensor(r_vals, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
yield SampleInput(lhs, args=(rhs,))
|
|
|
|
|
|
def generate_elementwise_binary_large_value_tensors(
|
|
op, *, device, dtype, requires_grad=False
|
|
):
|
|
_large_int_vals = (-1113, 1113, -10701, 10701)
|
|
_large_float16_vals = (-501, 501, -1001.2, 1001.2, -13437.7, 13437.7)
|
|
_large_float_vals = _large_float16_vals + (-4988429.2, 4988429.2, -1e20, 1e20)
|
|
|
|
l_vals = []
|
|
r_vals = []
|
|
|
|
if dtype == torch.float16:
|
|
prod = product(_large_float16_vals, _large_float16_vals)
|
|
elif dtype.is_floating_point:
|
|
prod = product(_large_float_vals, _large_float_vals)
|
|
elif dtype.is_complex:
|
|
complex_vals = product(_large_float_vals, _large_float_vals)
|
|
# Note the use of list is required here or the map generator will be
|
|
# emptied by the following product and it won't produce the desired cross-product
|
|
complex_vals = list(map(lambda x: complex(*x), complex_vals))
|
|
prod = product(complex_vals, complex_vals)
|
|
elif dtype in (torch.int16, torch.int32, torch.int64):
|
|
prod = product(_large_int_vals, _large_int_vals)
|
|
else:
|
|
raise ValueError("Unsupported dtype!")
|
|
|
|
for l, r in prod:
|
|
l_vals.append(l)
|
|
r_vals.append(r)
|
|
|
|
lhs = torch.tensor(l_vals, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
rhs = torch.tensor(r_vals, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
yield SampleInput(lhs, args=(rhs,))
|
|
|
|
|
|
def generate_elementwise_binary_extremal_value_tensors(
|
|
op, *, device, dtype, requires_grad=False
|
|
):
|
|
_float_extremals = (float("inf"), float("-inf"), float("nan"))
|
|
|
|
l_vals = []
|
|
r_vals = []
|
|
|
|
if dtype.is_floating_point:
|
|
prod = product(_float_extremals, _float_extremals)
|
|
elif dtype.is_complex:
|
|
complex_vals = product(_float_extremals, _float_extremals)
|
|
# Note the use of list is required here or the map generator will be
|
|
# emptied by the following product and it won't produce the desired cross-product
|
|
complex_vals = list(map(lambda x: complex(*x), complex_vals))
|
|
prod = product(complex_vals, complex_vals)
|
|
else:
|
|
raise ValueError("Unsupported dtype!")
|
|
|
|
for l, r in prod:
|
|
l_vals.append(l)
|
|
r_vals.append(r)
|
|
|
|
lhs = torch.tensor(l_vals, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
rhs = torch.tensor(r_vals, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
yield SampleInput(lhs, args=(rhs,))
|
|
|
|
|
|
# Returns a generator of pairs of contiguous and noncontiguous tensors that
|
|
# require broadcasting
|
|
def generate_elementwise_binary_broadcasting_tensors(
|
|
op, *, device, dtype, requires_grad=False
|
|
):
|
|
shapes = (
|
|
((1,), ()),
|
|
((2,), ()),
|
|
((1,), (2,)),
|
|
((2, 1), (2,)),
|
|
((1, 2), (2,)),
|
|
((3, 2), (2,)),
|
|
((1, 3, 2), (2,)),
|
|
((1, 3, 2), (3, 2)),
|
|
((3, 1, 2), (3, 2)),
|
|
((2, 3, 2), ()),
|
|
((3, 1, 2), (1, 3, 2)),
|
|
)
|
|
|
|
make_arg = partial(
|
|
make_tensor, device=device, dtype=dtype, requires_grad=requires_grad
|
|
)
|
|
for shape, noncontiguous in product(shapes, [True, False]):
|
|
shape_lhs, shape_rhs = shape
|
|
lhs = make_arg(
|
|
shape_lhs, noncontiguous=noncontiguous, **op.lhs_make_tensor_kwargs
|
|
)
|
|
rhs = make_arg(
|
|
shape_rhs, noncontiguous=noncontiguous, **op.rhs_make_tensor_kwargs
|
|
)
|
|
|
|
yield SampleInput(lhs, args=(rhs,), broadcasts_input=True)
|
|
|
|
|
|
# Returns a generator of pairs of contiguous tensors and scalars
|
|
def generate_elementwise_binary_with_scalar_samples(
|
|
op, *, device, dtype, requires_grad=False
|
|
):
|
|
make_arg = partial(
|
|
make_tensor, device=device, dtype=dtype, requires_grad=requires_grad
|
|
)
|
|
|
|
scalar_shapes = ((), (3,), (5, 3), (0, 1, 3), (1, 5))
|
|
if op.supports_rhs_python_scalar:
|
|
for scalar_shape in scalar_shapes:
|
|
lhs = make_arg(scalar_shape, **op.lhs_make_tensor_kwargs)
|
|
rhs = make_arg(scalar_shape, **op.rhs_make_tensor_kwargs)
|
|
lhs_scalar = make_arg((), **op.lhs_make_tensor_kwargs).item()
|
|
rhs_scalar = make_arg((), **op.rhs_make_tensor_kwargs).item()
|
|
|
|
yield SampleInput(lhs, args=(rhs_scalar,))
|
|
|
|
# Extends with scalar lhs
|
|
if op.supports_one_python_scalar:
|
|
yield SampleInput(lhs_scalar, args=(rhs,))
|
|
|
|
if op.supports_two_python_scalars:
|
|
lhs_scalar = make_arg((), **op.lhs_make_tensor_kwargs).item()
|
|
rhs_scalar = make_arg((), **op.rhs_make_tensor_kwargs).item()
|
|
|
|
yield SampleInput(lhs_scalar, args=(rhs_scalar,))
|
|
|
|
|
|
# Returns a generator of pairs of noncontiguous tensors
|
|
def generate_elementwise_binary_noncontiguous_tensors(
|
|
op, *, device, dtype, requires_grad=False
|
|
):
|
|
make_arg = partial(
|
|
make_tensor, device=device, dtype=dtype, requires_grad=requires_grad
|
|
)
|
|
|
|
# Generic noncontiguity
|
|
lhs = make_arg((1026,), noncontiguous=True, **op.lhs_make_tensor_kwargs)
|
|
rhs = make_arg((1026,), noncontiguous=True, **op.rhs_make_tensor_kwargs)
|
|
|
|
yield SampleInput(lhs.clone(), args=(rhs.clone(),))
|
|
yield SampleInput(lhs.contiguous(), args=(rhs,))
|
|
|
|
# Transposed
|
|
lhs = make_arg((789, 357), **op.lhs_make_tensor_kwargs)
|
|
rhs = make_arg((789, 357), **op.rhs_make_tensor_kwargs)
|
|
|
|
yield SampleInput(lhs.T, args=(rhs.T,))
|
|
|
|
# More noncontiguity
|
|
shapes = ((5, 7), (1024,))
|
|
|
|
for shape in shapes:
|
|
lhs = make_arg(shape, **op.lhs_make_tensor_kwargs)
|
|
rhs = make_arg(shape, **op.rhs_make_tensor_kwargs)
|
|
|
|
lhs_non_contig = torch.empty(shape + (2,), device=device, dtype=dtype)[..., 0]
|
|
lhs_non_contig.copy_(lhs)
|
|
|
|
rhs_non_contig = torch.empty(shape + (2,), device=device, dtype=dtype)[..., 0]
|
|
rhs_non_contig.copy_(rhs)
|
|
|
|
yield SampleInput(lhs_non_contig.clone(), args=(rhs_non_contig.clone(),))
|
|
yield SampleInput(lhs_non_contig.contiguous(), args=(rhs_non_contig,))
|
|
|
|
# Noncontiguous indices
|
|
shape = (2, 2, 1, 2)
|
|
lhs = make_arg(shape, **op.lhs_make_tensor_kwargs)
|
|
rhs = make_arg(shape, **op.rhs_make_tensor_kwargs)
|
|
|
|
lhs_non_contig = lhs[:, 1, ...]
|
|
rhs_non_contig = rhs[:, 1, ...]
|
|
|
|
yield SampleInput(lhs_non_contig.clone(), args=(rhs_non_contig.clone(),))
|
|
yield SampleInput(lhs_non_contig.contiguous(), args=(rhs_non_contig,))
|
|
|
|
# Expanded tensors
|
|
shapes = ((1, 3), (1, 7), (5, 7))
|
|
|
|
for shape in shapes:
|
|
lhs = make_arg(shape, **op.lhs_make_tensor_kwargs)
|
|
rhs = make_arg(shape, **op.rhs_make_tensor_kwargs)
|
|
|
|
lhs_non_contig = lhs.expand(3, -1, -1)
|
|
rhs_non_contig = rhs.expand(3, -1, -1)
|
|
|
|
yield SampleInput(lhs_non_contig, args=(rhs_non_contig,))
|
|
|
|
|
|
# Sample inputs for elementwise binary operators, like add
|
|
def sample_inputs_elementwise_binary(op, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(
|
|
make_tensor, device=device, dtype=dtype, requires_grad=requires_grad
|
|
)
|
|
|
|
shapes = (
|
|
((), ()),
|
|
((S,), ()),
|
|
((S, 1), (S,)),
|
|
((M, S), ()),
|
|
((S, M, S), (M, S)),
|
|
((S, M, S), (S, M, S)),
|
|
((M, 1, S), (M, S)),
|
|
((M, 1, S), (1, M, S)),
|
|
((0, 1, 3), (0, 10, 3)),
|
|
)
|
|
|
|
sample_kwargs = kwargs.get("sample_kwargs", {})
|
|
|
|
for shape_lhs, shape_rhs in shapes:
|
|
lhs = make_arg(shape_lhs, **op.lhs_make_tensor_kwargs)
|
|
rhs = make_arg(shape_rhs, **op.rhs_make_tensor_kwargs)
|
|
broadcasts_input = shape_lhs != torch.broadcast_shapes(shape_lhs, shape_rhs)
|
|
|
|
yield SampleInput(
|
|
lhs, args=(rhs,), kwargs=sample_kwargs, broadcasts_input=broadcasts_input
|
|
)
|
|
|
|
|
|
# The base reference input generation for elementwise binary operations
|
|
def _reference_inputs_elementwise_binary(op, device, dtype, requires_grad, **kwargs):
|
|
yield from op.sample_inputs_func(op, device, dtype, requires_grad, **kwargs)
|
|
yield from generate_elementwise_binary_tensors(
|
|
op, device=device, dtype=dtype, requires_grad=requires_grad
|
|
)
|
|
if dtype is not torch.bool:
|
|
yield from generate_elementwise_binary_small_value_tensors(
|
|
op, device=device, dtype=dtype, requires_grad=requires_grad
|
|
)
|
|
if dtype not in (torch.bool, torch.uint8, torch.int8):
|
|
yield from generate_elementwise_binary_large_value_tensors(
|
|
op, device=device, dtype=dtype, requires_grad=requires_grad
|
|
)
|
|
# TODO: FIXME: RuntimeError: "index_select" not implemented for 'ComplexHalf'
|
|
if dtype not in (torch.chalf,):
|
|
yield from generate_elementwise_binary_broadcasting_tensors(
|
|
op, device=device, dtype=dtype, requires_grad=requires_grad
|
|
)
|
|
yield from generate_elementwise_binary_with_scalar_samples(
|
|
op, device=device, dtype=dtype, requires_grad=requires_grad
|
|
)
|
|
|
|
if dtype.is_floating_point or dtype.is_complex:
|
|
yield from generate_elementwise_binary_extremal_value_tensors(
|
|
op, device=device, dtype=dtype, requires_grad=requires_grad
|
|
)
|
|
|
|
|
|
# Note that these references inputs use scalars for the SampleInput.input value,
|
|
# and many tests require SampleInput.input be a tensor or a list of tensors
|
|
def reference_inputs_elementwise_binary(op, device, dtype, requires_grad, **kwargs):
|
|
gen = partial(
|
|
_reference_inputs_elementwise_binary, op, device, dtype, requires_grad, **kwargs
|
|
)
|
|
|
|
# yields "normal" samples
|
|
yield from gen()
|
|
|
|
# TODO: RuntimeError: "index_select" not implemented for 'ComplexHalf'
|
|
if dtype is torch.chalf:
|
|
return
|
|
|
|
# yields noncontiguous samples
|
|
for sample in gen():
|
|
yield sample.noncontiguous()
|
|
|
|
yield from generate_elementwise_binary_noncontiguous_tensors(
|
|
op, device=device, dtype=dtype, requires_grad=requires_grad
|
|
)
|
|
|
|
|
|
# A functional that extends an elementwise binary operator's bespoke error inputs
|
|
# with generic error inputs for the class of elementwise binary operations
|
|
def make_error_inputs_elementwise_binary(error_inputs_func):
|
|
def error_inputs_func_wrapper(op, device, **kwargs):
|
|
if error_inputs_func is not None:
|
|
yield from error_inputs_func(op, device, **kwargs)
|
|
|
|
if not op.supports_rhs_python_scalar:
|
|
si = SampleInput(torch.tensor((1, 2, 3), device=device), args=(2,))
|
|
yield ErrorInput(si, error_type=Exception, error_regex="")
|
|
|
|
if not op.supports_one_python_scalar:
|
|
si = SampleInput(2, args=(torch.tensor((1, 2, 3), device=device),))
|
|
yield ErrorInput(si, error_type=Exception, error_regex="")
|
|
|
|
if (
|
|
not kwargs.get("skip_two_python_scalars", False)
|
|
and not op.supports_two_python_scalars
|
|
):
|
|
si = SampleInput(2, args=(3,))
|
|
yield ErrorInput(si, error_type=Exception, error_regex="")
|
|
|
|
return error_inputs_func_wrapper
|
|
|
|
|
|
# Metadata class for binary "universal functions (ufuncs)" that accept two
|
|
# tensor and have common properties
|
|
class BinaryUfuncInfo(OpInfo):
|
|
"""Operator information for 'universal binary functions (binary ufuncs).'
|
|
These are functions of two tensors with common properties like:
|
|
- they are elementwise functions
|
|
- the output shape is determined by the input shape
|
|
- they typically have method and inplace variants
|
|
- they typically support the out kwarg
|
|
- they typically have NumPy or SciPy references
|
|
See NumPy's universal function documentation
|
|
(https://numpy.org/doc/stable/reference/ufuncs.html) for more details
|
|
about the concept of ufuncs.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
name,
|
|
*,
|
|
sample_inputs_func=sample_inputs_elementwise_binary,
|
|
reference_inputs_func=reference_inputs_elementwise_binary,
|
|
error_inputs_func=None,
|
|
lhs_make_tensor_kwargs=None,
|
|
rhs_make_tensor_kwargs=None,
|
|
promotes_int_to_float=False, # Set to true if the op promotes integer inputs to float
|
|
always_returns_bool=False, # Set to true if the op always returns bool tensors
|
|
supports_rhs_python_scalar=True, # Whether the operator allows Tensor x scalar inputs
|
|
supports_one_python_scalar=False, # Whether the operator allows scalar x tensor and tensor x scalar inputs
|
|
supports_two_python_scalars=False, # Whether the operator allows scalar x scalar inputs
|
|
**kwargs,
|
|
):
|
|
|
|
self._original_binary_ufunc_args = locals().copy()
|
|
|
|
# Elementwise binary operations perform the equivalent of test_reference_testing
|
|
# in test_binary_ufuncs, but with additional test granularity. So the
|
|
# generic test_ops.py test is skipped because it's redundant.
|
|
common_skips = (
|
|
DecorateInfo(
|
|
unittest.skip("Skipping redundant test."),
|
|
"TestCommon",
|
|
"test_reference_testing",
|
|
),
|
|
)
|
|
kwargs["skips"] = kwargs.get("skips", tuple()) + common_skips
|
|
super(BinaryUfuncInfo, self).__init__(
|
|
name,
|
|
sample_inputs_func=sample_inputs_func,
|
|
reference_inputs_func=reference_inputs_func,
|
|
error_inputs_func=make_error_inputs_elementwise_binary(error_inputs_func),
|
|
**kwargs,
|
|
)
|
|
|
|
# [lr]hs_make_tensor_kwargs are part of the OpInfo to be able to dynamically generate valid samples later on.
|
|
if lhs_make_tensor_kwargs is None:
|
|
lhs_make_tensor_kwargs = {}
|
|
self.lhs_make_tensor_kwargs = lhs_make_tensor_kwargs
|
|
|
|
if rhs_make_tensor_kwargs is None:
|
|
rhs_make_tensor_kwargs = {}
|
|
self.rhs_make_tensor_kwargs = rhs_make_tensor_kwargs
|
|
|
|
self.promotes_int_to_float = promotes_int_to_float
|
|
self.always_returns_bool = always_returns_bool
|
|
self.supports_rhs_python_scalar = supports_rhs_python_scalar
|
|
self.supports_one_python_scalar = supports_one_python_scalar
|
|
self.supports_two_python_scalars = supports_two_python_scalars
|
|
|
|
if self.supports_two_python_scalars:
|
|
self.supports_one_python_scalar = True
|
|
|
|
if self.supports_one_python_scalar:
|
|
assert (
|
|
supports_rhs_python_scalar
|
|
), "Can't support lhs and rhs Python scalars but not rhs scalars!"
|
|
|
|
|
|
# The following functions and classes are for testing elementwise unary operators.
|
|
def sample_inputs_elementwise_unary(
|
|
op_info, device, dtype, requires_grad, op_kwargs=None, **kwargs
|
|
):
|
|
if not op_kwargs:
|
|
op_kwargs = {}
|
|
|
|
low, high = op_info.domain
|
|
low = low if low is None else low + op_info._domain_eps
|
|
high = high if high is None else high - op_info._domain_eps
|
|
|
|
if op_info.supports_sparse_csr:
|
|
# Tensors with dim=2 for sparse CSR testing
|
|
yield SampleInput(
|
|
make_tensor(
|
|
(L, L),
|
|
device=device,
|
|
dtype=dtype,
|
|
low=low,
|
|
high=high,
|
|
requires_grad=requires_grad,
|
|
),
|
|
kwargs=op_kwargs,
|
|
)
|
|
else:
|
|
# Creates a 1D, empty, and scalar tensor
|
|
for shape in ((L,), (1, 0, 3), ()):
|
|
yield SampleInput(
|
|
make_tensor(
|
|
shape,
|
|
device=device,
|
|
dtype=dtype,
|
|
low=low,
|
|
high=high,
|
|
requires_grad=requires_grad,
|
|
),
|
|
kwargs=op_kwargs,
|
|
)
|
|
|
|
|
|
# Replace values satisfying condition with a safe value. This is used to block
|
|
# out values the could cause singularity like tan(pi/2)
|
|
def _replace_values_in_tensor(tensor, condition, safe_value):
|
|
mask = condition(tensor)
|
|
tensor.masked_fill_(mask, safe_value)
|
|
|
|
|
|
# Helper to create a unary elementwise tensor with valid inputs
|
|
def _make_unary_elementwise_tensor(shape, *, op, device, dtype, requires_grad=False):
|
|
low, high = op.domain
|
|
low = low if low is None else low + op._domain_eps
|
|
high = high if high is None else high - op._domain_eps
|
|
|
|
make_arg = partial(
|
|
make_tensor,
|
|
low=low,
|
|
high=high,
|
|
device=device,
|
|
dtype=dtype,
|
|
requires_grad=requires_grad,
|
|
)
|
|
|
|
a = make_arg(shape)
|
|
|
|
if op.reference_numerics_filter is not None and dtype is not torch.bool:
|
|
condition, safe_value = op.reference_numerics_filter
|
|
_replace_values_in_tensor(a, condition, safe_value)
|
|
|
|
return a
|
|
|
|
|
|
# Restricts the values in the tensor to the domain of the
|
|
# given elementwise unary operator
|
|
def _filter_unary_elementwise_tensor(a, *, op):
|
|
# short-circuits for boolean tensors
|
|
if a.dtype is torch.bool:
|
|
return a
|
|
|
|
low, high = op.domain
|
|
low = low if low is None else low + op._domain_eps
|
|
high = high if high is None else high - op._domain_eps
|
|
|
|
if a.dtype is torch.uint8 and low is not None:
|
|
low = max(low, 0)
|
|
|
|
if not a.dtype.is_floating_point and not a.dtype.is_complex:
|
|
low = math.ceil(low) if low is not None else None
|
|
high = math.floor(high) if high is not None else None
|
|
|
|
if op.reference_numerics_filter is not None:
|
|
condition, safe_value = op.reference_numerics_filter
|
|
_replace_values_in_tensor(a, condition, safe_value)
|
|
|
|
if low is not None or high is not None:
|
|
if a.dtype.is_complex:
|
|
a.real.clamp_(low, high)
|
|
a.imag.clamp_(low, high)
|
|
else:
|
|
a.clamp_(min=low, max=high)
|
|
|
|
return a
|
|
|
|
|
|
def generate_elementwise_unary_tensors(op, *, device, dtype, requires_grad, **kwargs):
|
|
|
|
# Special-cases bool
|
|
if dtype is torch.bool:
|
|
tensors = (
|
|
torch.empty(0, device=device, dtype=torch.bool),
|
|
torch.tensor(True, device=device),
|
|
torch.tensor(False, device=device),
|
|
torch.tensor((True, False), device=device),
|
|
make_tensor((812,), device=device, dtype=dtype),
|
|
make_tensor((1029, 917), device=device, dtype=dtype),
|
|
)
|
|
for a in tensors:
|
|
yield SampleInput(a, kwargs=op.sample_kwargs(device, dtype, a)[0])
|
|
|
|
shapes = (
|
|
(1029, 917),
|
|
(812,),
|
|
# Empty sizes
|
|
(0,),
|
|
(0, 3, 3),
|
|
(1, 0, 5),
|
|
(6, 0, 0, 0),
|
|
(3, 0, 1, 0),
|
|
)
|
|
|
|
make_arg = partial(
|
|
_make_unary_elementwise_tensor,
|
|
op=op,
|
|
device=device,
|
|
dtype=dtype,
|
|
requires_grad=requires_grad,
|
|
)
|
|
for shape in shapes:
|
|
a = make_arg(shape)
|
|
yield SampleInput(a, kwargs=op.sample_kwargs(device, dtype, a)[0])
|
|
|
|
|
|
def generate_elementwise_unary_small_value_tensors(
|
|
op, *, device, dtype, requires_grad=False
|
|
):
|
|
for sample in generate_elementwise_binary_small_value_tensors(
|
|
op, device=device, dtype=dtype, requires_grad=requires_grad
|
|
):
|
|
a = _filter_unary_elementwise_tensor(sample.input, op=op)
|
|
yield SampleInput(a, kwargs=op.sample_kwargs(device, dtype, a)[0])
|
|
|
|
|
|
def generate_elementwise_unary_large_value_tensors(
|
|
op, *, device, dtype, requires_grad=False
|
|
):
|
|
for sample in generate_elementwise_binary_large_value_tensors(
|
|
op, device=device, dtype=dtype, requires_grad=requires_grad
|
|
):
|
|
a = _filter_unary_elementwise_tensor(sample.input, op=op)
|
|
yield SampleInput(sample.input, kwargs=op.sample_kwargs(device, dtype, a)[0])
|
|
|
|
|
|
def generate_elementwise_unary_extremal_value_tensors(
|
|
op, *, device, dtype, requires_grad=False
|
|
):
|
|
for sample in generate_elementwise_binary_extremal_value_tensors(
|
|
op, device=device, dtype=dtype, requires_grad=requires_grad
|
|
):
|
|
yield SampleInput(
|
|
sample.input, kwargs=op.sample_kwargs(device, dtype, sample.input)[0]
|
|
)
|
|
|
|
|
|
def generate_elementwise_unary_noncontiguous_tensors(
|
|
op, *, device, dtype, requires_grad=False
|
|
):
|
|
low, high = op_info.domain
|
|
low = low if low is None else low + op_info._domain_eps
|
|
high = high if high is None else high - op_info._domain_eps
|
|
|
|
make_arg = partial(
|
|
_make_unary_elementwise_tensor,
|
|
op=op,
|
|
device=device,
|
|
dtype=dtype,
|
|
requires_grad=requires_grad,
|
|
)
|
|
|
|
# Generic noncontiguity
|
|
t = make_arg((1026,), noncontiguous=True)
|
|
yield SampleInput(t, kwargs=op.sample_kwargs(device, dtype, t)[0])
|
|
|
|
# Transposed
|
|
t = make_arg((1024, 1024)).T
|
|
yield SampleInput(t, kwargs=op.sample_kwargs(device, dtype, t)[0])
|
|
|
|
# Expanded tensors
|
|
shapes = ((1, 3), (1, 7), (5, 7))
|
|
|
|
for shape in shapes:
|
|
t = make_arg(shape)
|
|
t_non_contig = t.expand(3, -1, -1)
|
|
yield SampleInput(
|
|
t_non_contig, kwargs=op.sample_kwargs(device, dtype, t_non_contig)[0]
|
|
)
|
|
|
|
|
|
# Reuses the elementwise binary generators for consistency
|
|
# TODO: in the future generalize the reference generators to handle n-ary elementwise operations
|
|
def _reference_inputs_elementwise_unary(op, device, dtype, requires_grad, **kwargs):
|
|
yield from op.sample_inputs_func(op, device, dtype, requires_grad, **kwargs)
|
|
|
|
yield from generate_elementwise_unary_tensors(
|
|
op, device=device, dtype=dtype, requires_grad=requires_grad, **kwargs
|
|
)
|
|
|
|
if dtype is not torch.bool:
|
|
yield from generate_elementwise_unary_small_value_tensors(
|
|
op, device=device, dtype=dtype, requires_grad=requires_grad, **kwargs
|
|
)
|
|
if dtype not in (torch.bool, torch.uint8, torch.int8) and (
|
|
op.handles_large_floats
|
|
or (not dtype.is_floating_point and not dtype.is_complex)
|
|
):
|
|
yield from generate_elementwise_unary_large_value_tensors(
|
|
op, device=device, dtype=dtype, requires_grad=requires_grad, **kwargs
|
|
)
|
|
yield from generate_elementwise_unary_extremal_value_tensors(
|
|
op, device=device, dtype=dtype, requires_grad=requires_grad, **kwargs
|
|
)
|
|
|
|
|
|
def reference_inputs_elementwise_unary(op, device, dtype, requires_grad, **kwargs):
|
|
gen = partial(
|
|
_reference_inputs_elementwise_unary, op, device, dtype, requires_grad, **kwargs
|
|
)
|
|
|
|
# yields "normal" samples
|
|
yield from gen()
|
|
|
|
# yields noncontiguous samples
|
|
for sample in gen():
|
|
yield sample.noncontiguous()
|
|
|
|
yield from generate_elementwise_unary_noncontiguous_tensors(
|
|
op, device=device, dtype=dtype, requires_grad=requires_grad, **kwargs
|
|
)
|
|
|
|
|
|
# Metadata class for unary "universal functions (ufuncs)" that accept a single
|
|
# tensor and have common properties like:
|
|
class UnaryUfuncInfo(OpInfo):
|
|
"""Operator information for 'universal unary functions (unary ufuncs).'
|
|
These are functions of a single tensor with common properties like:
|
|
- they are elementwise functions
|
|
- the input shape is the output shape
|
|
- they typically have method and inplace variants
|
|
- they typically support the out kwarg
|
|
- they typically have NumPy or SciPy references
|
|
See NumPy's universal function documentation
|
|
(https://numpy.org/doc/1.18/reference/ufuncs.html) for more details
|
|
about the concept of ufuncs.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
name, # the string name of the function
|
|
*,
|
|
ref, # a reference function
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=None,
|
|
dtypesIfROCM=None,
|
|
domain=(None, None), # the [low, high) domain of the function
|
|
handles_large_floats=True, # whether the op correctly handles large float values (like 1e20)
|
|
supports_complex_to_float=False, # op supports casting from complex input to real output safely eg. angle
|
|
sample_inputs_func=sample_inputs_elementwise_unary,
|
|
reference_inputs_func=reference_inputs_elementwise_unary,
|
|
sample_kwargs=lambda device, dtype, input: ({}, {}),
|
|
supports_sparse=False,
|
|
reference_numerics_filter=None, # Filters values in the range of the domain specified above but that should not be tested
|
|
**kwargs,
|
|
):
|
|
self._original_unary_ufunc_args = locals().copy()
|
|
|
|
super(UnaryUfuncInfo, self).__init__(
|
|
name,
|
|
dtypes=dtypes,
|
|
dtypesIfCUDA=dtypesIfCUDA,
|
|
dtypesIfROCM=dtypesIfROCM,
|
|
sample_inputs_func=sample_inputs_func,
|
|
supports_sparse=supports_sparse,
|
|
**kwargs,
|
|
)
|
|
self.ref = ref
|
|
self.domain = domain
|
|
self.handles_large_floats = handles_large_floats
|
|
self.supports_complex_to_float = supports_complex_to_float
|
|
self.reference_numerics_filter = reference_numerics_filter
|
|
|
|
# test_unary_ufuncs.py generates its own inputs to test the consistency
|
|
# of the operator on sliced tensors, non-contig tensors, etc.
|
|
# `sample_kwargs` is a utility function to provide kwargs
|
|
# along with those inputs if required (eg. clamp).
|
|
# It should return two dictionaries, first holding kwarg for
|
|
# torch operator and second one for reference NumPy operator.
|
|
self.sample_kwargs = sample_kwargs
|
|
|
|
# Epsilon to ensure grad and gradgrad checks don't test values
|
|
# outside a function's domain.
|
|
self._domain_eps = 1e-5
|
|
|
|
def sample_inputs_add_sub(op, device, dtype, requires_grad, **kwargs):
|
|
yield from sample_inputs_elementwise_binary(op, device, dtype, requires_grad, **kwargs)
|
|
|
|
# Adds alpha kwarg cases
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
lhs = make_arg((S, S), **op.lhs_make_tensor_kwargs)
|
|
rhs = make_arg((S, S), **op.rhs_make_tensor_kwargs)
|
|
yield SampleInput(lhs, args=(rhs,), kwargs={'alpha': 2})
|
|
neg_alpha = -3.14 if (dtype.is_floating_point or dtype.is_complex) else -3
|
|
lhs = make_arg((S, S), **op.lhs_make_tensor_kwargs)
|
|
rhs = make_arg((S, S), **op.rhs_make_tensor_kwargs)
|
|
yield SampleInput(lhs, args=(rhs,), kwargs={'alpha': neg_alpha})
|
|
|
|
def sample_inputs_isclose(op, device, dtype, requires_grad, **kwargs):
|
|
yield from sample_inputs_elementwise_binary(op, device, dtype, requires_grad, **kwargs)
|
|
|
|
# Creates additional inputs to test the rtol, atol, and equal_nan params
|
|
rtols = [0., 1e-7]
|
|
atols = [0., 1e-7]
|
|
equal_nans = [False, True]
|
|
|
|
products = product(rtols, atols, equal_nans)
|
|
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
for rtol, atol, equal_nan in products:
|
|
lhs = make_arg((S, S), **op.lhs_make_tensor_kwargs)
|
|
rhs = make_arg((S, S), **op.rhs_make_tensor_kwargs)
|
|
|
|
yield SampleInput(lhs, args=(rhs,),
|
|
kwargs=dict(rtol=rtol, atol=atol, equal_nan=equal_nan))
|
|
|
|
def sample_inputs_t(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
return (SampleInput(make_arg((1, 2))),
|
|
SampleInput(make_arg((2,))),
|
|
SampleInput(make_arg(())))
|
|
|
|
|
|
def sample_inputs_mm(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
def make_arg_conj(size):
|
|
return make_arg(size).conj().requires_grad_(requires_grad)
|
|
|
|
first_shape, second_shape = (S, M), (M, S)
|
|
|
|
yield SampleInput(make_arg(first_shape), args=(make_arg(second_shape),))
|
|
|
|
if dtype.is_complex:
|
|
yield SampleInput(make_arg(first_shape), args=(make_arg_conj(second_shape),))
|
|
|
|
|
|
def sample_inputs_addmm(op_info, device, dtype, requires_grad, **kwargs):
|
|
alpha_val = kwargs.get('alpha', 2 + 3j if dtype.is_complex else 0.6)
|
|
beta_val = kwargs.get('beta', 1 + 2j if dtype.is_complex else 0.2)
|
|
tests_list = [
|
|
((2, 3), (2, 2), (2, 3), False)
|
|
]
|
|
tests_with_lhs_broadcasting = [
|
|
((1,), (2, 2), (2, 3), True),
|
|
((), (2, 2), (2, 3), True)
|
|
]
|
|
test_cases = tests_list + tests_with_lhs_broadcasting # type: ignore[operator]
|
|
|
|
sample_inputs = []
|
|
|
|
for shape_a, shape_b, shape_c, broadcasts_input in test_cases:
|
|
sample_inputs.append(
|
|
SampleInput(
|
|
make_tensor(shape_a, dtype=dtype, device=device, requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor(shape_b, dtype=dtype, device=device,
|
|
requires_grad=requires_grad),
|
|
make_tensor(shape_c, dtype=dtype, device=device,
|
|
requires_grad=requires_grad)),
|
|
kwargs={'alpha': alpha_val, 'beta': beta_val},
|
|
broadcasts_input=broadcasts_input))
|
|
|
|
if dtype.is_complex:
|
|
shape = (3, 3)
|
|
sample_inputs.append(
|
|
SampleInput(make_tensor(shape, dtype=dtype, device=device, requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor(shape, dtype=dtype, device=device).mH.requires_grad_(requires_grad),
|
|
make_tensor(shape, dtype=dtype, device=device,
|
|
requires_grad=requires_grad)),
|
|
kwargs={'alpha': alpha_val, 'beta': beta_val},))
|
|
sample_inputs.append(
|
|
SampleInput(make_tensor(shape, dtype=dtype, device=device, requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor(shape, dtype=dtype, device=device,
|
|
requires_grad=requires_grad),
|
|
make_tensor(shape, dtype=dtype, device=device).mH.requires_grad_(requires_grad)),
|
|
kwargs={'alpha': alpha_val, 'beta': beta_val},))
|
|
return sample_inputs
|
|
|
|
def sample_inputs_sparse_sampled_addmm(op_info, device, dtype, requires_grad, **kwargs):
|
|
alpha = 2 + 3j if dtype.is_complex else 0.6
|
|
beta = 1 + 2j if dtype.is_complex else 0.2
|
|
|
|
def generator():
|
|
# sparse.sampled_addmm performs: alpha * (A @ B) * sparse_ones_like(C) + beta * C
|
|
for m, n, k in itertools.product([0, 5], repeat=3):
|
|
yield SampleInput(
|
|
torch.eye(m, n, device=device, dtype=dtype)
|
|
.to_sparse_csr()
|
|
.requires_grad_(requires_grad),
|
|
args=(
|
|
make_tensor(
|
|
(m, k),
|
|
device=device,
|
|
dtype=dtype,
|
|
requires_grad=requires_grad,
|
|
),
|
|
make_tensor(
|
|
(k, n),
|
|
device=device,
|
|
dtype=dtype,
|
|
requires_grad=requires_grad,
|
|
),
|
|
),
|
|
kwargs={"alpha": alpha, "beta": beta},
|
|
)
|
|
|
|
return list(generator())
|
|
|
|
def sample_inputs_mv(self, device, dtype, requires_grad, **kwargs):
|
|
return (
|
|
SampleInput(
|
|
make_tensor((S, M, ), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor((M, ), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),
|
|
)
|
|
),
|
|
)
|
|
|
|
def sample_inputs_bmm(self, device, dtype, requires_grad, **kwargs):
|
|
return (
|
|
SampleInput(
|
|
make_tensor((M, S, M, ), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor((M, M, S, ), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),
|
|
)
|
|
),
|
|
)
|
|
|
|
def sample_inputs_dot_vdot(self, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
def make_arg_conj(size):
|
|
return make_arg(size).conj().requires_grad_(requires_grad)
|
|
|
|
sample_inputs = []
|
|
sample_inputs.append(SampleInput(make_arg((S, )), args=(make_arg((S, )),)))
|
|
if dtype.is_complex:
|
|
# dot/vdot for (conj(input), conj(arg_tensor)) and (conj(input), arg_tensor)
|
|
# is tested in test_conj_view (which tests operations with only conjugated input tensor
|
|
# -- not conjugated arg tensors)
|
|
sample_inputs.append(SampleInput(make_arg((S, )), args=(make_arg_conj((S, )),)))
|
|
return sample_inputs
|
|
|
|
def sample_inputs_addmv(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
test_cases = (((S,), (S, M), (M,), 1, 1, False),
|
|
((S,), (S, M), (M,), 0.2, 0.6, False),
|
|
)
|
|
|
|
test_cases_with_broadcast = (((1,), (S, M), (M,), 1, 1, True),
|
|
((1,), (S, M), (M,), 0.2, 0.6, True),
|
|
((), (S, M), (M,), 1, 1, True),
|
|
((), (S, M), (M,), 0.2, 0.6, True),
|
|
)
|
|
|
|
cases = test_cases + test_cases_with_broadcast
|
|
|
|
# addmv performs: beta * M + alpha * (mat @ vec)
|
|
for size, mat, vec, beta, alpha, broadcasts_input in cases:
|
|
yield SampleInput(make_arg(size), args=(make_arg(mat), make_arg(vec)),
|
|
kwargs=dict(beta=beta, alpha=alpha), broadcasts_input=broadcasts_input)
|
|
|
|
def sample_inputs_addbmm(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# input_shape, batch1_shape, batch2_shape, beta_val, alpha_val, is_broadcasting
|
|
test_cases = [((S, M), (S, S, S), (S, S, M), 1, 1, False),
|
|
((1,), (S, S, S), (S, S, M), 1, 1, True),
|
|
((S, M), (S, S, S), (S, S, M), 0.6, 0.2, False),
|
|
((1,), (S, S, S), (S, S, M), 0.6, 0.2, True),
|
|
((), (S, S, S), (S, S, M), 1, 1, True),
|
|
((), (S, S, S), (S, S, M), 0.6, 0.2, True),
|
|
]
|
|
|
|
for input_shape, batch1_shape, batch2_shape, beta, alpha, is_broadcasting in test_cases:
|
|
if dtype.is_complex:
|
|
beta_complex, alpha_complex = beta * (1 + 2j), alpha * (2 + 3j)
|
|
yield SampleInput(make_arg(input_shape), args=(make_arg(batch1_shape), make_arg(batch2_shape)),
|
|
kwargs=dict(beta=beta_complex, alpha=alpha_complex), broadcasts_input=is_broadcasting)
|
|
yield SampleInput(make_arg(input_shape), args=(make_arg(batch1_shape), make_arg(batch2_shape)),
|
|
kwargs=dict(beta=beta, alpha=alpha), broadcasts_input=is_broadcasting)
|
|
|
|
def sample_inputs_addcmul_addcdiv(op_info, device, dtype, requires_grad, **kwargs):
|
|
test_cases = [(((S, S), (S, S), (S, S)), False),
|
|
(((S, S), (S, 1), (1, S)), False),
|
|
(((1,), (S, S, 1), (1, S)), True),
|
|
(((), (), ()), False),
|
|
(((S, S), (), ()), True),
|
|
(((), (S, S, 1), (1, S)), True)
|
|
]
|
|
|
|
sample_inputs = []
|
|
for input_args, broadcasts_input in test_cases:
|
|
# addcdiv should accept inputs with zero value
|
|
# Currently, it throws ZeroDivisionError when the denominator is zero
|
|
# TODO: exclude_zeros can be removed after https://github.com/pytorch/pytorch/issues/73638 is fixed
|
|
args = tuple(make_tensor(arg, dtype=dtype, device=device, requires_grad=requires_grad,
|
|
exclude_zero=True) if isinstance(arg, tuple) else arg
|
|
for arg in input_args)
|
|
sample_inputs.append(SampleInput(
|
|
args[0],
|
|
args=args[1:],
|
|
broadcasts_input=broadcasts_input))
|
|
|
|
# addcdiv should accept inputs with zero value
|
|
# Currently, it throws ZeroDivisionError when the denominator is zero
|
|
# TODO: exclude_zeros can be removed after https://github.com/pytorch/pytorch/issues/73638 is fixed
|
|
args = tuple(make_tensor(arg, dtype=dtype, device=device, requires_grad=requires_grad,
|
|
exclude_zero=True) if isinstance(arg, tuple) else arg
|
|
for arg in input_args)
|
|
sample_inputs.append(SampleInput(
|
|
args[0],
|
|
args=args[1:],
|
|
kwargs=dict(value=3.14), broadcasts_input=broadcasts_input))
|
|
|
|
return tuple(sample_inputs)
|
|
|
|
def sample_inputs_baddbmm(op_info, device, dtype, requires_grad, **kwargs):
|
|
test_cases = [((S, S, M), (S, S, S), (S, S, M), 1, 1, False),
|
|
((1,), (S, S, S), (S, S, M), 1, 1, True),
|
|
((S, S, M), (S, S, S), (S, S, M), 0.6, 0.2, False),
|
|
((1,), (S, S, S), (S, S, M), 0.6, 0.2, True),
|
|
((), (S, S, S), (S, S, M), 1, 1, True),
|
|
((), (S, S, S), (S, S, M), 0.6, 0.2, True),
|
|
]
|
|
sample_inputs = []
|
|
for (input_shape, batch1_shape, batch2_shape, alpha, beta, broadcasts_input) in test_cases:
|
|
args = (make_tensor(input_shape, dtype=dtype, device=device,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
make_tensor(batch1_shape, dtype=dtype, device=device,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
make_tensor(batch2_shape, dtype=dtype, device=device,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad))
|
|
|
|
sample_inputs.append(SampleInput(args[0], args=(args[1], args[2]),
|
|
kwargs=dict(beta=beta, alpha=alpha), broadcasts_input=broadcasts_input))
|
|
if dtype.is_complex:
|
|
sample_inputs.append(SampleInput(
|
|
args[0].clone().requires_grad_(requires_grad),
|
|
args=(args[1].clone().requires_grad_(requires_grad),
|
|
args[2].clone().requires_grad_(requires_grad)),
|
|
kwargs=dict(beta=beta * (1 + 2j), alpha=alpha * (2 + 3j)),
|
|
broadcasts_input=broadcasts_input))
|
|
|
|
if dtype.is_complex:
|
|
shapes = [(S, S, S), (S, M, S), (S, S, M)]
|
|
args = (make_tensor(shapes[0], dtype=dtype, device=device,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
make_tensor(shapes[1], dtype=dtype, device=device,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
make_tensor(shapes[2], dtype=dtype, device=device,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad))
|
|
sample_inputs.append(
|
|
SampleInput(
|
|
args[0].transpose_(-1, 1),
|
|
args=(args[1].transpose(-1, 1).conj().requires_grad_(requires_grad),
|
|
args[2].transpose(-1, 1).conj().requires_grad_(requires_grad)),
|
|
kwargs=dict(beta=beta * (1 + 2j), alpha=alpha * (2 + 3j)),))
|
|
|
|
return tuple(sample_inputs)
|
|
|
|
# TODO: add reduction kwargs
|
|
def sample_inputs_multilabel_soft_margin_loss(op_info, device, dtype, requires_grad, **kwargs):
|
|
_make_tensor = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
shapes = (
|
|
(S,),
|
|
(S, S),
|
|
)
|
|
|
|
for shape in shapes:
|
|
# Produce one with weight and one without.
|
|
yield SampleInput(_make_tensor(shape), args=(_make_tensor(shape, requires_grad=False),), kwargs={})
|
|
yield SampleInput(_make_tensor(shape), args=(_make_tensor(shape, requires_grad=False),),
|
|
kwargs={'weight': _make_tensor(shape, requires_grad=False)})
|
|
|
|
def sample_inputs_addr(op_info, device, dtype, requires_grad, **kwargs):
|
|
input1 = SampleInput(
|
|
make_tensor((S, M), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor((S, ), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),
|
|
make_tensor((M, ), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad)))
|
|
|
|
input2 = SampleInput(
|
|
make_tensor((), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor((S, ), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),
|
|
make_tensor((M, ), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad)),
|
|
broadcasts_input=True)
|
|
|
|
if dtype.is_complex:
|
|
alpha, beta = 0.1 + 0.3j, 0.4 + 0.6j
|
|
elif dtype.is_floating_point:
|
|
alpha, beta = 0.2, 0.6
|
|
else:
|
|
alpha, beta = 2, 3
|
|
|
|
input3 = SampleInput(
|
|
make_tensor((S, M), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor((S, ), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),
|
|
make_tensor((M, ), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad)),
|
|
kwargs=dict(beta=beta, alpha=alpha))
|
|
|
|
input4 = SampleInput(
|
|
make_tensor((), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor((S, ), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),
|
|
make_tensor((M, ), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad)),
|
|
kwargs=dict(beta=beta, alpha=alpha),
|
|
broadcasts_input=True)
|
|
|
|
return (input1, input2, input3, input4)
|
|
|
|
def sample_inputs_zero_(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
cases = ((), (S, S, S), (S,))
|
|
|
|
for shape in cases:
|
|
yield(SampleInput(make_arg(shape)))
|
|
|
|
# TODO: add reduction kwargs
|
|
def sample_inputs_multi_margin_loss(op_info, device, dtype, requires_grad, **kwargs):
|
|
_make_tensor = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
make_target = partial(_make_tensor, dtype=torch.long, requires_grad=False)
|
|
|
|
inputs = (
|
|
((), make_target([], low=0, high=1), {}),
|
|
((S,), make_target([], low=0, high=S), {"p": 1}),
|
|
((S,), make_target([1], low=0, high=S), {"p": 2}),
|
|
((S, M), make_target([S], low=0, high=M), {"margin": 1.0}),
|
|
((M, S), make_target([M], low=0, high=S), {"weight": None}),
|
|
)
|
|
|
|
for input_shape, target, kwargs in inputs:
|
|
yield SampleInput(_make_tensor(input_shape), args=(target,), kwargs=kwargs)
|
|
|
|
def sample_inputs_logsumexp(self, device, dtype, requires_grad, **kwargs):
|
|
inputs = (
|
|
((), (0,), True),
|
|
((S, S), (1,), True),
|
|
((S, S), (1,), False)
|
|
)
|
|
samples = []
|
|
# Test large inputs to check numerical stability
|
|
lows = (None, 1e3, 1e6) if dtype in (torch.float32, torch.float64) else (None,)
|
|
for low in lows:
|
|
high = low * 2 if low is not None else None
|
|
for shape, dim, keepdim in inputs:
|
|
t = make_tensor(shape, dtype=dtype, device=device,
|
|
low=low, high=high,
|
|
requires_grad=requires_grad)
|
|
samples.append(SampleInput(t, args=(dim, keepdim)))
|
|
|
|
return tuple(samples)
|
|
|
|
def sample_inputs_like_fns(self, device, dtype, requires_grad, **kwargs):
|
|
inputs = [
|
|
((), {}),
|
|
((S, S), {}),
|
|
((0, S, 0), {}),
|
|
((S,), {'dtype': dtype, 'device': device}),
|
|
# Hard-code some dtypes/devices. We want to test cases where the
|
|
# (dtype, device) is different from the input's (dtype, device)
|
|
((S,), {'dtype': torch.double}),
|
|
((S,), {'device': 'cpu'}),
|
|
((S,), {'dtype': torch.double, 'device': 'cpu'}),
|
|
]
|
|
if torch.cuda.is_available():
|
|
inputs.append(((S,), {'device': 'cuda'}))
|
|
|
|
samples = []
|
|
for shape, kwargs in inputs:
|
|
t = make_tensor(shape, dtype=dtype, device=device,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad)
|
|
samples.append(SampleInput(t, kwargs=kwargs))
|
|
|
|
return tuple(samples)
|
|
|
|
# TODO: add reduction kwargs
|
|
def sample_inputs_multilabel_margin_loss(op_info, device, dtype, requires_grad, **kwargs):
|
|
_make_tensor = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
make_target = partial(_make_tensor, dtype=torch.long, requires_grad=False)
|
|
|
|
inputs = (
|
|
([], make_target([], low=0, high=1)),
|
|
([S], make_target([S], low=0, high=S)),
|
|
([M, S], make_target([M, S], low=0, high=S)),
|
|
)
|
|
|
|
for shape, target in inputs:
|
|
yield SampleInput(_make_tensor(shape), args=(target,))
|
|
|
|
def get_independent_tensor(tensor):
|
|
return tensor.clone().requires_grad_(tensor.requires_grad)
|
|
|
|
def sample_inputs_randint_like(self, device, dtype, requires_grad, **kwargs):
|
|
samples = []
|
|
low = 2
|
|
high = 10
|
|
|
|
for sample in sample_inputs_like_fns(self, device, dtype, requires_grad, **kwargs):
|
|
# With high
|
|
samples.append(SampleInput(
|
|
sample.input,
|
|
args=(high,) + sample.args,
|
|
kwargs=sample.kwargs))
|
|
# With low and high
|
|
samples.append(SampleInput(
|
|
get_independent_tensor(sample.input),
|
|
args=(low, high,) + sample.args,
|
|
kwargs=sample.kwargs))
|
|
return tuple(samples)
|
|
|
|
# TODO: add reduction kwargs
|
|
def sample_inputs_margin_ranking_loss(op_info, device, dtype, requires_grad, **kwargs):
|
|
_make_tensor = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
shapes = (
|
|
(),
|
|
(S,),
|
|
(S, S),
|
|
(S, S, S),
|
|
)
|
|
|
|
for shape in shapes:
|
|
for kwargs in [{}, {'margin': 1.0}]:
|
|
yield SampleInput(_make_tensor(shape),
|
|
args=(_make_tensor(shape, requires_grad=False),
|
|
_make_tensor(shape, requires_grad=False)),
|
|
kwargs=kwargs)
|
|
|
|
def sample_inputs_new_fns(self, device, dtype, requires_grad, **kwargs):
|
|
inputs = [
|
|
((), (), {}),
|
|
((S, S), (2, 0), {}),
|
|
((0, S, 0), (3, 2, 2), {}),
|
|
((S,), (2, 3), {'dtype': dtype, 'device': device}),
|
|
# Hard-code some dtypes/devices. We want to test cases where the
|
|
# (dtype, device) is different from the input's (dtype, device)
|
|
((S,), (10,), {'dtype': torch.double}),
|
|
((S,), (1, 1, 12), {'device': 'cpu'}),
|
|
((S,), (2, 2, 2), {'dtype': torch.double, 'device': 'cpu'}),
|
|
]
|
|
if torch.cuda.is_available():
|
|
inputs.append(((S,), (7, 2), {'device': 'cuda'}))
|
|
|
|
samples = []
|
|
for input_shape, output_shape, kwargs in inputs:
|
|
t = make_tensor(input_shape, dtype=dtype, device=device,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad)
|
|
samples.append(SampleInput(t, args=(output_shape,), kwargs=kwargs))
|
|
|
|
return tuple(samples)
|
|
|
|
def sample_inputs_new_full(self, device, dtype, requires_grad, **kwargs):
|
|
def get_val(dtype):
|
|
return make_tensor([], dtype=dtype, device="cpu").item()
|
|
|
|
samples = []
|
|
for sample in sample_inputs_new_fns(self, device, dtype, requires_grad, **kwargs):
|
|
# The scalar we are passing to new_full must be the same dtype
|
|
# as the one of the resulting tensor
|
|
use_dtype = sample.kwargs['dtype'] if 'dtype' in sample.kwargs else dtype
|
|
samples.append(SampleInput(
|
|
sample.input, args=sample.args + (get_val(use_dtype),), kwargs=sample.kwargs))
|
|
return tuple(samples)
|
|
|
|
def sample_inputs_full_like(self, device, dtype, requires_grad, **kwargs):
|
|
def get_val(dtype):
|
|
return make_tensor([], dtype=dtype, device="cpu").item()
|
|
|
|
inputs = [
|
|
((), get_val(dtype), {}),
|
|
((S, S), get_val(dtype), {}),
|
|
((0, S, 0), get_val(dtype), {}),
|
|
((S,), get_val(dtype), {'dtype': dtype, 'device': device}),
|
|
# Hard-code some dtypes/devices. We want to test cases where the
|
|
# (dtype, device) is different from the input's (dtype, device)
|
|
((S,), get_val(torch.double), {'dtype': torch.double}),
|
|
((S,), get_val(dtype), {'device': 'cpu'}),
|
|
((S,), get_val(torch.double), {'dtype': torch.double, 'device': 'cpu'}),
|
|
]
|
|
if torch.cuda.is_available():
|
|
inputs.append(((S,), get_val(dtype), {'device': 'cuda'}))
|
|
|
|
samples = []
|
|
for shape, fill_value, kwargs in inputs:
|
|
t = make_tensor(shape, dtype=dtype, device=device,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad)
|
|
samples.append(SampleInput(t, args=(fill_value,), kwargs=kwargs))
|
|
|
|
return tuple(samples)
|
|
|
|
def sample_inputs_multinomial(self, device, dtype, requires_grad, **kwargs):
|
|
cases = [
|
|
([3], 3, dict()),
|
|
([10], 3, dict()),
|
|
([3, 10], 3, dict()),
|
|
([3], 3, dict(replacement=False)),
|
|
([3], 3, dict(replacement=True)),
|
|
([3, 4], 4, dict(replacement=True)),
|
|
([3, 4], 4, dict(replacement=False)),
|
|
]
|
|
|
|
samples = []
|
|
for shape, num_samples, kwargs in cases:
|
|
t = make_tensor(shape, dtype=dtype, device=device,
|
|
low=0, high=None,
|
|
requires_grad=requires_grad)
|
|
samples.append(SampleInput(t, args=(num_samples,), kwargs=kwargs))
|
|
return tuple(samples)
|
|
|
|
def sample_inputs_normal_common(self, device, dtype, requires_grad, cases, **kwargs):
|
|
def get_value_or_make_tensor(value_or_shape):
|
|
if isinstance(value_or_shape, list):
|
|
return make_tensor(value_or_shape, dtype=dtype, device=device,
|
|
low=0, high=None,
|
|
requires_grad=requires_grad)
|
|
return value_or_shape
|
|
|
|
samples = []
|
|
for value_or_mean_shape, value_or_std_shape, kwargs in cases:
|
|
mean = get_value_or_make_tensor(value_or_mean_shape)
|
|
std = get_value_or_make_tensor(value_or_std_shape)
|
|
samples.append(SampleInput(mean, args=(std,), kwargs=kwargs))
|
|
return tuple(samples)
|
|
|
|
def sample_inputs_normal_tensor_first(self, device, dtype, requires_grad, **kwargs):
|
|
# value_or_size, value_or_size, kwargs
|
|
cases = [
|
|
([], [], {}),
|
|
([3], [3], {}),
|
|
([3, 4, 2], [3, 4, 2], {}),
|
|
([2, 3], 1.1, {}),
|
|
([1, 2, 3], [5, 2, 3], {}), # broadcasting
|
|
]
|
|
|
|
return sample_inputs_normal_common(self, device, dtype, requires_grad, cases, **kwargs)
|
|
|
|
def sample_inputs_normal_tensor_second(self, device, dtype, requires_grad, **kwargs):
|
|
cases = [
|
|
([3, 4], 0.3, {}),
|
|
]
|
|
return sample_inputs_normal_common(self, device, dtype, requires_grad, cases, **kwargs)
|
|
|
|
def sample_inputs_bernoulli(self, device, dtype, requires_grad, **kwargs):
|
|
shapes = [
|
|
[3],
|
|
[],
|
|
[0, 3],
|
|
[2, 3, 4],
|
|
]
|
|
|
|
samples = []
|
|
for shape in shapes:
|
|
t = make_tensor(shape, dtype=dtype, device=device,
|
|
low=0, high=1,
|
|
requires_grad=requires_grad)
|
|
samples.append(SampleInput(t))
|
|
return tuple(samples)
|
|
|
|
def sample_inputs_logcumsumexp(self, device, dtype, requires_grad, **kwargs):
|
|
inputs = (
|
|
((S, S, S), 0),
|
|
((S, S, S), 1),
|
|
((), 0),
|
|
)
|
|
samples = []
|
|
|
|
for large_number in (True, False):
|
|
for shape, dim in inputs:
|
|
t = make_tensor(shape, dtype=dtype, device=device,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad)
|
|
|
|
if large_number and t.dim() > 0:
|
|
t[0] = 10000
|
|
samples.append(SampleInput(t, args=(dim,)))
|
|
|
|
return tuple(samples)
|
|
|
|
def sample_inputs_trace(self, device, dtype, requires_grad, **kwargs):
|
|
return (SampleInput((make_tensor((S, S), dtype=dtype, device=device,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad))),)
|
|
|
|
|
|
def sample_inputs_renorm(self, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
cases = (((S, S, S), (2, 1, 0.5)),
|
|
((S, S, S), (2, -1, 0.5)),
|
|
((S, S, S), (1, 2, 3)),
|
|
((S, S, S), (float('inf'), 2, 0.5)),
|
|
)
|
|
|
|
for shape, args in cases:
|
|
yield SampleInput(make_arg(shape), args=args)
|
|
|
|
|
|
def sample_inputs_transpose_swapdims(self, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
cases = (((1, 2, 3), (-1, -2)),
|
|
((1, 2, 3), (-1, 2)),
|
|
((1, 2, 3), (1, -2)),
|
|
((1, 2, 3), (1, 2)),
|
|
((), (0, 0)),
|
|
((1, ), (0, 0)),
|
|
((M, M), (0, 1)),
|
|
((S, S, S), (2, 0)), )
|
|
|
|
for shape, args in cases:
|
|
yield SampleInput(make_arg(shape), args=args)
|
|
|
|
def _numpy_ref_transpose(a, dim0, dim1):
|
|
if a.ndim <= 1:
|
|
return a
|
|
|
|
return np.swapaxes(a, dim0, dim1)
|
|
|
|
def sample_inputs_adjoint(self, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
shapes = ((1, 2, 3), (), (M, M), (S, S, S), (S, M, S), (M, S, M, S))
|
|
return (SampleInput(make_arg(shape)) for shape in shapes)
|
|
|
|
def sample_inputs_T(self, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
shapes = ((), (M, M))
|
|
return (SampleInput(make_arg(shape)) for shape in shapes)
|
|
|
|
|
|
def sample_inputs_linalg_invertible(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
"""
|
|
This function generates invertible inputs for linear algebra ops
|
|
The input is generated as the itertools.product of 'batches' and 'ns'.
|
|
In total this function generates 8 SampleInputs
|
|
'batches' cases include:
|
|
() - single input,
|
|
(0,) - zero batched dimension,
|
|
(2,) - batch of two matrices,
|
|
(1, 1) - 1x1 batch of matrices
|
|
'ns' gives 0x0 and 5x5 matrices.
|
|
Zeros in dimensions are edge cases in the implementation and important to test for in order to avoid unexpected crashes.
|
|
"""
|
|
make_fn = make_fullrank_matrices_with_distinct_singular_values
|
|
make_arg = partial(make_fn, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
batches = [(), (0, ), (2, ), (1, 1)]
|
|
ns = [5, 0]
|
|
|
|
for batch, n in product(batches, ns):
|
|
yield SampleInput(make_arg(*batch, n, n))
|
|
|
|
def sample_inputs_linalg_pinv_singular(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
"""
|
|
This function produces factors `a` and `b` to generate inputs of the form `a @ b.t()` to
|
|
test the backward method of `linalg_pinv`. That way we always preserve the rank of the
|
|
input no matter the perturbations applied to it by the gradcheck.
|
|
Note that `pinv` is Frechet-differentiable in a rank-preserving neighborhood.
|
|
"""
|
|
batches = [(), (0, ), (2, ), (1, 1)]
|
|
# the size of at least 30 is required to cause failures for the previous implicit implementation
|
|
# of the pinv's backward method, albeit it is slow.
|
|
size = [0, 3, 50]
|
|
|
|
for batch, m, n in product(batches, size, size):
|
|
for k in range(min(3, min(m, n))):
|
|
# Note that by making the columns of `a` and `b` orthonormal we make sure that
|
|
# the product matrix `a @ b.t()` has condition number 1 when restricted to its image
|
|
a = torch.rand(*batch, m, k, device=device, dtype=dtype).qr().Q.requires_grad_(requires_grad)
|
|
b = torch.rand(*batch, n, k, device=device, dtype=dtype).qr().Q.requires_grad_(requires_grad)
|
|
yield SampleInput(a, args=(b,))
|
|
|
|
|
|
def sample_inputs_singular_matrix_factors(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
"""
|
|
This function produces two tensors of shape (*, m, k) and (*, n, k) with k <= min(m, n).
|
|
Their matrix product could be used to generate tensor of shape (*, m, n) of rank k.
|
|
"""
|
|
|
|
batches = [(), (0, ), (2, ), (1, 1)]
|
|
size = [1, 5, 10]
|
|
|
|
for batch, m, n in product(batches, size, size):
|
|
for k in range(min(3, min(m, n))):
|
|
a = make_tensor((*batch, m, k), dtype=dtype, device=device, requires_grad=requires_grad)
|
|
b = make_tensor((*batch, n, k), dtype=dtype, device=device, requires_grad=requires_grad)
|
|
yield SampleInput(a, args=(b,), kwargs=kwargs)
|
|
|
|
|
|
def clone_sample(sample, **kwargs):
|
|
"""
|
|
Given a SampleInput, this function analyzes its input, args and kwargs,
|
|
and produces a copy with each non-Tensor entry being copied by reference,
|
|
and with each Tensor entry cloned with `t.clone().requires_grad_(t.requires_grad)`
|
|
"""
|
|
|
|
def clone_tensor(t):
|
|
if isinstance(t, torch.Tensor):
|
|
return t.detach().clone().requires_grad_(t.requires_grad)
|
|
else:
|
|
return t
|
|
|
|
sample_kwargs = kwargs if kwargs else sample.kwargs
|
|
|
|
return SampleInput(
|
|
clone_tensor(sample.input),
|
|
args=tuple(map(clone_tensor, sample.args)),
|
|
kwargs=dict(((k, clone_tensor(v)) for k, v in sample_kwargs.items()))
|
|
)
|
|
|
|
|
|
def sample_inputs_svd_lowrank(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
for sample in sample_inputs_singular_matrix_factors(op_info, device, dtype, requires_grad, **kwargs):
|
|
*batch, m, k = sample.input.shape
|
|
*_, n, _ = sample.args[0].shape
|
|
|
|
# NOTE: since svd_lowrank relies on non rank-revealing SVD,
|
|
# it inherits the problem of unstable behavior with repeated
|
|
# singular values including zeros.
|
|
# Since we want to avoid (repeated) zeros as singular values,
|
|
# we can only use k for q.
|
|
# This issues could be resolved with using a rank-revealing SVD
|
|
# which does not include "zero" singular values.
|
|
op_kwargs = {
|
|
'q': k,
|
|
'M': None
|
|
}
|
|
|
|
# without M specified
|
|
yield clone_sample(sample, **op_kwargs)
|
|
|
|
# now with M
|
|
# TODO: fix bug in the documentation for svd_lowrank:
|
|
# M has to be (*, m, n), and not (*, 1, n) as written
|
|
# in the documentation
|
|
op_kwargs['M'] = make_tensor((*batch, m, n), dtype=dtype, device=device, requires_grad=requires_grad)
|
|
yield clone_sample(sample, **op_kwargs)
|
|
|
|
def chunk_iter(iterable, size):
|
|
it = iter(iterable)
|
|
while True:
|
|
chunk = tuple(islice(it, size))
|
|
if not chunk:
|
|
break
|
|
yield chunk
|
|
|
|
def sample_inputs_pca_lowrank(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
# we reuse samples from svd_lowrank which come in group of two with
|
|
# kwarg['M'] = None and with kwarg['M'] = <some tensor>
|
|
samples = sample_inputs_svd_lowrank(op_info, device, dtype, requires_grad, **kwargs)
|
|
for s1, s2 in chunk_iter(samples, 2):
|
|
del s1.kwargs['M']
|
|
del s2.kwargs['M']
|
|
s1.kwargs['center'] = False
|
|
s2.kwargs['center'] = True
|
|
yield s1
|
|
yield s2
|
|
|
|
def sample_inputs_linalg_cond(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
# autograd is not supported for inputs with zero number of elements
|
|
shapes = ((S, S),
|
|
(2, S, S),
|
|
(2, 1, S, S), )
|
|
|
|
for shape in shapes:
|
|
yield SampleInput(make_arg(shape))
|
|
|
|
def np_sinc_with_fp16_as_fp32(x):
|
|
# Wraps numpy's sinc function so that fp16 values are promoted to fp32
|
|
# before sinc is invoked. Context: numpy's sinc returns NaN when evaluated
|
|
# at 0 for fp16.
|
|
if x.dtype == np.float16:
|
|
return np.sinc(x.astype(np.float32))
|
|
else:
|
|
return np.sinc(x)
|
|
|
|
def sample_inputs_broadcast_to(op_info, device, dtype, requires_grad, **kwargs):
|
|
test_cases = (
|
|
((S, 1, 1), (S, S, S)),
|
|
((S, 1, S), (S, S, S)),
|
|
((S, 1), (S, S, S)),
|
|
((1,), (S, S, S)),
|
|
((1, S), (1, 1, S)),
|
|
((), ()),
|
|
((), (1, 3, 2)),
|
|
)
|
|
|
|
return tuple(
|
|
SampleInput(
|
|
make_tensor(size, dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),
|
|
args=(shape,)) for size, shape in test_cases)
|
|
|
|
def sample_inputs_broadcast_tensors(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
test_cases: Tuple[tuple] = (((3,), (1, 2, 1), (1, 1), (5, 1, 1),),)
|
|
|
|
samples: List[SampleInput] = []
|
|
for shape, *other_shapes in test_cases:
|
|
samples.append(SampleInput(make_arg(shape), args=tuple(make_arg(s) for s in other_shapes)))
|
|
|
|
return samples
|
|
|
|
def sample_inputs_block_diag(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
test_cases: Tuple[tuple] = (((1, S), (2, S), (3, S),),)
|
|
|
|
samples: List[SampleInput] = []
|
|
for shape, *other_shapes in test_cases:
|
|
samples.append(SampleInput(make_arg(shape), args=tuple(make_arg(s) for s in other_shapes)))
|
|
|
|
return samples
|
|
|
|
def sample_inputs_cdist(op_info, device, dtype, requires_grad, **kwargs):
|
|
small_S = 2
|
|
test_cases = (
|
|
((S, S, 2), (S, S + 1, 2)),
|
|
((S, S), (S, S)),
|
|
((S, S, S), (S, S, S)),
|
|
((3, 5), (3, 5)),
|
|
((2, 3, 5), (2, 3, 5)),
|
|
((1, 2, 3), (1, 2, 3)),
|
|
((1, 1), (S, 1)),
|
|
((0, 5), (4, 5)),
|
|
((4, 5), (0, 5)),
|
|
((0, 4, 5), (3, 5)),
|
|
((4, 5), (0, 3, 5)),
|
|
((0, 4, 5), (1, 3, 5)),
|
|
((1, 4, 5), (0, 3, 5)),
|
|
# Using S here would make this one test take 9s
|
|
((small_S, small_S, small_S + 1, 2), (small_S, small_S, small_S + 2, 2)),
|
|
((small_S, 1, 1, small_S), (1, small_S, small_S)),
|
|
((1, 1, small_S), (small_S, 1, small_S, small_S)),
|
|
)
|
|
|
|
samples = []
|
|
for cm in ['use_mm_for_euclid_dist', 'donot_use_mm_for_euclid_dist']:
|
|
# FIXME add an override for JIT and revert 0. back to 0
|
|
# since it's accepted by eager
|
|
for p in [0., 1., 2., 3., 0.5, 1.5, 2.5, float("inf")]:
|
|
for t1_size, t2_size in test_cases:
|
|
# The args should never be non-contiguous as this is not supported in the backward
|
|
samples.append(SampleInput(
|
|
make_tensor(t1_size, dtype=dtype, device=device, requires_grad=requires_grad),
|
|
args=(make_tensor(t2_size, dtype=dtype, device=device, requires_grad=requires_grad), p, cm)))
|
|
|
|
return samples
|
|
|
|
|
|
def sample_inputs_fill_(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype,
|
|
low=None, high=None, requires_grad=requires_grad)
|
|
|
|
cases = (((S, S, S), (1,)),
|
|
((), (1,)),
|
|
((S, S, S), (make_arg(()),)))
|
|
|
|
for shape, args in cases:
|
|
yield SampleInput(make_arg(shape), args=args)
|
|
|
|
|
|
def sample_inputs_comparison_ops(op, device, dtype, requires_grad, **kwargs):
|
|
yield from sample_inputs_elementwise_binary(op, device, dtype, requires_grad, **kwargs)
|
|
|
|
# Adds a sample input where both tensors have the same values
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
lhs = make_arg((S, S))
|
|
yield SampleInput(lhs, args=(lhs.clone(),))
|
|
|
|
def sample_inputs_stack(op_info, device, dtype, requires_grad, **kwargs):
|
|
tensors = [
|
|
make_tensor((S, S), dtype=dtype, device=device, requires_grad=requires_grad),
|
|
make_tensor((S, S), dtype=dtype, device=device, requires_grad=requires_grad),
|
|
make_tensor((S, S), dtype=dtype, device=device, requires_grad=requires_grad),
|
|
]
|
|
|
|
return (SampleInput(tensors, args=(0,)),)
|
|
|
|
def sample_inputs_cat_concat(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
cases: Tuple[tuple, tuple, dict] = ( # type: ignore[assignment]
|
|
((S, S), (S, S), {'dim': -1}),
|
|
((S, S), (S, S), {'dim': 1}),
|
|
((M, S), (S, S), {'dim': 0}), # different shapes
|
|
((1, 2, 3), (1, 2, 3), {'dim': -2}),
|
|
((0,), (0,), {'dim': 0}), # empty tensor
|
|
((0, S), (S, S), {'dim': 0}),
|
|
((1,), (1,), {}) # dim not passed, fallback to default
|
|
)
|
|
|
|
for input_shape1, input_shape2, kwargs in cases:
|
|
yield SampleInput([make_arg(input_shape1), make_arg(input_shape2)], kwargs=kwargs)
|
|
|
|
def reference_inputs_cat(op, device, dtype, requires_grad, **kwargs):
|
|
yield from sample_inputs_cat_concat(op, device, dtype, requires_grad, **kwargs)
|
|
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# Noncontiguous type promoting tensors
|
|
a = make_arg((3, 4, 2))
|
|
b = make_arg((3, 2, 2), noncontiguous=True, dtype=torch.double)
|
|
c = make_arg((3, 3, 2), dtype=torch.float16).permute(1, 0, 2)
|
|
|
|
yield SampleInput((a, b, c), kwargs={'dim': 1})
|
|
|
|
def sample_inputs_hstack_dstack_vstack(op_info, device, dtype, requires_grad, **kwargs):
|
|
tensors = [
|
|
make_tensor((S, S), dtype=dtype, device=device, requires_grad=requires_grad),
|
|
make_tensor((S, S), dtype=dtype, device=device, requires_grad=requires_grad),
|
|
make_tensor((S, S), dtype=dtype, device=device, requires_grad=requires_grad),
|
|
]
|
|
|
|
return (SampleInput(tensors),)
|
|
|
|
def sample_inputs_gather(op_info, device, dtype, requires_grad, **kwargs):
|
|
return (
|
|
SampleInput(
|
|
make_tensor((M, S), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),
|
|
args=(0, gather_variable((S, S), 1, M, True, device=device))),
|
|
SampleInput(
|
|
make_tensor((M, S), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),
|
|
args=(1, gather_variable((M, S // 2), 0, S, True, device=device))),
|
|
SampleInput(
|
|
make_tensor((), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),
|
|
args=(0, torch.tensor([0], dtype=torch.int64, device=device))),
|
|
# Empty index tensor case, see: https://github.com/pytorch/pytorch/pull/65006
|
|
SampleInput(
|
|
make_tensor((S,), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),
|
|
args=(0, torch.tensor([], dtype=torch.uint8, device=device))),
|
|
SampleInput(
|
|
make_tensor((), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),
|
|
args=(0, torch.tensor(0, dtype=torch.int64, device=device))),
|
|
)
|
|
|
|
def _fill_indices(idx, dim, dim_size, elems_per_row, m, n, o):
|
|
for i in range(1 if dim == 0 else m):
|
|
for j in range(1 if dim == 1 else n):
|
|
for k in range(1 if dim == 2 else o):
|
|
ii = [i, j, k]
|
|
ii[dim] = slice(0, idx.size(dim) + 1)
|
|
idx[tuple(ii)] = torch.randperm(dim_size)[0:elems_per_row]
|
|
|
|
def error_inputs_gather(op_info, device, **kwargs):
|
|
# src is [1, 2]
|
|
# [3, 4]
|
|
src = torch.tensor(((1, 2), (3, 4)), device=device, dtype=torch.float32)
|
|
|
|
# idx is [0, 0]
|
|
# [1, 0]
|
|
idx = torch.tensor(((0, 0), (1, 0)), device=device, dtype=torch.long)
|
|
|
|
# Index should be smaller than self except on dimesion 1
|
|
bad_src = make_tensor((1, 1), device=device, dtype=torch.float32)
|
|
yield ErrorInput(SampleInput(bad_src, args=(1, idx,)),
|
|
error_regex="Size does not match at dimension 0")
|
|
|
|
# Index must have long dtype
|
|
bad_idx = idx.to(torch.int32)
|
|
yield ErrorInput(SampleInput(src, args=(1, bad_idx)),
|
|
error_regex="Expected dtype int64 for index")
|
|
|
|
# TODO: FIXME
|
|
# out.dtype must match src.dtype
|
|
# Creates new src & idx since SampleInputs can't share tensors
|
|
src = torch.tensor(((1, 2), (3, 4)), device=device, dtype=torch.float32)
|
|
idx = torch.tensor(((0, 0), (1, 0)), device=device, dtype=torch.long)
|
|
out = torch.empty((2, 2), device=device, dtype=torch.float64)
|
|
yield ErrorInput(SampleInput(src, args=(1, idx), kwargs={'out': out}),
|
|
error_regex="Expected out tensor to have dtype")
|
|
|
|
# src and index tensors must have the same # of dimensions
|
|
# idx too few dimensions
|
|
src = torch.tensor(((1, 2), (3, 4)), device=device, dtype=torch.float32)
|
|
idx = torch.tensor((0, 0), device=device, dtype=torch.long)
|
|
yield ErrorInput(SampleInput(src, args=(1, idx)),
|
|
error_regex="Index tensor must have the same number of dimensions")
|
|
|
|
# src too few dimensions
|
|
src = torch.tensor((1, 2), device=device, dtype=torch.float32)
|
|
idx = torch.tensor(((0, 0), (1, 0)), device=device, dtype=torch.long)
|
|
yield ErrorInput(SampleInput(src, args=(0, idx)),
|
|
error_regex="Index tensor must have the same number of dimensions")
|
|
|
|
# index out of bounds
|
|
# NOTE: this ErrorInput is guarded because bounds checking does not occur on CUDA devices
|
|
if torch.device(device).type == 'cpu':
|
|
src = torch.tensor(((1, 2), (3, 4)), device=device, dtype=torch.float32)
|
|
idx = torch.tensor(((0, 23), (1, 0)), device=device, dtype=torch.long)
|
|
yield ErrorInput(SampleInput(src, args=(1, idx,)),
|
|
error_regex="index 23 is out of bounds for dimension")
|
|
|
|
x = torch.rand((1,), device=device).expand((3,))
|
|
src = torch.rand((6,), device=device)
|
|
ind = torch.tensor([2, 1, 0], device=device, dtype=torch.int64)
|
|
|
|
yield ErrorInput(SampleInput(src, args=(0, ind,), kwargs=dict(out=x)),
|
|
error_type=RuntimeError,
|
|
error_regex='unsupported operation')
|
|
|
|
yield ErrorInput(SampleInput(src, args=(0, ind,), kwargs=dict(out=src)),
|
|
error_type=RuntimeError,
|
|
error_regex='unsupported operation')
|
|
|
|
yield ErrorInput(SampleInput(ind.clone(), args=(0, ind[1:],), kwargs=dict(out=ind[:1])),
|
|
error_type=RuntimeError,
|
|
error_regex='unsupported operation')
|
|
|
|
def error_inputs_take(op_info, device, **kwargs):
|
|
x = torch.rand((1,), device=device).expand((3,))
|
|
src = torch.rand((6,), device=device)
|
|
ind = torch.tensor([2, 1, 0], device=device, dtype=torch.int64)
|
|
|
|
yield ErrorInput(SampleInput(src, args=(ind,), kwargs=dict(out=x)),
|
|
error_type=RuntimeError,
|
|
error_regex='unsupported operation')
|
|
|
|
yield ErrorInput(SampleInput(src, args=(ind,), kwargs=dict(out=src)),
|
|
error_type=RuntimeError,
|
|
error_regex='unsupported operation')
|
|
|
|
yield ErrorInput(SampleInput(ind.clone(), args=(ind[1:],), kwargs=dict(out=ind[:-1])),
|
|
error_type=RuntimeError,
|
|
error_regex='unsupported operation')
|
|
|
|
# Error inputs for scatter
|
|
def error_inputs_scatter_and_scatter_add(op_info, device, **kwargs):
|
|
# Error when self.dtype != src.dtype (and src is not a scalar)
|
|
src = make_tensor((2, 5), device=device, dtype=torch.float32)
|
|
idx = torch.tensor(((0, 1), (1, 2)), device=device, dtype=torch.long)
|
|
dst = torch.zeros((3, 5), device=device, dtype=torch.double)
|
|
yield ErrorInput(SampleInput(dst, args=(0, idx, src)),
|
|
error_regex="Expected self.dtype to be equal to src.dtype")
|
|
|
|
# Index dtype must be long
|
|
src = make_tensor((2, 5), device=device, dtype=torch.float32)
|
|
idx = torch.tensor(((0, 1), (1, 2)), device=device, dtype=torch.int32)
|
|
dst = torch.zeros((3, 5), device=device, dtype=torch.float32)
|
|
yield ErrorInput(SampleInput(dst, args=(0, idx, src)),
|
|
error_regex="Expected dtype int64 for index")
|
|
|
|
# Index and destination must have the same number of dimensions
|
|
src = make_tensor((2, 5), device=device, dtype=torch.float32)
|
|
idx = torch.tensor(((0, 1), (1, 2)), device=device, dtype=torch.long)
|
|
dst = torch.zeros((3, 5, 3), device=device, dtype=torch.float32)
|
|
yield ErrorInput(SampleInput(dst, args=(0, idx, src)),
|
|
error_regex="Index tensor must have the same number of dimensions as self tensor")
|
|
|
|
# Index and src must have the same number of dimensions when src is not a scalar
|
|
src = make_tensor((2, 5, 2), device=device, dtype=torch.float32)
|
|
idx = torch.tensor(((34, 1), (1, 2)), device=device, dtype=torch.long)
|
|
dst = torch.zeros((3, 5), device=device, dtype=torch.float32)
|
|
yield ErrorInput(SampleInput(dst, args=(0, idx, src)),
|
|
error_regex="Index tensor must have the same number of dimensions as src tensor")
|
|
|
|
# Index out of bounds
|
|
# NOTE: this ErrorInput is guarded because bounds checking does not occur on CUDA devices
|
|
if torch.device(device).type == 'cpu':
|
|
src = make_tensor((2, 5), device=device, dtype=torch.float32)
|
|
idx = torch.tensor(((34, 1), (1, 2)), device=device, dtype=torch.long)
|
|
dst = torch.zeros((3, 5), device=device, dtype=torch.float32)
|
|
yield ErrorInput(SampleInput(dst, args=(0, idx, src)),
|
|
error_regex="index 34 is out of bounds for dimension 0 with size 3")
|
|
|
|
def error_inputs_renorm(op_info, device, **kwargs):
|
|
zero_d = torch.randn((), device=device)
|
|
yield ErrorInput(SampleInput(zero_d, args=(0.5, 0, 1.0)), error_type=RuntimeError,
|
|
error_regex="needs at least 2 dimensions, got 0 dimensions")
|
|
|
|
def error_inputs_lstsq(op_info, device, **kwargs):
|
|
zero_d = torch.randn((), device=device)
|
|
yield ErrorInput(SampleInput(zero_d, args=(zero_d)), error_type=TypeError,
|
|
error_regex="iteration over a 0-d tensor")
|
|
|
|
def error_inputs_eig(op_info, device, **kwargs):
|
|
zero_d = torch.randn((), device=device)
|
|
|
|
yield ErrorInput(SampleInput(zero_d, args=(False,)), error_type=RuntimeError,
|
|
error_regex="input should be 2 dimensional")
|
|
|
|
yield ErrorInput(SampleInput(zero_d, args=(True,)), error_type=RuntimeError,
|
|
error_regex="input should be 2 dimensional")
|
|
|
|
def error_inputs_ormqr(op_info, device, **kwargs):
|
|
# this is only implemented on cpu
|
|
if (torch.device(device).type == 'cpu'):
|
|
zero_d = torch.randn((), device=device)
|
|
yield ErrorInput(SampleInput(zero_d, args=(zero_d, zero_d)), error_type=RuntimeError,
|
|
error_regex="input must have at least 2 dimensions")
|
|
|
|
def error_inputs_diag(op_info, device, **kwargs):
|
|
zero_d = torch.randn((), device=device)
|
|
yield ErrorInput(SampleInput(zero_d, args=(zero_d)), error_type=TypeError,
|
|
error_regex="iteration over a 0-d tensor")
|
|
|
|
def error_inputs_embedding(op_info, device, **kwargs):
|
|
indices = torch.rand(2, 2, device=device).long()
|
|
weights = [
|
|
torch.tensor(1.0, device=device),
|
|
torch.tensor(1.0, device=device).reshape(1, 1, 1),
|
|
]
|
|
|
|
for weight in weights:
|
|
yield ErrorInput(SampleInput(weight, args=(indices,)), error_type=RuntimeError,
|
|
error_regex="'weight' must be 2-D")
|
|
|
|
def error_inputs_multinomial(op_info, device, **kwargs):
|
|
x = torch.empty(1, 2, 3, dtype=torch.double, device=device)
|
|
yield ErrorInput(SampleInput(x, args=(2,)), error_type=RuntimeError,
|
|
error_regex="prob_dist must be 1 or 2 dim")
|
|
|
|
x = torch.empty(1, 2, dtype=torch.long, device=device)
|
|
yield ErrorInput(SampleInput(x, args=(2,)), error_type=RuntimeError,
|
|
error_regex="multinomial only supports floating-point dtypes for input")
|
|
|
|
x = torch.empty(1, 2, dtype=torch.double, device=device)
|
|
y = torch.empty(1, 2, dtype=torch.double, device=device)
|
|
yield ErrorInput(SampleInput(x, args=(2,), kwargs=dict(out=y)), error_type=RuntimeError,
|
|
error_regex="multinomial expects Long tensor out")
|
|
|
|
x = torch.empty(2, dtype=torch.double, device=device)
|
|
yield ErrorInput(SampleInput(x, args=(0,)), error_type=RuntimeError,
|
|
error_regex="cannot sample n_sample <= 0 samples")
|
|
|
|
x = torch.empty(2, dtype=torch.double, device=device)
|
|
yield ErrorInput(SampleInput(x, args=(-1,)), error_type=RuntimeError,
|
|
error_regex="cannot sample n_sample <= 0 samples")
|
|
|
|
x = torch.empty(2, dtype=torch.double, device=device)
|
|
yield ErrorInput(SampleInput(x, args=(3, False,)), error_type=RuntimeError,
|
|
error_regex="cannot sample n_sample > prob_dist")
|
|
|
|
x = torch.empty(16777217, dtype=torch.double, device=device)
|
|
yield ErrorInput(SampleInput(x, args=(3,)), error_type=RuntimeError,
|
|
error_regex="number of categories cannot exceed")
|
|
|
|
def error_inputs_gradient(op_info, device, **kwargs):
|
|
for dtype in [torch.long, torch.float32, torch.complex64]:
|
|
t = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], device=device, dtype=dtype)
|
|
|
|
dim = (1, 0)
|
|
spacing = [0.1]
|
|
yield ErrorInput(SampleInput(t, kwargs=dict(spacing=spacing, dim=dim, edge_order=1)),
|
|
error_type=RuntimeError,
|
|
error_regex='torch.gradient expected spacing to be unspecified, a scalar ')
|
|
|
|
yield ErrorInput(SampleInput(t, kwargs=dict(edge_order=3)),
|
|
error_type=RuntimeError,
|
|
error_regex='torch.gradient only supports edge_order=1 and edge_order=2.')
|
|
|
|
dim = (1, 1)
|
|
spacing = 0.1
|
|
yield ErrorInput(SampleInput(t, kwargs=dict(spacing=spacing, dim=dim, edge_order=1)),
|
|
error_type=RuntimeError,
|
|
error_regex='dim 1 appears multiple times in the list of dims')
|
|
|
|
dim = (0, 1)
|
|
coordinates = [torch.tensor([1, 2, 4], device='cpu'), torch.tensor([1, 2, 4], device='meta')]
|
|
yield ErrorInput(SampleInput(t, kwargs=dict(spacing=coordinates, dim=dim, edge_order=1)),
|
|
error_type=RuntimeError,
|
|
error_regex='torch.gradient expected each tensor to be on the same device,')
|
|
|
|
yield ErrorInput(SampleInput(t, kwargs=dict(dim=3)),
|
|
error_type=IndexError, error_regex='')
|
|
|
|
t = torch.tensor([[1], [2], [3]])
|
|
yield ErrorInput(SampleInput(t, kwargs=dict(edge_order=1)),
|
|
error_type=RuntimeError,
|
|
error_regex='torch.gradient expected each dimension size to be at least')
|
|
|
|
t = torch.tensor([[1, 2], [3, 4]])
|
|
yield ErrorInput(SampleInput(t, kwargs=dict(edge_order=2)),
|
|
error_type=RuntimeError,
|
|
error_regex='torch.gradient expected each dimension size to be at least')
|
|
|
|
def error_inputs_masked_select(op_info, device, **kwargs):
|
|
x = torch.rand((1,), device=device).expand((3,))
|
|
y = torch.rand((6,), device=device)
|
|
mask = torch.tensor([True, False, True, True, False, False], device=device)
|
|
|
|
yield ErrorInput(SampleInput(y, args=(mask,), kwargs=dict(out=x)),
|
|
error_type=RuntimeError,
|
|
error_regex='unsupported operation')
|
|
|
|
yield ErrorInput(SampleInput(y, args=(mask,), kwargs=dict(out=y)),
|
|
error_type=RuntimeError,
|
|
error_regex='unsupported operation')
|
|
|
|
yield ErrorInput(SampleInput(mask.clone(), args=(mask,), kwargs=dict(out=mask)),
|
|
error_type=RuntimeError,
|
|
error_regex='unsupported operation')
|
|
|
|
def error_inputs_index_select(op_info, device, **kwargs):
|
|
x = torch.rand((1, 6), device=device).expand((2, 6))
|
|
y = torch.rand((3, 6), device=device)
|
|
ind = torch.tensor([0, 1], dtype=torch.int64, device=device)
|
|
|
|
yield ErrorInput(SampleInput(y, args=(1, ind,), kwargs=dict(out=x)),
|
|
error_type=RuntimeError,
|
|
error_regex='unsupported operation')
|
|
|
|
def sample_inputs_take_along_dim(op_info, device, dtype, requires_grad, **kwargs):
|
|
return (SampleInput(make_tensor((S, S), dtype=dtype, device=device,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=(gather_variable((S, S), 1, S, True, device=device), 0)),
|
|
|
|
# `indices` broadcast
|
|
SampleInput(make_tensor((S, S), dtype=dtype, device=device,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=(gather_variable((1, S // 2), 0, S, True, device=device), 1)),
|
|
|
|
# `self` broadcast
|
|
SampleInput(make_tensor((1, S), dtype=dtype, device=device,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=(gather_variable((S, S // 2), 0, S, True, device=device), 1)),
|
|
|
|
# without `dim` arg
|
|
SampleInput(make_tensor((S, S), dtype=dtype, device=device,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=(gather_variable((S, S // 2), 0, S, True, device=device), )),
|
|
SampleInput(make_tensor((S, S), dtype=dtype, device=device,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=(gather_variable((S, S // 2), 0, S, True, device=device),)),
|
|
)
|
|
|
|
|
|
def error_inputs_aminmax_amax_amin(op_info, device, **kwargs):
|
|
|
|
# Error Inputs for zero-dim tensors, when 'dim' arg is not provided.
|
|
shape = (S, 0, S)
|
|
err_msg_amax_amin = "Specify the reduction dim with the 'dim' argument."
|
|
err_msg_aminmax = "cannot compute aminmax over an empty dimension as the operation has no identity"
|
|
if op_info.name in ['amax', 'amin']:
|
|
yield ErrorInput(SampleInput(torch.rand(shape, device=device)), error_regex=err_msg_amax_amin)
|
|
elif op_info.name in ['aminmax']:
|
|
yield ErrorInput(SampleInput(torch.rand(shape, device=device)), error_regex=err_msg_aminmax)
|
|
|
|
# Error Inputs for tensors with more than 64 dimension
|
|
sizes = [1] * 65
|
|
err_msg1 = "only tensors with up to 64 dims are supported"
|
|
yield ErrorInput(SampleInput(torch.randn(sizes, device=device), kwargs={'dim': -1}),
|
|
error_regex=err_msg1)
|
|
yield ErrorInput(SampleInput(torch.randn(sizes, device=device), kwargs={'dim': 64}),
|
|
error_regex=err_msg1)
|
|
|
|
# Error Inputs for repeated 'dim'
|
|
if op_info.name in ['amax', 'amin']:
|
|
dims = [(0, 0), (0, -4)]
|
|
err_msg2 = "dim 0 appears multiple times in the list of dims"
|
|
x = torch.randn(S, S, S, S, device=device)
|
|
for dim in dims:
|
|
yield ErrorInput(SampleInput(x, kwargs={'dim': dim}), error_regex=err_msg2)
|
|
|
|
# Error Input for illegal dtype
|
|
input5 = torch.randn(L, L, dtype=torch.float32, device=device)
|
|
max_values = torch.empty(L, dtype=torch.float32, device=device)
|
|
min_values = torch.empty(L, dtype=torch.double, device=device)
|
|
illegal_values = torch.empty(L, dtype=torch.int, device=device)
|
|
|
|
err_msg_amax_amin2 = "Expected the dtype for input and out to match"
|
|
err_msg_aminmax2 = "Expected out tensor to have dtype float, but got double instead"
|
|
|
|
if op_info.name in ['amax', 'amin']:
|
|
yield ErrorInput(SampleInput(input5, kwargs={'dim': 0, 'out': illegal_values}),
|
|
error_regex=err_msg_amax_amin2)
|
|
elif op_info.name in ['aminmax']:
|
|
yield ErrorInput(SampleInput(input5, kwargs={'dim': 0, 'out': (max_values, min_values)}),
|
|
error_regex=err_msg_aminmax2)
|
|
|
|
# Error Inputs for functions to raise an error on specified zero'd dimension as reduction dim
|
|
err_msg3 = "Expected reduction dim 1 to have non-zero size"
|
|
yield ErrorInput(SampleInput(torch.rand(shape, device=device), kwargs={'dim': 1}),
|
|
error_type=IndexError, error_regex=err_msg3)
|
|
|
|
def sample_inputs_aminmax(op_info, device, dtype, requires_grad, **kwargs):
|
|
test_cases: Tuple[tuple, dict] = ( # type: ignore[assignment]
|
|
((S, S, S), {}),
|
|
((S, S, S), {'dim': 1}),
|
|
((S, S, S), {'dim': 1, 'keepdim': True}),
|
|
((), {'dim': 0}),
|
|
((), {}),
|
|
((), {'dim': 0, 'keepdim': True}),
|
|
)
|
|
|
|
samples: List[SampleInput] = []
|
|
for shape, kwargs in test_cases:
|
|
samples.append(SampleInput(
|
|
make_tensor(shape, dtype=dtype, device=device, requires_grad=requires_grad),
|
|
kwargs=kwargs))
|
|
|
|
return samples
|
|
|
|
def sample_inputs_diff(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
test_cases = (
|
|
((1,), 0, None, None),
|
|
((S,), 0, None, None),
|
|
((S, 1), 0, None, None),
|
|
((S, 1), 1, None, None),
|
|
((S, S), 0, None, None),
|
|
((S, S), 1, None, None),
|
|
((S, S), 0, (1, S), (2, S)),
|
|
((S, S), 0, None, (2, S)),
|
|
((S, S, S), 1, None, None),
|
|
((S, S, S), 2, None, None),
|
|
((S, S, S), 1, (S, 1, S), (S, 1, S)),
|
|
((S, S, S), 2, (S, S, 1), (S, S, 1)),
|
|
((S, S, S), 2, (S, S, S), (S, S, S)),)
|
|
|
|
sample_inputs = []
|
|
for size, dim, size_prepend, size_append in test_cases:
|
|
prepend_size = 0 if (size_prepend is None) else size_prepend[dim]
|
|
append_size = 0 if (size_append is None) else size_append[dim]
|
|
dim_size = size[dim] + prepend_size + append_size
|
|
for n in range(dim_size):
|
|
input_tensor = make_arg(size)
|
|
prepend = make_arg(size_prepend) if size_prepend else None
|
|
append = make_arg(size_append) if size_append else None
|
|
sample_inputs.append(SampleInput(input_tensor, args=(n, dim, prepend, append,)))
|
|
|
|
# add some samples with n > dim_size
|
|
sample_inputs.append(SampleInput(make_arg((S, S, S)), args=(S + 1, 1,)))
|
|
sample_inputs.append(SampleInput(make_arg((S, S, S)), args=(S * 3 + 2, 2, make_arg((S, S, S)), make_arg((S, S, S)),)))
|
|
|
|
return sample_inputs
|
|
|
|
def sample_inputs_histogram(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
sizes = ((), (S,), (S, S), (S, S, S), (S, 1, S), (S, 0, S))
|
|
|
|
sample_inputs = []
|
|
for size, bin_ct, weighted, density in product(sizes, range(1, 5), [False, True], [False, True]):
|
|
input_tensor = make_arg(size)
|
|
weight_tensor = make_arg(size) if weighted else None
|
|
|
|
sample_inputs.append(SampleInput(input_tensor, args=(bin_ct,),
|
|
kwargs=dict(weight=weight_tensor, density=density)))
|
|
|
|
bins_tensor = make_arg((bin_ct + 1,))
|
|
sample_inputs.append(SampleInput(input_tensor, args=(bins_tensor,),
|
|
kwargs=dict(weight=weight_tensor, density=density)))
|
|
|
|
return sample_inputs
|
|
|
|
def sample_inputs_histogramdd(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
sizes = ((S, S), (S, S, S), (S, 1, S), (S, 0, S))
|
|
bin_ct_patterns = ((1, 1, 1, 1, 1), (2, 3, 2, 3, 2), (3, 2, 3, 2, 3))
|
|
|
|
sample_inputs = []
|
|
for size, bin_ct_pattern, weighted, density in product(sizes, bin_ct_patterns, [False, True], [False, True]):
|
|
input_tensor = make_arg(size)
|
|
bin_ct = bin_ct_pattern[:size[-1]]
|
|
weight_tensor = make_arg(size[:-1]) if weighted else None
|
|
|
|
sample_inputs.append(SampleInput(input_tensor, args=(bin_ct,),
|
|
kwargs=dict(weight=weight_tensor, density=density)))
|
|
|
|
bins_tensor = [make_arg(ct + 1) for ct in bin_ct]
|
|
sample_inputs.append(SampleInput(input_tensor, args=(bins_tensor,),
|
|
kwargs=dict(weight=weight_tensor, density=density)))
|
|
|
|
return sample_inputs
|
|
|
|
def sample_inputs_histc(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
sizes = ((), (S,), (S, S), (S, S, S), (S, 1, S), (S, 0, S))
|
|
|
|
sample_inputs = []
|
|
for size, min, max in product(sizes, [0, -10], [0, 10]):
|
|
# construct sample input omitting bins arg
|
|
sample_inputs.append(SampleInput(make_arg(size),
|
|
kwargs=dict(min=min, max=max)))
|
|
|
|
# construct sample inputs with a few different bins values
|
|
for bins in [1, 3, 10]:
|
|
sample_inputs.append(SampleInput(make_arg(size),
|
|
kwargs=dict(bins=bins, min=min, max=max)))
|
|
|
|
return sample_inputs
|
|
|
|
def sample_inputs_bincount(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
sample_inputs = []
|
|
|
|
for size, weighted in product((S, M), [False, True]):
|
|
input_tensor = torch.randint(0, size, (size,), dtype=dtype, device=device)
|
|
weight_tensor = make_arg((size,)) if weighted else None
|
|
|
|
max_val = int(input_tensor.max().item())
|
|
|
|
for minlength in [0, max_val // 2, max_val, 2 * max_val]:
|
|
sample_inputs.append(SampleInput(input_tensor,
|
|
kwargs=dict(weights=weight_tensor, minlength=minlength)))
|
|
|
|
return sample_inputs
|
|
|
|
def sample_inputs_bucketize(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
sizes = ((), (S,), (S, S), (S, S, S), (S, 1, S), (S, 0, S))
|
|
|
|
sample_inputs = []
|
|
|
|
for size, out_int32, right in product(sizes, [False, True], [False, True]):
|
|
input_tensor = make_arg(size)
|
|
boundaries = make_arg((S,)).msort()
|
|
|
|
sample_inputs.append(SampleInput(input_tensor, args=(boundaries, ),
|
|
kwargs=dict(out_int32=out_int32, right=right)))
|
|
|
|
return sample_inputs
|
|
|
|
def sample_inputs_searchsorted(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
sizes = ((0,), (M,), (0, 0), (M, M), (0, 0, 0), (M, M, M))
|
|
inputs = []
|
|
for size, noncontiguous, out_int32, right in product(sizes, [False, True], [False, True], [False, True]):
|
|
unsorted_tensor = make_arg(size, noncontiguous=noncontiguous)
|
|
input_tensor = make_arg(size, noncontiguous=noncontiguous)
|
|
if np.product(size) == 0:
|
|
boundary_tensor = unsorted_tensor
|
|
sorter = make_tensor(size, dtype=torch.int64, device=device, noncontiguous=noncontiguous)
|
|
else:
|
|
boundary_tensor, sorter = torch.sort(unsorted_tensor)
|
|
side = "right" if right else "left"
|
|
|
|
inputs.append(SampleInput(boundary_tensor, args=(input_tensor,), kwargs=dict(out_int32=out_int32, right=right)))
|
|
inputs.append(SampleInput(boundary_tensor, args=(input_tensor,), kwargs=dict(out_int32=out_int32, side=side)))
|
|
|
|
inputs.append(
|
|
SampleInput(unsorted_tensor, args=(input_tensor,), kwargs=dict(out_int32=out_int32, right=right, sorter=sorter)))
|
|
inputs.append(
|
|
SampleInput(unsorted_tensor, args=(input_tensor,), kwargs=dict(out_int32=out_int32, side=side, sorter=sorter)))
|
|
return inputs
|
|
|
|
def sample_inputs_gradient(op_info, device, dtype, requires_grad, **kwargs):
|
|
sample_inputs = []
|
|
test_cases_float = (
|
|
((S,), None, None, 1),
|
|
((S,), 2., None, 1),
|
|
((S, S), None, None, 2),
|
|
((S, S), [2.0, 2.1], None, 1),
|
|
((S, S), [2.0, 2.1], (0, 1), 1),
|
|
((4, 4, 4), [2., 1.], (0, 1), 2),
|
|
)
|
|
for size, spacing, dim, edge_order in test_cases_float:
|
|
t = make_tensor(size, dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad)
|
|
sample_inputs.append(SampleInput(t, kwargs=dict(dim=dim, spacing=spacing, edge_order=edge_order)))
|
|
|
|
test_cases_tensor = (
|
|
((3, 3, 3), ((1.1, 2.0, 3.5), (4.0, 2, 6.0)), (0, -1), 1),
|
|
((3, 3, 3), ((1.0, 3.0, 2.0), (8.0, 6.0, 1.0)), (0, 1), 2),
|
|
)
|
|
for size, coordinates, dim, edge_order in test_cases_tensor:
|
|
t = make_tensor(size, dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad)
|
|
coordinates_tensor_list = []
|
|
for coords in coordinates:
|
|
# `coords` will always contain floating point values and Python 3.10 does not support this
|
|
# implicit conversion to an integer using `__int__`
|
|
# TODO: this can be simplified after https://github.com/pytorch/pytorch/issues/69316 is fixed
|
|
a = torch.tensor(coords, device=device)
|
|
coordinates_tensor_list.append(a.to(dtype))
|
|
sample_inputs.append(SampleInput(t, kwargs=dict(dim=dim, spacing=coordinates_tensor_list, edge_order=edge_order)))
|
|
|
|
return tuple(sample_inputs)
|
|
|
|
def sample_inputs_getitem(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
test_args = [
|
|
([1, 2],),
|
|
(slice(0, 3),),
|
|
([slice(0, 3), 1],),
|
|
([[0, 2, 3], [1, 3, 3], [0, 0, 2]],),
|
|
([[0, 0, 3], [1, 1, 3], [0, 0, 2]],),
|
|
([slice(None), slice(None), [0, 3]],),
|
|
([slice(None), [0, 3], slice(None)],),
|
|
([[0, 3], slice(None), slice(None)],),
|
|
([[0, 3], [1, 2], slice(None)],),
|
|
([[0, 3], ],),
|
|
([[0, 3], slice(None)],),
|
|
([[0, 3], Ellipsis],),
|
|
([[0, 2, 3], [1, 3, 3], torch.LongTensor([0, 0, 2])],),
|
|
(index_variable(2, S, device=device),),
|
|
(mask_not_all_zeros((S,)),),
|
|
]
|
|
|
|
for args in test_args:
|
|
yield SampleInput(make_arg((S, S, S)), args=args)
|
|
|
|
def sample_inputs_index_put(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
inputs = []
|
|
for accumulate in [False, True]:
|
|
# Test with indices arg
|
|
inputs.append(SampleInput(
|
|
make_arg((S, S,)),
|
|
args=((index_variable(2, S, device=device),), make_arg((2, S))),
|
|
kwargs=dict(accumulate=accumulate)))
|
|
|
|
# Test with mask arg
|
|
mask = torch.zeros(S, dtype=torch.bool) if accumulate else mask_not_all_zeros((S,))
|
|
inputs.append(SampleInput(
|
|
make_arg((S, S)),
|
|
args=((mask, ), make_arg((S,))),
|
|
kwargs=dict(accumulate=accumulate)))
|
|
|
|
return inputs
|
|
|
|
def sample_inputs_sort(op_info, device, dtype, requires_grad, **kwargs):
|
|
def small_3d_unique():
|
|
res = torch.randperm(S * S * S, dtype=torch.int64, device=device).view(S, S, S)
|
|
res = res.to(dtype).requires_grad_(requires_grad)
|
|
return res
|
|
|
|
def large_1d_unique():
|
|
res = torch.randperm(L * L * L, dtype=torch.int64, device=device)
|
|
res = res.to(dtype).requires_grad_(requires_grad)
|
|
return res
|
|
|
|
samples = []
|
|
# Test case for large tensor.
|
|
samples.append(SampleInput(large_1d_unique()))
|
|
|
|
# Test cases for small 3d tensors.
|
|
# Imitates legacy tests from test/test_torch.py
|
|
dims = range(-3, 3)
|
|
flag = [True, False]
|
|
for dim, descending, stable in product(dims, flag, flag):
|
|
# default schema without stable sort
|
|
samples.append(SampleInput(small_3d_unique(),
|
|
args=(dim, descending)))
|
|
# schema with stable sort, no CUDA support yet
|
|
if torch.device(device).type == 'cpu':
|
|
samples.append(
|
|
SampleInput(small_3d_unique(),
|
|
kwargs=dict(dim=dim, descending=descending, stable=stable))
|
|
)
|
|
|
|
# Test cases for scalar tensor
|
|
samples.append(SampleInput(torch.tensor(1, dtype=dtype, device=device, requires_grad=requires_grad)))
|
|
samples.append(SampleInput(torch.tensor(1, dtype=dtype, device=device, requires_grad=requires_grad),
|
|
args=(0,)))
|
|
samples.append(SampleInput(torch.tensor(1, dtype=dtype, device=device, requires_grad=requires_grad),
|
|
args=(0, True)))
|
|
|
|
# Test cases for stable sort
|
|
samples.append(SampleInput(small_3d_unique(),
|
|
kwargs=dict(stable=True)))
|
|
samples.append(SampleInput(small_3d_unique(),
|
|
kwargs=dict(dim=0, stable=True)))
|
|
samples.append(SampleInput(small_3d_unique(),
|
|
kwargs=dict(dim=0, descending=True, stable=True)))
|
|
return samples
|
|
|
|
def sample_inputs_threshold(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
sizes = ((), (S,), (S, S), (S, S, S))
|
|
samples = []
|
|
for x_size in sizes:
|
|
# threshold and values args must be numbers
|
|
samples.append(SampleInput(make_arg(x_size), args=(make_arg(()).item(), make_arg(()).item())))
|
|
return samples
|
|
|
|
def sample_inputs_argsort(*args, **kwargs):
|
|
return [sample_input for sample_input in sample_inputs_sort(*args, **kwargs) if "stable" not in sample_input.kwargs]
|
|
|
|
def sample_inputs_unique(op_info, device, dtype, requires_grad, **kwargs):
|
|
sizes = ((), (S,), (S, S), (S, S, S), (S, 1, S), (S, 0, S))
|
|
|
|
sample_inputs = []
|
|
for shape, sorted, return_inverse, return_counts, dim in \
|
|
product(sizes, [False, True], [False, True], [False, True], [None, -2, -1, 0, 1, 2]):
|
|
# torch.unique cannot be called if the input tensor has a zero dimension which isn't the selected dim
|
|
if 0 in shape and shape.index(0) is not dim:
|
|
continue
|
|
|
|
# skip invalid dim args
|
|
if dim is not None and (dim < -len(shape) or dim >= len(shape)):
|
|
continue
|
|
|
|
kwargs = dict(sorted=sorted, return_inverse=return_inverse, return_counts=return_counts, dim=dim)
|
|
|
|
# construct a test case with only one distinct value
|
|
input_t = torch.zeros(shape, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
sample_inputs.append(SampleInput(input_t, kwargs=kwargs.copy()))
|
|
|
|
# construct a test case with mixed 0s and 1s
|
|
input_t = make_tensor(shape, dtype=torch.bool, device=device, requires_grad=False)\
|
|
.to(dtype).requires_grad_(requires_grad)
|
|
sample_inputs.append(SampleInput(input_t, kwargs=kwargs.copy()))
|
|
|
|
# construct a test case with many different values
|
|
input_t = make_tensor(shape, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
sample_inputs.append(SampleInput(input_t, kwargs=kwargs.copy()))
|
|
|
|
return sample_inputs
|
|
|
|
def sample_inputs_unique_consecutive(*args, **kwargs):
|
|
for sample_input in sample_inputs_unique(*args, **kwargs):
|
|
if not sample_input.kwargs["sorted"]:
|
|
sample_input.kwargs.pop("sorted")
|
|
yield sample_input
|
|
|
|
def sample_inputs_adaptive_avg_pool1d(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# Ordered as (input shape, output size)
|
|
cases = (
|
|
((0, 8, 8), (5,)),
|
|
((3, 8, 8), 5),
|
|
((3, 8, 8), 1)
|
|
)
|
|
|
|
for input_shape, output_size in cases:
|
|
yield SampleInput(make_arg(input_shape), args=(output_size,))
|
|
|
|
def sample_inputs_adaptive_avg_pool2d(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# Ordered as (input shape, output size)
|
|
cases = (
|
|
((1, 8, 8, 8), (5, 7)),
|
|
((2, 8, 8, 8), (None, 7)),
|
|
((1, 8, 4, 3), (5, None)),
|
|
((1, 8, 4, 3), (None, None)),
|
|
((1, 8, 4, 3), (5)),
|
|
)
|
|
|
|
for input_shape, output_size in cases:
|
|
yield SampleInput(make_arg(input_shape), args=(output_size,))
|
|
|
|
|
|
def sample_inputs_adaptive_avg_pool3d(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# Ordered as (input shape, output size)
|
|
cases = (
|
|
((0, 8, 8, 8, 8), (5, 7, 4)),
|
|
((1, 8, 4, 3, 7), (None, None, None)),
|
|
((1, 8, 4, 3, 7), (1, 1, 1)),
|
|
((3, 3, 8, 8, 6), (5, 7, None)),
|
|
((1, 3, 8, 8, 6), (5, None, 2)),
|
|
((3, 3, 8, 8, 6), (None, 3, 2)),
|
|
)
|
|
|
|
for input_shape, output_size in cases:
|
|
yield SampleInput(make_arg(input_shape), args=(output_size,))
|
|
|
|
def sample_inputs_adaptive_max_pool1d(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# Ordered as (input shape, output size)
|
|
cases = (
|
|
# ((0, 8, 8), (5,)),
|
|
# 0 batch size doesn't work, cannot reshape tensor of 0 elements into shape [0, 8, -1]
|
|
((3, 4, 4), 3),
|
|
((3, 4, 4), 1)
|
|
)
|
|
|
|
for shapes, return_idx in product(cases, (True, False)):
|
|
yield SampleInput(make_arg(shapes[0]), args=(shapes[1], return_idx))
|
|
|
|
def sample_inputs_adaptive_max_pool2d(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# Ordered as (input shape, output size)
|
|
cases = (
|
|
# ((0, 8, 8, 8), (5, 7)),
|
|
# 0 batch size doesn't work, cannot reshape tensor of 0 elements into shape [0, 8, -1]
|
|
((1, 4, 4, 4), (2, 3)),
|
|
((2, 4, 4, 4), (None, 3)),
|
|
((2, 4, 4, 4), (1, 1)),
|
|
((1, 4, 4, 3), (3, None)),
|
|
((1, 4, 4, 3), (None, None)),
|
|
((1, 4, 4, 3), (3)),
|
|
)
|
|
|
|
for shapes, return_idx in product(cases, (True, False)):
|
|
yield SampleInput(make_arg(shapes[0]), args=(shapes[1], return_idx))
|
|
|
|
|
|
def sample_inputs_adaptive_max_pool3d(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# Ordered as (input shape, output size)
|
|
cases = (
|
|
# ((0, 8, 8, 8, 8), (5, 7, 4)),
|
|
# 0 batch size doesn't work, cannot reshape tensor of 0 elements into shape [0, 8, -1]
|
|
((1, 4, 4, 3, 5), (None, None, None)),
|
|
((1, 4, 4, 3, 5), (1, 1, 1)),
|
|
((3, 3, 4, 4, 6), (2, 3, None)),
|
|
((1, 3, 4, 4, 6), (3, None, 2)),
|
|
((3, 3, 4, 4, 6), (None, 3, 2)),
|
|
)
|
|
|
|
for shapes, return_idx in product(cases, (True, False)):
|
|
yield SampleInput(make_arg(shapes[0]), args=(shapes[1], return_idx))
|
|
|
|
class _TestParamsMaxPoolBase(object):
|
|
|
|
def __init__(self):
|
|
self.kwargs = {
|
|
'kernel_size': [3],
|
|
'stride': [2, None],
|
|
'ceil_mode': [True, False],
|
|
'padding': [0, 1],
|
|
'dilation': [1],
|
|
'return_indices': [True, False]
|
|
}
|
|
|
|
self.shapes = [
|
|
[1, 2, None], # batch
|
|
[2], # channels
|
|
[3, 6] # signal
|
|
]
|
|
|
|
def _gen_shape(self):
|
|
for shape in product(*self.shapes):
|
|
# shape[0] is None indicates missing batch dimension
|
|
if shape[0] is None:
|
|
shape = shape[1:]
|
|
|
|
yield shape, torch.contiguous_format
|
|
# only 2d (N, C, H, W) rank 4 tensors support channels_last memory format
|
|
if len(self.shapes) == 4 and len(shape) == 4:
|
|
yield shape, torch.channels_last
|
|
|
|
def _gen_kwargs(self):
|
|
keys = self.kwargs.keys()
|
|
for values in product(*self.kwargs.values()):
|
|
yield dict(zip(keys, values))
|
|
|
|
def gen_input_params(self):
|
|
yield from product(self._gen_shape(), self._gen_kwargs())
|
|
|
|
class _TestParamsMaxPool1d(_TestParamsMaxPoolBase):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.kwargs['kernel_size'] += [(3,)]
|
|
self.kwargs['stride'] += [(2,)]
|
|
self.kwargs['padding'] += [(1,)]
|
|
self.kwargs['dilation'] += [(1,)]
|
|
|
|
class _TestParamsMaxPool2d(_TestParamsMaxPoolBase):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.kwargs['kernel_size'] += [(3, 2)]
|
|
self.kwargs['stride'] += [(2, 1)]
|
|
self.kwargs['padding'] += [(1, 1)]
|
|
self.kwargs['dilation'] += [(1, 2)]
|
|
|
|
self.shapes.append([6])
|
|
|
|
class _TestParamsMaxPool3d(_TestParamsMaxPoolBase):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.kwargs['kernel_size'] += [(3, 2, 3)]
|
|
self.kwargs['stride'] += [(2, 1, 2)]
|
|
self.kwargs['dilation'] += [(1, 2, 1)]
|
|
|
|
self.shapes.append([6])
|
|
self.shapes.append([5])
|
|
|
|
def sample_inputs_max_pool(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=False)
|
|
|
|
params_generator_type_dict = {
|
|
'nn.functional.max_pool1d': _TestParamsMaxPool1d,
|
|
'nn.functional.max_pool2d': _TestParamsMaxPool2d,
|
|
'nn.functional.max_pool3d': _TestParamsMaxPool3d,
|
|
}
|
|
|
|
params_generator = params_generator_type_dict[op_info.name]()
|
|
for (shape, memory_format), kwargs in params_generator.gen_input_params():
|
|
arg = make_arg(shape).to(memory_format=memory_format).requires_grad_(requires_grad)
|
|
yield SampleInput(arg, kwargs=kwargs)
|
|
|
|
def sample_inputs_normalize(self, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, low=-1, high=1, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
cases: Tuple[Tuple[int], dict] = ( # type: ignore[assignment]
|
|
((2, 1, 4, 5), {'p': 1., 'dim': 2}),
|
|
((2, 3, 4, 5), {'p': 2., 'dim': 1}),
|
|
((1, 2, 4, 5), {'p': 0.5, 'dim': 0}),
|
|
((1, 3, 4, 5), {'p': -1., 'dim': 1}),
|
|
((1, 3, 4, 5), {'p': 0., 'dim': -1}),
|
|
((), {'p': 1.2, 'dim': 0}),
|
|
((2, 3, 4, 5), {}),
|
|
((2, 3, 4, 5), {'eps': 1e-4}))
|
|
|
|
for input_shape, kwargs in cases:
|
|
yield SampleInput(make_arg(input_shape), kwargs=kwargs)
|
|
|
|
def sample_inputs_conv_transpose1d(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# Ordered as shapes for input, weight, bias
|
|
# and a dict of values of (stride, padding, output_padding, groups, dilation)
|
|
cases: Tuple[Tuple[int], Tuple[int], Tuple[int], dict] = ( # type: ignore[assignment]
|
|
((1, 3, 4), (3, 3, 3), (3,),
|
|
{'stride': (2,), 'padding': 2, 'output_padding': (1,), 'groups': 1}),
|
|
((2, 2, 4), (2, 2, 4), (4,),
|
|
{'stride': (3,), 'padding': (1,), 'output_padding': (2,), 'groups': 2, 'dilation': (4,)}),
|
|
((1, 1, 4), (1, 1, 4), (1,),
|
|
{'stride': 2, 'padding': 1, 'output_padding': 1, 'groups': 1, 'dilation': (2,)}),
|
|
((1, 1, 4), (1, 2, 3), None,
|
|
{'stride': 2, 'padding': 1, 'output_padding': 1, 'groups': 1}),
|
|
((1, 4, 5), (4, 8, 3), None,
|
|
{})
|
|
)
|
|
|
|
for input_shape, weight, bias, kwargs in cases:
|
|
yield SampleInput(make_arg(input_shape), args=(
|
|
make_arg(weight),
|
|
make_arg(bias) if bias is not None else bias
|
|
), kwargs=kwargs)
|
|
|
|
|
|
def sample_inputs_conv_transpose2d(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# Ordered as shapes for input, weight, bias
|
|
# and a dict of values of (stride, padding, output_padding, groups, dilation)
|
|
cases: Tuple[Tuple[int], Tuple[int], Tuple[int], dict] = ( # type: ignore[assignment]
|
|
((1, 3, 4, 4), (3, 3, 3, 3), (3,),
|
|
{'stride': (2, 2), 'padding': 2, 'output_padding': (1, 1), 'groups': 1}),
|
|
((2, 2, 4, 4), (2, 2, 4, 5), (4,),
|
|
{'stride': (3, 2), 'padding': (1, 2), 'output_padding': (2, 3), 'groups': 2, 'dilation': (4, 4)}),
|
|
((1, 1, 4, 5), (1, 1, 4, 3), (1,),
|
|
{'stride': 2, 'padding': 1, 'output_padding': 1, 'groups': 1, 'dilation': (2, 3)}),
|
|
((1, 1, 4, 3), (1, 2, 3, 4), None,
|
|
{'stride': 2, 'padding': 1, 'output_padding': 1, 'groups': 1}),
|
|
((1, 4, 5, 5), (4, 8, 3, 3), None,
|
|
{})
|
|
)
|
|
|
|
for input_shape, weight, bias, kwargs in cases:
|
|
yield SampleInput(make_arg(input_shape), args=(
|
|
make_arg(weight),
|
|
make_arg(bias) if bias is not None else bias
|
|
), kwargs=kwargs)
|
|
|
|
def sample_inputs_conv_transpose3d(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# Ordered as shapes for input, weight, bias
|
|
# and a dict of values of (stride, padding, output_padding, groups, dilation)
|
|
cases: Tuple[Tuple[int], Tuple[int], Tuple[int], dict] = ( # type: ignore[assignment]
|
|
((1, 3, 4, 4, 4), (3, 3, 3, 3, 3), (3,),
|
|
{'stride': (2, 2, 2), 'padding': 2, 'output_padding': (1, 1, 1), 'groups': 1}),
|
|
((2, 2, 4, 4, 4), (2, 2, 4, 5, 6), (4,),
|
|
{'stride': (3, 2, 1), 'padding': (1, 2, 3), 'output_padding': (2, 3, 1), 'groups': 2, 'dilation': (4, 4, 4)}),
|
|
((1, 1, 4, 5, 2), (1, 1, 4, 3, 1), (1,),
|
|
{'stride': 2, 'padding': 1, 'output_padding': 1, 'groups': 1, 'dilation': (2, 3, 2)}),
|
|
((1, 1, 4, 3, 4), (1, 2, 3, 4, 5), None,
|
|
{'stride': 2, 'padding': 1, 'output_padding': 1, 'groups': 1}),
|
|
((1, 4, 5, 5, 5), (4, 8, 3, 3, 3), None,
|
|
{})
|
|
)
|
|
|
|
for input_shape, weight, bias, kwargs in cases:
|
|
yield SampleInput(make_arg(input_shape), args=(
|
|
make_arg(weight),
|
|
make_arg(bias) if bias is not None else bias
|
|
), kwargs=kwargs)
|
|
|
|
|
|
def sample_inputs_conv1d(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# Ordered as shapes for input, weight, bias,
|
|
# and a dict of values of (stride, padding, dilation, groups)
|
|
cases: Tuple = (
|
|
((1, 3, 4), (3, 3, 3), (3,), {'stride': (2,), 'padding': 2, 'groups': 1}),
|
|
((2, 4, 8), (2, 2, 3), (2,), {'stride': 3, 'padding': 1, 'groups': 2, 'dilation': 2}),
|
|
((1, 4, 5), (1, 4, 3), None, {'stride': (2,), 'padding': 'valid'}),
|
|
((2, 2, 4), (2, 1, 4), (2,), {'stride': (1,), 'padding': 'same', 'groups': 2, 'dilation': (2,)}),
|
|
# With defaults
|
|
((1, 4, 5), (3, 4, 3), None, {}),
|
|
)
|
|
|
|
# TODO: (@krshrimali), add error_inputs_func once https://github.com/pytorch/pytorch/pull/67354 is merged
|
|
# Should replace test_conv_modules_raise_error_on_incorrect_input_size and test_conv_shapecheck
|
|
# in test/test_nn.py
|
|
|
|
for input_shape, weight, bias, kwargs in cases:
|
|
yield SampleInput(make_arg(input_shape), args=(
|
|
make_arg(weight),
|
|
make_arg(bias) if bias is not None else bias
|
|
), kwargs=kwargs)
|
|
|
|
|
|
def sample_inputs_conv2d(op_info, device, dtype, requires_grad, jit_fail_sample=False, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# Ordered as shapes for input, weight, bias
|
|
# and a dict of values of (stride, padding, groups, dilation)
|
|
cases: Tuple = (
|
|
((1, 3, 4, 4), (3, 3, 3, 3), (3,),
|
|
{'stride': (2, 2), 'padding': 2, 'groups': 1}),
|
|
((2, 4, 8, 8), (2, 2, 3, 3), (2,),
|
|
{'stride': (3, 2), 'padding': (2, 1), 'groups': 2, 'dilation': (4, 4)}),
|
|
((1, 4, 5, 5), (1, 4, 2, 3), (1,),
|
|
{'stride': 2, 'padding': 1, 'groups': 1, 'dilation': (2, 3)}),
|
|
((1, 4, 5, 5), (1, 4, 2, 3), (1,),
|
|
{'stride': 2, 'padding': 1, 'groups': 1, 'dilation': (2, 3)}),
|
|
((1, 2, 4, 3), (4, 2, 3, 4), None,
|
|
{'stride': 2, 'padding': 1, 'groups': 1}),
|
|
((1, 4, 5, 5), (1, 4, 2, 3), (1,),
|
|
{'stride': 2, 'padding': "valid"}),
|
|
((1, 4, 5, 5), (1, 4, 2, 3), (1,),
|
|
{'stride': 1, 'padding': "same", 'dilation': 3}),
|
|
# Below are the group related samples from common_nn.py
|
|
((2, 4, 6, 6), (4, 1, 3, 3), (4,), {'groups': 4}),
|
|
((2, 4, 6, 6), (8, 1, 3, 3), (8,), {'groups': 4}),
|
|
((2, 4, 6, 6), (8, 1, 3, 3), None, {'groups': 4}),
|
|
((2, 4, 6, 6), (4, 1, 3, 3), (4,), {'groups': 4, 'stride': (3, 2)}),
|
|
((2, 4, 6, 6), (4, 1, 3, 3), (4,), {'groups': 4, 'padding': (1, 1)}),
|
|
((2, 4, 5, 5), (4, 1, 2, 2), (4,), {'groups': 4, 'dilation': (2, 2)}),
|
|
((2, 4, 6, 5), (6, 2, 3, 2), (6,), {'groups': 2}),
|
|
# With defaults
|
|
((1, 4, 5, 5), (3, 4, 3, 3), None, {}),
|
|
)
|
|
|
|
for input_shape, weight, bias, kwargs in cases:
|
|
yield SampleInput(make_arg(input_shape), args=(
|
|
make_arg(weight),
|
|
make_arg(bias) if bias is not None else bias
|
|
), kwargs=kwargs)
|
|
|
|
|
|
def sample_inputs_group_norm(opinfo, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# Ordered as input shape, num groups, and eps
|
|
cases: Tuple[Tuple[int], int, float] = ( # type: ignore[assignment]
|
|
((1, 6, 3), 2, 0.5),
|
|
((2, 6, 3), 2, -0.5),
|
|
((1, 2), 1, None),
|
|
((0, 2), 1, None),
|
|
)
|
|
|
|
for input_shape, num_groups, eps in cases:
|
|
# Shape of weight and bias should be the same as num_channels
|
|
weight = make_arg(input_shape[1])
|
|
bias = make_arg(input_shape[1])
|
|
kwargs = {'weight': weight, 'bias': bias} if eps is None else {'weight': weight, 'bias': bias, 'eps': eps}
|
|
yield SampleInput(
|
|
make_arg(input_shape),
|
|
args=(num_groups,),
|
|
kwargs=kwargs
|
|
)
|
|
# Without any optional args
|
|
yield SampleInput(make_arg((1, 2)), args=(1,))
|
|
|
|
|
|
def sample_inputs_instance_norm(opinfo, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
make_arg_without_requires_grad = partial(make_tensor, device=device, dtype=dtype, requires_grad=False)
|
|
|
|
# Ordered as: input shape, kwargs for momentum, eps
|
|
cases: Tuple[Tuple[int], dict] = ( # type: ignore[assignment]
|
|
((S, S, S), {'momentum': 0.5, 'eps': 0.6}),
|
|
((S, S, S), {'momentum': 0.5, 'eps': 0.6, 'use_input_stats': True}),
|
|
((3, 2, 4), {'momentum': -1.2}),
|
|
((3, 2, 4), {'momentum': 0.0}),
|
|
((3, 2, 3, 4), {'momentum': -1.0, 'eps': 0.5}),
|
|
((3, 2, 3, 4), {'momentum': -1.0, 'eps': 0.5}),
|
|
)
|
|
|
|
for input_shape, kwargs in cases:
|
|
# args: running mean, running var, weight and bias should necessarily be of shape: (channels,)
|
|
channels = input_shape[1]
|
|
weight = make_arg(channels)
|
|
bias = make_arg(channels)
|
|
running_mean = make_arg_without_requires_grad(channels, low=0)
|
|
running_var = make_arg_without_requires_grad(channels, low=0)
|
|
new_kwargs = {
|
|
'running_mean': running_mean,
|
|
'running_var': running_var,
|
|
'weight': weight,
|
|
'bias': bias,
|
|
**kwargs
|
|
}
|
|
|
|
yield SampleInput(
|
|
make_arg(input_shape),
|
|
args=(),
|
|
kwargs=new_kwargs
|
|
)
|
|
|
|
# Checking for permutations of weights and biases as `None`
|
|
# instance_norm assumes that if there's a bias, there's a weight
|
|
weights = [channels, None]
|
|
biases = [None, None]
|
|
|
|
for weight_channels, bias_channels in zip(weights, biases):
|
|
running_mean = make_arg_without_requires_grad(channels, low=0)
|
|
running_var = make_arg_without_requires_grad(channels, low=0)
|
|
yield SampleInput(
|
|
make_arg(input_shape),
|
|
args=(),
|
|
kwargs={
|
|
'running_mean': running_mean,
|
|
'running_var': running_var,
|
|
'weight': make_arg(weight_channels) if weight_channels is not None else None,
|
|
'bias': make_arg(bias_channels) if bias_channels is not None else None
|
|
}
|
|
)
|
|
|
|
# Test case for no optional kwargs
|
|
yield SampleInput(make_arg((1, 2, 3)), kwargs={})
|
|
|
|
|
|
def sample_inputs_layer_norm(opinfo, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# Ordered as input shape, normalized_shape and a kwarg dict for eps
|
|
cases: Tuple[Tuple[int], Tuple[int], dict] = ( # type: ignore[assignment]
|
|
((1, 2, 3), (1, 2, 3), {'eps': 0.5}),
|
|
((2, 2, 3), (2, 3), {'eps': -0.5}),
|
|
((1,), (1,), {}),
|
|
((1, 2), (2,), {}),
|
|
((0, 1), (1,), {}),
|
|
)
|
|
|
|
for input_shape, normalized_shape, kwargs in cases:
|
|
# Shape of weight and bias should be the same as normalized_shape
|
|
weight = make_arg(normalized_shape)
|
|
bias = make_arg(normalized_shape)
|
|
yield SampleInput(
|
|
make_arg(input_shape),
|
|
args=(normalized_shape, weight, bias),
|
|
kwargs=kwargs
|
|
)
|
|
# Without any optional args
|
|
yield SampleInput(make_arg((1, 2)), args=((2,),))
|
|
|
|
# TODO: @krshrimali, once to_numpy method in SampleInput class is modified to take None inputs,
|
|
# enable these inputs; see https://github.com/pytorch/pytorch/pull/63276#discussion_r691950400
|
|
|
|
# With weight and a `None` bias
|
|
# yield SampleInput(make_arg((1, 2)), args=((2,), make_arg((2,)), None))
|
|
|
|
# With `None` weight and bias (tests failing for this, see the link above)
|
|
# yield SampleInput(make_arg((1, 2)), args=((2,), None, make_arg((2,))))
|
|
|
|
def sample_inputs_local_response_norm(opinfo, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# Ordered as input shape, size and a kwarg dict for alpha, beta, and k
|
|
cases: Tuple[Tuple[int], Tuple[int], dict] = ( # type: ignore[assignment]
|
|
((1, 6, 3), 2, {'alpha': 3e-05, 'beta': 0.5, 'k': 1.25}),
|
|
((1, 6, 3), 2, {'beta': 0.5, 'k': 1.25}),
|
|
((1, 6, 3), 2, {'alpha': 3e-05, 'k': 1.25}),
|
|
((1, 6, 3), 2, {'alpha': 3e-05, 'beta': 0.5}),
|
|
((1, 6, 3), 2, {'alpha': 3e-05}),
|
|
((1, 6, 3), 2, {'beta': 0.5}),
|
|
((1, 6, 3), 2, {'k': 1.25}),
|
|
((1, 6, 3), 2, {}),
|
|
((2, 6, 3), 2, {'alpha': 3e-05, 'beta': 0.5, 'k': 1.25}),
|
|
((1, 1, 2), 1, {'alpha': 3e-05, 'beta': 0.5, 'k': 1.25}),
|
|
((0, 1, 2), 1, {'alpha': 3e-05, 'beta': 0.5, 'k': 1.25}),
|
|
)
|
|
|
|
for input_shape, size, kwargs in cases:
|
|
yield SampleInput(make_arg(input_shape), args=(size,), kwargs=kwargs)
|
|
|
|
def sample_inputs_hardswish(self, device, dtype, requires_grad, **kwargs):
|
|
N = 5
|
|
# make sure we are testing -3 -> 3 range. default is -10 -> 10 so maybe unnecessary ?
|
|
tensors = [SampleInput(make_tensor((N * 2, N * 2), device=device, dtype=dtype,
|
|
requires_grad=requires_grad, low=-5, high=5)) for _ in range(1, N)]
|
|
return tensors
|
|
|
|
def sample_inputs_linear(self, device, dtype, requires_grad, **kwargs):
|
|
features_options = [[3, 4], [8, 8]]
|
|
batch_options: List[List[int]] = [
|
|
[], # no batch
|
|
[0],
|
|
[8],
|
|
[2, 3],
|
|
]
|
|
create_tensor = partial(make_tensor, device=device, dtype=dtype,
|
|
requires_grad=requires_grad, low=-2, high=2)
|
|
|
|
sample_inputs = []
|
|
for has_bias, (in_feat, out_feat), batch_shape in \
|
|
itertools.product([True, False], features_options, batch_options):
|
|
input_tensor = create_tensor(batch_shape + [in_feat])
|
|
weight = create_tensor([out_feat, in_feat])
|
|
if not has_bias:
|
|
sample_inputs.append(SampleInput(input_tensor, args=(weight,)))
|
|
continue
|
|
|
|
bias = create_tensor([out_feat])
|
|
sample_inputs.append(SampleInput(input_tensor, args=(weight, bias)))
|
|
return sample_inputs
|
|
|
|
def sample_inputs_bilinear(self, device, dtype, requires_grad, **kwargs):
|
|
features_options = [[3, 4, 5], [8, 8, 8]]
|
|
batch_options: List[List[int]] = [
|
|
[], # no batch
|
|
[0],
|
|
[8],
|
|
[2, 3],
|
|
]
|
|
create_tensor = partial(make_tensor, device=device, dtype=dtype,
|
|
requires_grad=requires_grad, low=-2, high=2)
|
|
|
|
sample_inputs = []
|
|
for has_bias, (in_feat1, in_feat2, out_feat), batch_shape in \
|
|
itertools.product([True, False], features_options, batch_options):
|
|
input_tensor1 = create_tensor(batch_shape + [in_feat1])
|
|
input_tensor2 = create_tensor(batch_shape + [in_feat2])
|
|
weight = create_tensor([out_feat, in_feat1, in_feat2])
|
|
if not has_bias:
|
|
sample_inputs.append(SampleInput(input_tensor1, args=(input_tensor2, weight,)))
|
|
continue
|
|
bias = create_tensor([out_feat])
|
|
sample_inputs.append(SampleInput(input_tensor1, args=(input_tensor2, weight, bias)))
|
|
|
|
return sample_inputs
|
|
|
|
def sample_inputs_glu(self, device, dtype, requires_grad, **kwargs):
|
|
features_options = [[2], [2, 4], [8, 8], [3, 6, 8], [1, 4, 6, 7]]
|
|
batch_options: List[List[int]] = [
|
|
[], # no batch
|
|
[0],
|
|
[8],
|
|
[2, 3],
|
|
]
|
|
create_tensor = partial(make_tensor, device=device, dtype=dtype,
|
|
requires_grad=requires_grad, low=-2, high=2)
|
|
|
|
sample_inputs = []
|
|
for features, batch_shape in itertools.product(features_options, batch_options):
|
|
ndim = len(features) + len(batch_shape)
|
|
for dim in range(ndim):
|
|
input_tensor = create_tensor(batch_shape + features)
|
|
dim_size = input_tensor.size(dim)
|
|
if dim_size > 0 and dim_size % 2 == 0:
|
|
sample_inputs.append(SampleInput(input_tensor, args=(dim,)))
|
|
|
|
return sample_inputs
|
|
|
|
def sample_inputs_interpolate(mode, self, device, dtype, requires_grad, **kwargs):
|
|
N, C = 2, 3
|
|
D = 4
|
|
S = 3
|
|
L = 5
|
|
|
|
align_corners_options: Tuple[Any, ...] = (None,)
|
|
if mode in ('linear', 'bilinear', 'bicubic', 'trilinear'):
|
|
align_corners_options = (True, False, None)
|
|
ranks_for_mode = {
|
|
'nearest': [1, 2, 3],
|
|
'linear': [1],
|
|
'bilinear': [2],
|
|
'bicubic': [2],
|
|
'trilinear': [3],
|
|
'area': [1, 2, 3]
|
|
}
|
|
|
|
def shape(size, rank, with_batch_channel=True):
|
|
if with_batch_channel:
|
|
return tuple([N, C] + ([size] * rank))
|
|
return tuple([size] * rank)
|
|
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype,
|
|
requires_grad=requires_grad, low=-1, high=1)
|
|
|
|
sample_inputs = []
|
|
for align_corners in align_corners_options:
|
|
for rank in ranks_for_mode[mode]:
|
|
sample_inputs.extend([
|
|
SampleInput(make_arg(shape(D, rank)),
|
|
args=(shape(S, rank, False), None, mode, align_corners)),
|
|
SampleInput(make_arg(shape(D, rank)),
|
|
args=(shape(L, rank, False), None, mode, align_corners)),
|
|
SampleInput(make_arg(shape(D, rank)),
|
|
args=(None, 1.7, mode, align_corners)),
|
|
SampleInput(make_arg(shape(D, rank)),
|
|
args=(None, 0.6, mode, align_corners)),
|
|
])
|
|
|
|
return sample_inputs
|
|
|
|
def sample_inputs_upsample(mode, self, device, dtype, requires_grad, **kwargs):
|
|
N, C = 2, 3
|
|
D = 4
|
|
S = 3
|
|
L = 5
|
|
|
|
ranks_for_mode = {
|
|
'nearest': [1, 2, 3],
|
|
'bilinear': [2],
|
|
}
|
|
|
|
def shape(size, rank, with_batch_channel=True):
|
|
if with_batch_channel:
|
|
return tuple([N, C] + ([size] * rank))
|
|
return tuple([size] * rank)
|
|
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype,
|
|
requires_grad=requires_grad, low=-1, high=1)
|
|
|
|
sample_inputs = []
|
|
for rank in ranks_for_mode[mode]:
|
|
sample_inputs.extend([
|
|
SampleInput(make_arg(shape(D, rank)),
|
|
kwargs=dict(size=shape(S, rank, False))),
|
|
SampleInput(make_arg(shape(D, rank)),
|
|
kwargs=dict(size=shape(L, rank, False))),
|
|
SampleInput(make_arg(shape(D, rank)),
|
|
kwargs=dict(scale_factor=1.7)),
|
|
SampleInput(make_arg(shape(D, rank)),
|
|
kwargs=dict(scale_factor=0.6)),
|
|
])
|
|
|
|
return sample_inputs
|
|
|
|
|
|
def sample_inputs_gelu(self, device, dtype, requires_grad, **kwargs):
|
|
N = 5
|
|
tensors = []
|
|
for _ in range(1, N):
|
|
for approximate in ['none', 'tanh']:
|
|
tensors.append(SampleInput(
|
|
make_tensor((N * 2, N * 2), device=device, dtype=dtype,
|
|
requires_grad=requires_grad, low=-3, high=3),
|
|
kwargs=dict(approximate=approximate)))
|
|
return tensors
|
|
|
|
def sample_inputs_max_min_reduction_with_dim(op_info, device, dtype, requires_grad, **kwargs):
|
|
inputs = []
|
|
args_for_reduction_with_dim = (
|
|
((S, S, S), (1,),),
|
|
((S, S, S), (1, True, ),),
|
|
((), (0,),),
|
|
((), (0, True,),),
|
|
)
|
|
inputs = list((SampleInput(make_tensor(input_tensor, dtype=dtype, device=device,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=args,))
|
|
for input_tensor, args in args_for_reduction_with_dim)
|
|
return inputs
|
|
|
|
def sample_inputs_max_min_reduction_no_dim(op_info, device, dtype, requires_grad, **kwargs):
|
|
inputs = []
|
|
inputs.append(SampleInput(make_tensor((S, S, S), dtype=dtype, device=device,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),))
|
|
inputs.append(SampleInput(make_tensor((), dtype=dtype, device=device,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),))
|
|
return inputs
|
|
|
|
def _generate_nan_reduction_inputs(device, dtype, requires_grad, **kwargs):
|
|
yield from _generate_reduction_inputs(device, dtype, requires_grad)
|
|
yield torch.tensor([2, torch.nan, -1], device=device, dtype=dtype, requires_grad=requires_grad)
|
|
yield torch.tensor([[torch.nan, 2], [0, 1]], device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
def sample_inputs_nan_reduction(supports_multiple_dims):
|
|
# Generates sample inputs for reduction ops that contain the input tensor
|
|
# and dim and keepdim kwargs. If a reduction op needs to test additional
|
|
# args/kwargs then create a separate sample_inputs function
|
|
def fn(op_info, device, dtype, requires_grad, **kwargs):
|
|
inputs = []
|
|
|
|
for t in _generate_nan_reduction_inputs(device, dtype, requires_grad):
|
|
# Add case without dim and keepdim kwargs
|
|
inputs.append(SampleInput(t.clone().requires_grad_(requires_grad)))
|
|
for kwargs in _generate_reduction_kwargs(t.ndim, supports_multiple_dims):
|
|
inputs.append(SampleInput(t.clone().requires_grad_(requires_grad),
|
|
kwargs=kwargs))
|
|
|
|
return inputs
|
|
|
|
return fn
|
|
|
|
def sample_inputs_reduction_quantile(op_info, device, dtype, requires_grad, **kwargs):
|
|
test_quantiles = (0.5, make_tensor((2,), dtype=dtype, device=device, low=0, high=1, requires_grad=requires_grad))
|
|
test_interpolations = ['linear', 'midpoint']
|
|
|
|
inputs = []
|
|
for quantiles in test_quantiles:
|
|
for t in _generate_reduction_inputs(device, dtype, requires_grad):
|
|
# Add case without dim and keepdim kwargs
|
|
inputs.append(SampleInput(t.clone().requires_grad_(requires_grad),
|
|
args=(quantiles,)))
|
|
for kwargs in _generate_reduction_kwargs(t.ndim, supports_multiple_dims=False):
|
|
# Interpolation kwarg for now is only supported when providing both dim and keepdim
|
|
kwargs.setdefault('dim', 0)
|
|
kwargs.setdefault('keepdim', False)
|
|
for interpolation in test_interpolations:
|
|
kwargs['interpolation'] = interpolation
|
|
inputs.append(SampleInput(t.clone().requires_grad_(requires_grad),
|
|
args=(quantiles,), kwargs=kwargs))
|
|
|
|
return inputs
|
|
|
|
def sample_inputs_reduction_count_nonzero(*args, **kwargs):
|
|
"""Sample inputs for count_nonzero"""
|
|
samples: List[SampleInput] = sample_inputs_reduction(*args, **kwargs)
|
|
# count_nonzero does not support keepdim yet
|
|
for sample in samples:
|
|
sample.kwargs.pop('keepdim', None)
|
|
return samples
|
|
|
|
def sample_inputs_leaky_relu(op_info, device, dtype, requires_grad, **kwargs):
|
|
N = 10
|
|
tensors = [SampleInput(make_tensor((N, N), device=device, dtype=dtype,
|
|
requires_grad=requires_grad)) for _ in range(1, N)]
|
|
return tensors
|
|
|
|
def sample_inputs_fractional_max_pool2d(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# Order: input_shape, kernel_size
|
|
cases = (((1, 3, 9, 9), 3),
|
|
((1, 3, 9, 9), (4, 4)),
|
|
((1, 3, 9, 9), (6, 6)),
|
|
((2, 3, 9, 9), (3, 3)),
|
|
((1, 1, 4, 4), (2, 2)),
|
|
((1, 2, 6, 6), (4, 4)))
|
|
|
|
samples = []
|
|
|
|
for input_shape, kernel_size in cases:
|
|
for return_indices in [False, True]:
|
|
# test case passing a single output size
|
|
samples.append(SampleInput(
|
|
make_arg(input_shape),
|
|
args=(kernel_size,),
|
|
kwargs=dict(output_size=(2), return_indices=return_indices)
|
|
))
|
|
|
|
# test case passing a tuple output size
|
|
samples.append(SampleInput(
|
|
make_arg(input_shape),
|
|
args=(kernel_size,),
|
|
kwargs=dict(output_size=(2, 3), return_indices=return_indices)
|
|
))
|
|
|
|
# test case passing an output ratio
|
|
samples.append(SampleInput(
|
|
make_arg(input_shape),
|
|
args=(kernel_size,),
|
|
kwargs=dict(output_ratio=(0.5, 0.5), return_indices=return_indices)
|
|
))
|
|
|
|
return samples
|
|
|
|
def sample_inputs_fractional_max_pool3d(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# Order: input_shape, kernel_size
|
|
cases = (((2, 3, 5, 5, 5), (2, 2, 2)),
|
|
((1, 2, 6, 5, 4), 2),
|
|
((1, 2, 5, 6, 5), (2, 3, 2)),
|
|
((1, 2, 6, 6, 6), (2, 3, 2)),
|
|
((1, 1, 7, 6, 7), (2, 3, 4)),
|
|
((1, 1, 4, 5, 4), (2, 2, 1)),
|
|
((1, 1, 8, 7, 6), (4, 3, 2)),
|
|
((0, 1, 4, 5, 4), (2, 2, 1)))
|
|
|
|
samples = []
|
|
|
|
for input_shape, kernel_size in cases:
|
|
for return_indices in [False, True]:
|
|
# test case passing a single output size
|
|
samples.append(SampleInput(
|
|
make_arg(input_shape),
|
|
args=(kernel_size,),
|
|
kwargs=dict(output_size=(2), return_indices=return_indices)
|
|
))
|
|
|
|
# test case passing a tuple output size
|
|
samples.append(SampleInput(
|
|
make_arg(input_shape),
|
|
args=(kernel_size,),
|
|
kwargs=dict(output_size=(2, 3, 2), return_indices=return_indices)
|
|
))
|
|
|
|
# test case passing an output ratio
|
|
samples.append(SampleInput(
|
|
make_arg(input_shape),
|
|
args=(kernel_size,),
|
|
kwargs=dict(output_ratio=(0.5, 0.5, 0.5), return_indices=return_indices)
|
|
))
|
|
|
|
return samples
|
|
|
|
def sample_inputs_avgpool2d(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# Order: input_shape, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override
|
|
cases = (((1, 3, 9, 9), 3, 1, 1, True, False, 2),
|
|
((1, 3, 9, 9), (4, 4), (2, 3), 1, True, False, 2),
|
|
((1, 3, 9, 9), (6, 6), (3, 3), (2, 3), True, True, 2),
|
|
((2, 3, 9, 9), (3, 3), (1, 1), (1, ), True, False, 2),
|
|
((1, 1, 4, 4), (2, 2), (), (0, ), False, True, -2),
|
|
((1, 2, 6, 6), (4, 4), (2, 2), (2, ), True, True, None))
|
|
|
|
for input_shape, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override in cases:
|
|
yield SampleInput(make_arg(input_shape),
|
|
args=(kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override))
|
|
# Case with just input_shape and kernel_size
|
|
yield SampleInput(make_arg((1, 3, 9, 9)), args=((3, 3)))
|
|
|
|
def sample_inputs_avgpool1d(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# Order: input_shape, kernel_size, kwargs
|
|
cases: List[Tuple[Tuple[int, ...], Union[int, Tuple[int, ...]], Dict]] = [
|
|
((2, 3, 9), (3,), dict()),
|
|
((1, 3, 9), 3, dict(stride=1, padding=1, ceil_mode=True, count_include_pad=False)),
|
|
((1, 3, 9), (6,), dict(stride=(3,), padding=(2,), ceil_mode=True, count_include_pad=True)),
|
|
((2, 3, 9), (3,), dict(stride=(1,), padding=(1,), ceil_mode=False, count_include_pad=True)),
|
|
((0, 3, 9), (6,), dict(stride=(3,), padding=(2,), ceil_mode=False, count_include_pad=True)),
|
|
((1, 2, 9), (7,), dict(stride=(3,), padding=(2,), ceil_mode=False)),
|
|
((1, 2, 9), (7,), dict(stride=(3,), padding=(3,), ceil_mode=True)),
|
|
((1, 2, 9), (7,), dict(stride=(3,), ceil_mode=False)),
|
|
((1, 2, 9), (7,), dict(stride=(3,), ceil_mode=True)),
|
|
]
|
|
|
|
for input_shape, kernel_size, kwargs in cases:
|
|
yield SampleInput(make_arg(input_shape), args=(kernel_size,), kwargs=kwargs)
|
|
|
|
def sample_inputs_avgpool3d(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# Order: input_shape, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override
|
|
cases: List[Tuple[Tuple[int, ...], Union[int, Tuple[int, ...]], Dict]] = [
|
|
((2, 3, 3, 4, 4), (2, 2, 2), dict()),
|
|
((1, 2, 4, 4, 4), 2, dict(stride=1, padding=1, ceil_mode=True,
|
|
count_include_pad=False, divisor_override=2)),
|
|
((1, 2, 5, 5, 5), (2, 3, 4), dict(stride=(1, 2, 2), padding=(0, 1, 2), ceil_mode=True,
|
|
count_include_pad=True, divisor_override=2)),
|
|
((1, 2, 5, 5, 5), (2, 3, 4), dict(stride=(1, 2, 2), padding=(0, 1, 2), ceil_mode=False)),
|
|
((1, 1, 7, 5, 7), (6, 3, 4), dict(stride=(2, 3, 2), padding=(3, 1, 0), ceil_mode=False,
|
|
count_include_pad=False, divisor_override=2)),
|
|
((1, 1, 4, 5, 4), (2, 2, 3), dict(stride=(2, 2, 1), padding=0, ceil_mode=False,
|
|
count_include_pad=True, divisor_override=-2)),
|
|
((1, 1, 6, 5, 6), (4, 5, 6), dict(stride=(2, 3, 2), padding=2, ceil_mode=True,
|
|
count_include_pad=True, divisor_override=None)),
|
|
((0, 1, 4, 5, 4), (2, 3, 1), dict(stride=(2, 1, 2), padding=0, ceil_mode=False,
|
|
count_include_pad=True, divisor_override=None)),
|
|
]
|
|
|
|
for input_shape, kernel_size, kwargs in cases:
|
|
yield SampleInput(make_arg(input_shape), args=(kernel_size,), kwargs=kwargs)
|
|
|
|
def sample_inputs_topk(op_info, device, dtype, requires_grad, **kwargs):
|
|
def get_tensor_input(size):
|
|
return make_tensor(size, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
inputs = []
|
|
inputs.append(SampleInput(get_tensor_input((S, M, S)), args=(3,)))
|
|
inputs.append(SampleInput(get_tensor_input((S, M, S)), args=(3, 1)))
|
|
inputs.append(SampleInput(get_tensor_input((S, M, S)), args=(3, -2)))
|
|
inputs.append(SampleInput(get_tensor_input((S, M, S)), args=(3, 1, True)))
|
|
inputs.append(SampleInput(get_tensor_input((S, M, S)), args=(3, -2, True)))
|
|
inputs.append(SampleInput(get_tensor_input((S, M, S)), args=(3, 1, True, True)))
|
|
inputs.append(SampleInput(get_tensor_input((S, M, S)), args=(3, -2, True, True)))
|
|
|
|
inputs.append(SampleInput(get_tensor_input(()), args=(1,)))
|
|
inputs.append(SampleInput(get_tensor_input(()), args=(1, 0)))
|
|
inputs.append(SampleInput(get_tensor_input(()), args=(1, -1)))
|
|
inputs.append(SampleInput(get_tensor_input(()), args=(1, 0, True)))
|
|
inputs.append(SampleInput(get_tensor_input(()), args=(1, -1, True)))
|
|
inputs.append(SampleInput(get_tensor_input(()), args=(1, 0, True, True)))
|
|
inputs.append(SampleInput(get_tensor_input(()), args=(1, -1, True, True)))
|
|
|
|
return inputs
|
|
|
|
def sample_inputs_outer(op_info, device, dtype, requires_grad, **kwargs):
|
|
inputs = []
|
|
arg_a = make_tensor((S,), dtype=dtype, device=device, requires_grad=requires_grad)
|
|
arg_b = make_tensor((M,), dtype=dtype, device=device, requires_grad=requires_grad)
|
|
inputs.append(SampleInput(arg_a, args=(arg_b,)))
|
|
return inputs
|
|
|
|
def sample_inputs_dist(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
sizes = ((S, S, S), (S,), (S, 1, S), (), (S, S))
|
|
ps = (2, 4)
|
|
|
|
for size_x, size_y, p in product(sizes, sizes, ps):
|
|
yield SampleInput(make_arg(size_x), args=(make_arg(size_y), p))
|
|
|
|
# Missing to test the nondeterminism of the operation
|
|
# https://github.com/pytorch/pytorch/issues/53352
|
|
def sample_inputs_index(op_info, device, dtype, requires_grad, **kwargs):
|
|
# target.index_select(dim, idx)
|
|
select = op_info.name == "index_select"
|
|
# target.index_add(dim, idx, source, *, alpha=1)
|
|
add = op_info.name == "index_add"
|
|
# target.index_copy(dim, idx, source)
|
|
copy = op_info.name == "index_copy"
|
|
# target.index_fill(dim, idx, value)
|
|
fill = op_info.name == "index_fill"
|
|
# target._index_reduce(dim, idx, source, reduce, *, include_self=True)
|
|
reduce_op = op_info.name == "_index_reduce"
|
|
|
|
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
make_permutation = partial(torch.randperm, device=device, dtype=torch.int64)
|
|
|
|
def make_idx(n):
|
|
return make_tensor((n,), device=device, dtype=torch.int64, low=0, high=n)
|
|
|
|
shapes = [(), (1,), (S, S)]
|
|
# extra parameter for add
|
|
alphas = (-1, 0, 2) if add else (None,)
|
|
# extra parameters for reduce
|
|
include_selfs = (True, False) if reduce_op else (None,)
|
|
reduces = ('prod', 'mean', 'amin', 'amax') if reduce_op else (None,)
|
|
|
|
for shape, alpha, include_self, reduce in product(shapes, alphas, include_selfs, reduces):
|
|
t = make_arg(shape)
|
|
args = []
|
|
|
|
# dim. We handle the scalar case
|
|
dim = 1 if t.ndim == 2 else 0
|
|
args.append(dim)
|
|
|
|
# idx They need to be different for copy and add to be deterministic
|
|
make_idx_fn = make_permutation if copy or add else make_idx
|
|
idx = make_idx_fn(t.shape[dim] if t.ndim != 0 else 1)
|
|
args.append(idx)
|
|
|
|
# source
|
|
if copy or add or reduce_op:
|
|
args.append(make_arg(shape))
|
|
elif fill:
|
|
# A weird number to catch errors
|
|
args.append(make_arg((1,)).item())
|
|
|
|
# reduce
|
|
if reduce_op:
|
|
args.append(reduce)
|
|
|
|
args = tuple(args)
|
|
kwargs = {} if alpha is None else {"alpha": alpha}
|
|
if include_self is not None:
|
|
kwargs['include_self'] = include_self
|
|
|
|
yield SampleInput(t, args=args, kwargs=kwargs)
|
|
|
|
def sample_inputs_mode(op_info, device, dtype, requires_grad, **kwargs):
|
|
inputs = []
|
|
args = (
|
|
((S, S, S), (),),
|
|
((S, S, S), (1, ),),
|
|
((S, S, S), (1, True, ),),
|
|
((), (),),
|
|
((), (0,),),
|
|
((), (0, True,),),
|
|
)
|
|
inputs = list((SampleInput(make_tensor(input_tensor, dtype=dtype, device=device,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=args,))
|
|
for input_tensor, args in args)
|
|
return inputs
|
|
|
|
# Missing to test the nondeterminism of the operation
|
|
# https://github.com/pytorch/pytorch/issues/53352
|
|
def sample_inputs_put(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
make_idx = partial(make_tensor, low=0, dtype=torch.int64, device=device, requires_grad=False)
|
|
|
|
S = 3
|
|
|
|
# Generic inputs
|
|
idx = torch.randperm(S * S, device=device, dtype=torch.int64)[:S]
|
|
idx_list = [idx, -idx - 1]
|
|
for idx, acc in product(idx_list, (True, False)):
|
|
yield SampleInput(input=make_arg((S, S)),
|
|
args=(idx.clone(),
|
|
make_arg((S,)),
|
|
acc))
|
|
|
|
# Scalar cases
|
|
scalar_sizes = [(), (1,)]
|
|
tgt_gen = (make_arg(size) for size in scalar_sizes)
|
|
idx_gen = (make_idx(size, high=1) for size in scalar_sizes)
|
|
src_gen = (make_arg(size) for size in scalar_sizes)
|
|
for tgt, idx, src, acc in product(tgt_gen, idx_gen, src_gen, (True, False)):
|
|
yield SampleInput(input=tgt.clone().requires_grad_(requires_grad),
|
|
args=(idx.clone(),
|
|
src.clone().requires_grad_(requires_grad),
|
|
acc))
|
|
|
|
# Empty cases
|
|
tgt_sizes = [(0,), (), (1,), (3, 2)]
|
|
tgt_gen = (make_arg(size) for size in tgt_sizes)
|
|
idx = make_idx((0,), high=1)
|
|
src = make_arg((0,))
|
|
for tgt, acc in product(tgt, (True, False)):
|
|
yield SampleInput(input=tgt.clone().requires_grad_(requires_grad),
|
|
args=(idx.clone(),
|
|
src.clone().requires_grad_(requires_grad),
|
|
acc))
|
|
|
|
def sample_inputs_take(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
make_idx = partial(make_tensor, low=0, dtype=torch.int64, device=device, requires_grad=False)
|
|
|
|
S = 3
|
|
|
|
# Generic inputs: take S elements out of S * S
|
|
index = make_idx((S,), high=(S * S))
|
|
for idx in (index, -index - 1):
|
|
yield SampleInput(input=make_arg((S, S)), args=(idx,))
|
|
|
|
# Scalar cases
|
|
scalar_sizes = [(), (1,)]
|
|
src_gen = (make_arg(size) for size in scalar_sizes)
|
|
idx_gen = (make_idx(size, high=1) for size in scalar_sizes)
|
|
for src, idx in product(src_gen, idx_gen):
|
|
yield SampleInput(input=src.clone().requires_grad_(requires_grad),
|
|
args=(idx.clone(),))
|
|
|
|
# Empty cases
|
|
src_sizes = [(0,), (), (1,), (3, 2)]
|
|
src_gen = (make_arg(size) for size in src_sizes)
|
|
|
|
idx = make_idx((0,), high=1)
|
|
for src in src_gen:
|
|
yield SampleInput(input=src.clone().requires_grad_(requires_grad),
|
|
args=(idx.clone(),))
|
|
|
|
def sample_movedim_moveaxis(op_info, device, dtype, requires_grad, **kwargs):
|
|
return (
|
|
SampleInput(
|
|
make_tensor((4, 3, 2, 1), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),
|
|
args=([0, 1, 2, 3], [3, 2, 1, 0])),
|
|
SampleInput(
|
|
make_tensor((4, 3, 2, 1), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),
|
|
args=([0, -1, -2, -3], [-3, -2, -1, -0]))
|
|
)
|
|
|
|
|
|
def sample_repeat_tile(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
rep_dims = ((), (0, ), (1, ), (0, 2), (1, 1), (2, 3), (2, 3, 2), (0, 2, 3), (2, 1, 1, 1),)
|
|
shapes = ((), (0,), (2,), (3, 0), (3, 2), (3, 0, 1))
|
|
|
|
if requires_grad:
|
|
# Tests for variant_consistency_jit, grad, gradgrad
|
|
# are slower. Use smaller bags of `rep_dims` and `shapes`
|
|
# in this case.
|
|
rep_dims = ((), (0, ), (0, 2), (1, 1), (2, 3), (1, 3, 2), (3, 1, 1)) # type: ignore[assignment]
|
|
shapes = ((), (0,), (2,), (3, 2)) # type: ignore[assignment]
|
|
|
|
samples = []
|
|
for rep_dim, shape in product(rep_dims, shapes):
|
|
# `torch.repeat` errors for `len(rep_dims) < t.dim()`,
|
|
# so we filter such combinations.
|
|
if op_info.name == 'repeat' and len(rep_dim) < len(shape):
|
|
continue
|
|
samples.append(SampleInput(make_arg(shape), args=(rep_dim,),))
|
|
|
|
return samples
|
|
|
|
|
|
def sample_inputs_narrow(op_info, device, dtype, requires_grad, **kwargs):
|
|
shapes_and_args = (
|
|
((S, S, S), (1, 2, 2)),
|
|
((S, S, S), (-1, 2, 2)),
|
|
((S, S, S), (1, 0, 0)),
|
|
((S, S, S), (-1, 0, 0)),
|
|
)
|
|
|
|
for shape, args in shapes_and_args:
|
|
tensor = make_tensor(shape, dtype=dtype, device=device, low=None, high=None,
|
|
requires_grad=requires_grad)
|
|
yield SampleInput(tensor, args=args)
|
|
|
|
def sample_trapezoid(op_info, device, dtype, requires_grad, **kwargs):
|
|
y_shape_x_shape_and_kwargs = [
|
|
((2, 3), (2, 3), {}),
|
|
((2, 3), (2, 3), {'dim': 1}),
|
|
((6,), (6,), {}),
|
|
((6,), None, {}),
|
|
# When 'trapezoid' is called with an empty input, it does not produce an output with requires_grad
|
|
# See Issue #{61619}
|
|
# ((6,0), (6,0), {}),
|
|
((2, 3), (1, 3), {}),
|
|
((3, 3), (3, 3), {}),
|
|
((3, 3), (3, 3), {'dim': -2}),
|
|
((5,), None, {'dx': 2.0}),
|
|
((2, 2), None, {'dx': 3.0})
|
|
]
|
|
samples = []
|
|
for y_shape, x_shape, kwarg in y_shape_x_shape_and_kwargs:
|
|
y_tensor = make_tensor(y_shape, dtype=dtype, device=device, low=None, high=None,
|
|
requires_grad=requires_grad)
|
|
if x_shape is not None:
|
|
x_tensor = make_tensor(x_shape, dtype=dtype, device=device, low=None, high=None,
|
|
requires_grad=requires_grad)
|
|
samples.append(SampleInput(y_tensor, args=(x_tensor,), kwargs=kwarg))
|
|
else:
|
|
samples.append(SampleInput(y_tensor, kwargs=kwarg))
|
|
return samples
|
|
|
|
def sample_cumulative_trapezoid(op_info, device, dtype, requires_grad, **kwargs):
|
|
|
|
y_shape_x_shape_and_kwargs = [
|
|
((2, 3), (2, 3), {}),
|
|
((2, 3), (2, 3), {'dim': 1}),
|
|
((6,), (6,), {}),
|
|
((6,), None, {}),
|
|
# When 'cumulative_trapezoid' is called with an empty input, it does not produce an output with requires_grad
|
|
# See Issue #{61619}
|
|
# ((6,0), (6,0), {}),
|
|
((2, 3), (1, 3), {}),
|
|
((3, 3), (3, 3), {}),
|
|
((3, 3), (3, 3), {'dim': -2}),
|
|
((5,), None, {'dx': 2.0}),
|
|
((2, 2), None, {'dx': 3.0})
|
|
]
|
|
samples = []
|
|
for y_shape, x_shape, kwarg in y_shape_x_shape_and_kwargs:
|
|
y_tensor = make_tensor(y_shape, dtype=dtype, device=device, low=None, high=None,
|
|
requires_grad=requires_grad)
|
|
if x_shape is not None:
|
|
x_tensor = make_tensor(x_shape, dtype=dtype, device=device, low=None, high=None,
|
|
requires_grad=requires_grad)
|
|
samples.append(SampleInput(y_tensor, args=(x_tensor,), kwargs=kwarg))
|
|
else:
|
|
samples.append(SampleInput(y_tensor, kwargs=kwarg))
|
|
return samples
|
|
|
|
def sample_unsqueeze(op_info, device, dtype, requires_grad, **kwargs):
|
|
shapes_and_axes = [
|
|
((3, 4, 5), 0),
|
|
((3, 4, 5), 1),
|
|
((3, 4, 5), 3),
|
|
((3, 4, 5), -1),
|
|
((3, 4, 5), -3),
|
|
((), 0)
|
|
]
|
|
|
|
samples = []
|
|
for shape, axis in shapes_and_axes:
|
|
tensor = make_tensor(shape, dtype=dtype, device=device, low=None, high=None,
|
|
requires_grad=requires_grad)
|
|
samples.append(SampleInput(tensor, args=(axis,),))
|
|
|
|
return samples
|
|
|
|
|
|
def sample_inputs_nn_unfold(op_info, device, dtype, requires_grad, **kwargs):
|
|
shapes = ((0, 1, 5, 5), (1, 1, 5, 5), (2, 3, 5, 5))
|
|
kernel_sizes = (2, (2, 2), (3, 3))
|
|
dilations = (1, 2, (1, 2))
|
|
paddings = (0, 1, (1, 1))
|
|
strides = (1, 2, (1, 2))
|
|
|
|
cases = product(shapes, kernel_sizes, dilations, paddings, strides)
|
|
for shape, kernel_size, dilation, padding, stride in cases:
|
|
tensor = make_tensor(shape, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
yield SampleInput(tensor, args=(kernel_size, dilation, padding, stride))
|
|
|
|
# With default args
|
|
yield SampleInput(make_tensor((1, 1, 5, 5), dtype=dtype, device=device, requires_grad=requires_grad),
|
|
args=((3, 3),))
|
|
|
|
|
|
def sample_inputs_squeeze(op_info, device, dtype, requires_grad, **kwargs):
|
|
shapes_and_args = (
|
|
((S, 1, S, 1), ()),
|
|
((1, 1, 1, 1), ()),
|
|
((S, 1, S, 1), (1,)),
|
|
((S, 1, S, 1), (-1,)),
|
|
((S, 1, S, 1), (2,)),
|
|
((S, 1, S, 1), (-2,)),
|
|
((), (0, )),
|
|
)
|
|
|
|
for shape, args in shapes_and_args:
|
|
tensor = make_tensor(shape, dtype=dtype, device=device, low=None, high=None,
|
|
requires_grad=requires_grad)
|
|
|
|
yield SampleInput(tensor, args=args)
|
|
|
|
|
|
def sample_inputs_nn_pad(op_info, device, dtype, requires_grad, mode, **kwargs):
|
|
assert mode in ('constant', 'reflect', 'replicate', 'circular')
|
|
if mode in ['reflect', 'replicate']:
|
|
cases: tuple = ( # ignore
|
|
((1, 3), (1, 2)),
|
|
((1, 3), (0, 1)),
|
|
((0, 3, 3), (1, 2)),
|
|
((0, 3, 3), (0, 1)),
|
|
((1, 3, 3), (1, 2)),
|
|
((1, 3, 3), (0, 1)),
|
|
((1, 3, 3), (0, 2, 0, 1)),
|
|
((0, 3, 3, 3), (0, 2, 0, 1)),
|
|
((3, 3, 5, 5), (0, 2, 0, 1)),
|
|
((3, 3, 5, 5), (1, 1, 1, 1, 1, 1)),
|
|
((1, 3, 3, 3, 3), (1, 1, 1, 1, 1, 1)),
|
|
((1, 3, 4, 4), (-1, 1, -2, 1)),
|
|
)
|
|
elif mode == 'constant':
|
|
cases = (
|
|
((1, 3), (1, 2)),
|
|
((1, 3), (0, 1)),
|
|
((1, 3), (0, 2, 0, 1)),
|
|
((0, 3, 3), (1, 2)),
|
|
((0, 3, 3), (0, 1)),
|
|
((0, 3, 3), (0, 2, 0, 1)),
|
|
((0, 3, 3), (1, 1, 1, 1, 1, 1)),
|
|
((1, 3, 3), (1, 2)),
|
|
((1, 3, 3), (0, 1)),
|
|
((1, 3, 3), (0, 2, 0, 1)),
|
|
((1, 3, 3), (1, 1, 1, 1, 1, 1)),
|
|
((0, 3, 3, 3), (1, 2)),
|
|
((0, 3, 3, 3), (0, 1)),
|
|
((0, 3, 3, 3), (0, 2, 0, 1)),
|
|
((0, 3, 3, 3), (1, 1, 1, 1, 1, 1)),
|
|
((3, 3, 5, 5), (1, 2)),
|
|
((3, 3, 5, 5), (0, 1)),
|
|
((3, 3, 5, 5), (0, 2, 0, 1)),
|
|
((3, 3, 5, 5), (1, 1, 1, 1, 1, 1)),
|
|
((1, 3, 3, 3, 3), (1, 2)),
|
|
((1, 3, 3, 3, 3), (0, 1)),
|
|
((1, 3, 3, 3, 3), (0, 2, 0, 1)),
|
|
((1, 3, 3, 3, 3), (1, 1, 1, 1, 1, 1)),
|
|
((1, 3, 4, 4), (-1, 1, -2, 1)),
|
|
)
|
|
else: # mode == 'circular'
|
|
if dtype == torch.bool:
|
|
# test_dtypes fails on ASAN with for the case ab
|
|
# runtime error: load of value 190, which is not a valid value for type 'bool'
|
|
# Reference: https://github.com/pytorch/pytorch/pull/62814#issuecomment-894156562
|
|
# Reference Issue: https://github.com/pytorch/pytorch/issues/63034
|
|
cases = (
|
|
((2, 3, 3), (1, 2)),
|
|
((1, 3, 3), (1, 2)),
|
|
)
|
|
else:
|
|
cases = (
|
|
((0, 3, 3), (1, 2)),
|
|
((0, 3, 3), (0, 1)),
|
|
((1, 3, 3), (1, 2)),
|
|
((1, 3, 3), (0, 1)),
|
|
((0, 3, 3, 3), (0, 2, 0, 1)),
|
|
((3, 3, 5, 5), (0, 2, 0, 1)),
|
|
((1, 3, 3, 3, 3), (1, 1, 1, 1, 1, 1)),
|
|
((1, 3, 4, 4), (-1, 1, -2, 1)),
|
|
)
|
|
|
|
make_inp = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
if mode == 'constant':
|
|
# Default args
|
|
yield SampleInput(make_inp((1, 3, 3)), args=((2, 2),))
|
|
|
|
if mode in ['reflect', 'replicate', 'circular']:
|
|
for shape, pad in cases:
|
|
yield SampleInput(make_inp(shape), args=(pad, mode))
|
|
else: # mode == 'constant'
|
|
for pad_value in (1., 2.):
|
|
for shape, pad in cases:
|
|
yield SampleInput(make_inp(shape), args=(pad, mode, pad_value))
|
|
|
|
|
|
# TODO: reconcile with torch.linalg.det and torch.linalg.slogdet
|
|
# Creates matrices with a positive nonzero determinant
|
|
def sample_inputs_logdet(op_info, device, dtype, requires_grad, **kwargs):
|
|
def make_nonzero_det(A, *, sign=1, min_singular_value=0.1, **kwargs):
|
|
u, s, vh = torch.linalg.svd(A, full_matrices=False)
|
|
s.clamp_(min=min_singular_value)
|
|
A = (u * s.unsqueeze(-2)) @ vh
|
|
det = A.det()
|
|
if sign is not None:
|
|
if A.dim() == 2:
|
|
if (det < 0) ^ (sign < 0):
|
|
A[0, :].neg_()
|
|
else:
|
|
cond = ((det < 0) ^ (sign < 0)).nonzero()
|
|
if cond.size(0) > 0:
|
|
for i in range(cond.size(0)):
|
|
A[list(cond[i])][0, :].neg_()
|
|
return A
|
|
|
|
# cases constructed using make_tensor()
|
|
tensor_shapes = (
|
|
(S, S),
|
|
(1, 1),
|
|
(3, 3, S, S),
|
|
(3, 3, 1, 1)
|
|
)
|
|
|
|
for shape in tensor_shapes:
|
|
t = make_tensor(shape, device=device, dtype=dtype)
|
|
d = make_nonzero_det(t).requires_grad_(requires_grad)
|
|
yield SampleInput(d)
|
|
|
|
# cases constructed using:
|
|
# 1) make_symmetric_matrices
|
|
# 2) make_symmetric_pd_matrices
|
|
# 3) make_fullrank_matrices_with_distinct_singular_values
|
|
symmetric_shapes = (
|
|
(S, S),
|
|
(3, S, S),
|
|
)
|
|
|
|
|
|
def _helper(constructor, *shape, **kwargs):
|
|
t = constructor(*shape, device=device, dtype=dtype)
|
|
d = make_nonzero_det(t, **kwargs).requires_grad_(requires_grad)
|
|
yield SampleInput(d)
|
|
|
|
for shape in symmetric_shapes:
|
|
_helper(make_symmetric_matrices, *shape)
|
|
_helper(make_symmetric_pd_matrices, *shape)
|
|
_helper(make_fullrank_matrices_with_distinct_singular_values, *shape, min_singular_value=0)
|
|
|
|
|
|
def np_unary_ufunc_integer_promotion_wrapper(fn):
|
|
# Wrapper that passes PyTorch's default scalar
|
|
# type as an argument to the wrapped NumPy
|
|
# unary ufunc when given an integer input.
|
|
# This mimicks PyTorch's integer->floating point
|
|
# type promotion.
|
|
#
|
|
# This is necessary when NumPy promotes
|
|
# integer types to double, since PyTorch promotes
|
|
# integer types to the default scalar type.
|
|
|
|
# Helper to determine if promotion is needed
|
|
def is_integral(dtype):
|
|
return dtype in [np.bool_, bool, np.uint8, np.int8, np.int16, np.int32, np.int64]
|
|
|
|
@wraps(fn)
|
|
def wrapped_fn(x):
|
|
# As the default dtype can change, acquire it when function is called.
|
|
# NOTE: Promotion in PyTorch is from integer types to the default dtype
|
|
np_dtype = torch_to_numpy_dtype_dict[torch.get_default_dtype()]
|
|
|
|
if is_integral(x.dtype):
|
|
return fn(x.astype(np_dtype))
|
|
return fn(x)
|
|
|
|
return wrapped_fn
|
|
|
|
def sample_inputs_spectral_ops(self, device, dtype, requires_grad=False, **kwargs):
|
|
nd_tensor = partial(make_tensor, (S, S + 1, S + 2), device=device,
|
|
dtype=dtype, requires_grad=requires_grad)
|
|
oned_tensor = partial(make_tensor, (31,), device=device,
|
|
dtype=dtype, requires_grad=requires_grad)
|
|
|
|
if self.ndimensional == SpectralFuncType.ND:
|
|
return [
|
|
SampleInput(nd_tensor(),
|
|
kwargs=dict(s=(3, 10), dim=(1, 2), norm='ortho')),
|
|
SampleInput(nd_tensor(),
|
|
kwargs=dict(norm='ortho')),
|
|
SampleInput(nd_tensor(),
|
|
kwargs=dict(s=(8,))),
|
|
SampleInput(oned_tensor()),
|
|
|
|
*(SampleInput(nd_tensor(),
|
|
kwargs=dict(dim=dim))
|
|
for dim in [-1, -2, -3, (0, -1)]),
|
|
]
|
|
elif self.ndimensional == SpectralFuncType.TwoD:
|
|
return [
|
|
SampleInput(nd_tensor(),
|
|
kwargs=dict(s=(3, 10), dim=(1, 2), norm='ortho')),
|
|
SampleInput(nd_tensor(),
|
|
kwargs=dict(norm='ortho')),
|
|
SampleInput(nd_tensor(),
|
|
kwargs=dict(s=(6, 8))),
|
|
SampleInput(nd_tensor(),
|
|
kwargs=dict(dim=0)),
|
|
SampleInput(nd_tensor(),
|
|
kwargs=dict(dim=(0, -1))),
|
|
SampleInput(nd_tensor(),
|
|
kwargs=dict(dim=(-3, -2, -1))),
|
|
]
|
|
else:
|
|
return [
|
|
SampleInput(nd_tensor(),
|
|
kwargs=dict(n=10, dim=1, norm='ortho')),
|
|
SampleInput(nd_tensor(),
|
|
kwargs=dict(norm='ortho')),
|
|
SampleInput(nd_tensor(),
|
|
kwargs=dict(n=7)),
|
|
SampleInput(oned_tensor()),
|
|
|
|
*(SampleInput(nd_tensor(),
|
|
kwargs=dict(dim=dim))
|
|
for dim in [-1, -2, -3]),
|
|
]
|
|
|
|
def sample_inputs_repeat_interleave(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
return [
|
|
SampleInput(make_input(()), kwargs=dict(repeats=2)),
|
|
SampleInput(make_input((2, 3, 4)), kwargs=dict(repeats=2)),
|
|
SampleInput(make_input((2, 3, 4)), kwargs=dict(repeats=2, dim=1)),
|
|
SampleInput(make_input((2, 3, 4)), kwargs=dict(repeats=torch.arange(3, device=device), dim=1))
|
|
]
|
|
|
|
SpectralFuncType = Enum('SpectralFuncType', ('OneD', 'TwoD', 'ND'))
|
|
|
|
# Metadata class for Fast Fourier Transforms in torch.fft.
|
|
class SpectralFuncInfo(OpInfo):
|
|
"""Operator information for torch.fft transforms. """
|
|
|
|
def __init__(self,
|
|
name, # the string name of the function
|
|
*,
|
|
ref=None, # Reference implementation (probably in np.fft namespace)
|
|
dtypes=floating_and_complex_types(),
|
|
ndimensional: SpectralFuncType,
|
|
sample_inputs_func=sample_inputs_spectral_ops,
|
|
decorators=None,
|
|
**kwargs):
|
|
decorators = list(decorators) if decorators is not None else []
|
|
decorators += [
|
|
skipCPUIfNoFFT,
|
|
]
|
|
|
|
super().__init__(name=name,
|
|
dtypes=dtypes,
|
|
decorators=decorators,
|
|
sample_inputs_func=sample_inputs_func,
|
|
**kwargs)
|
|
self.ref = ref
|
|
self.ndimensional = ndimensional
|
|
|
|
|
|
def sample_inputs_stft(op_info, device, dtype, requires_grad, **kwargs):
|
|
def mt(shape, **kwargs):
|
|
return make_tensor(shape, device=device, dtype=dtype,
|
|
requires_grad=requires_grad, **kwargs)
|
|
yield SampleInput(mt(100), kwargs=dict(n_fft=10))
|
|
|
|
for center in [False, True]:
|
|
yield SampleInput(mt(10), kwargs=dict(n_fft=7, center=center))
|
|
yield SampleInput(mt((10, 100)), kwargs=dict(n_fft=16, hop_length=4, center=center))
|
|
|
|
window = make_tensor(16, low=.5, high=2.0, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
yield SampleInput(
|
|
mt((2, 100)), kwargs=dict(n_fft=16, window=window, return_complex=True, center=center))
|
|
yield SampleInput(
|
|
mt((3, 100)), kwargs=dict(n_fft=16, window=window, return_complex=True, center=center))
|
|
if not dtype.is_complex:
|
|
yield SampleInput(
|
|
mt((10, 100)), kwargs=dict(n_fft=16, window=window, onesided=False))
|
|
|
|
|
|
def sample_inputs_istft(op_info, device, dtype, requires_grad, **kwargs):
|
|
def mt(shape, **kwargs):
|
|
real_shape = shape if dtype.is_complex else shape + (2,)
|
|
return make_tensor(real_shape, device=device, dtype=dtype,
|
|
requires_grad=requires_grad, **kwargs)
|
|
|
|
yield SampleInput(mt((10, 2)), kwargs=dict(n_fft=10))
|
|
yield SampleInput(mt((6, 3)), kwargs=dict(n_fft=6, onesided=False))
|
|
yield SampleInput(mt((6, 4)), kwargs=dict(n_fft=10, onesided=True))
|
|
|
|
for center in [False, True]:
|
|
yield SampleInput(mt((10, 10, 6)), kwargs=dict(n_fft=10, center=center))
|
|
yield SampleInput(mt((1, 9, 10)), kwargs=dict(n_fft=16, hop_length=4, center=center))
|
|
|
|
window = make_tensor(10, low=.5, high=2.0, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
yield SampleInput(mt((10, 10, 6)), kwargs=dict(
|
|
n_fft=10, window=window, center=center, return_complex=dtype.is_complex))
|
|
yield SampleInput(mt((10, 10, 10)), kwargs=dict(
|
|
n_fft=10, window=window[:8], win_length=8, center=center, return_complex=True))
|
|
|
|
real_window = window if not dtype.is_complex else window.real
|
|
yield SampleInput(mt((10, 5, 6)), kwargs=dict(n_fft=8, window=real_window[:8], center=center))
|
|
|
|
|
|
def sample_inputs_fftshift(op_info, device, dtype, requires_grad, **kwargs):
|
|
def mt(shape, **kwargs):
|
|
return make_tensor(shape, device=device, dtype=dtype,
|
|
requires_grad=requires_grad, **kwargs)
|
|
|
|
yield SampleInput(mt((9, 10)))
|
|
yield SampleInput(mt((50,)), kwargs=dict(dim=0))
|
|
yield SampleInput(mt((5, 11)), kwargs=dict(dim=(1,)))
|
|
yield SampleInput(mt((5, 6)), kwargs=dict(dim=(0, 1)))
|
|
yield SampleInput(mt((5, 6, 2)), kwargs=dict(dim=(0, 2)))
|
|
|
|
|
|
class ShapeFuncInfo(OpInfo):
|
|
"""Early version of a specialized OpInfo for Shape manipulating operations like tile and roll"""
|
|
def __init__(self,
|
|
name, # the string name of the function
|
|
*,
|
|
ref, # a reference function
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=None,
|
|
dtypesIfROCM=None,
|
|
sample_inputs_func=None,
|
|
**kwargs):
|
|
super(ShapeFuncInfo, self).__init__(name,
|
|
dtypes=dtypes,
|
|
dtypesIfCUDA=dtypesIfCUDA,
|
|
dtypesIfROCM=dtypesIfROCM,
|
|
sample_inputs_func=sample_inputs_func,
|
|
**kwargs)
|
|
self.ref = ref
|
|
|
|
def sample_inputs_foreach(self, device, dtype, N, *, noncontiguous=False, same_size=False, low=None, high=None):
|
|
if same_size:
|
|
return [make_tensor((N, N), dtype=dtype, device=device, noncontiguous=noncontiguous) for _ in range(N)]
|
|
else:
|
|
return [make_tensor((N - i, N - i), dtype=dtype, device=device, noncontiguous=noncontiguous) for i in range(N)]
|
|
|
|
|
|
def get_foreach_method_names(name):
|
|
# get torch inplace reference function
|
|
op_name = "_foreach_" + name
|
|
inplace_op_name = "_foreach_" + name + "_"
|
|
|
|
op = getattr(torch, op_name, None)
|
|
inplace_op = getattr(torch, inplace_op_name, None)
|
|
|
|
ref = getattr(torch, name, None)
|
|
ref_inplace = getattr(torch.Tensor, name + "_", None)
|
|
return op, inplace_op, ref, ref_inplace
|
|
|
|
class ForeachFuncInfo(OpInfo):
|
|
"""Early version of a specialized OpInfo for foreach functions"""
|
|
def __init__(self,
|
|
name,
|
|
dtypes=floating_and_complex_types(),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.half),
|
|
dtypesIfROCM=None,
|
|
supports_alpha_param=False,
|
|
sample_inputs_func=sample_inputs_foreach,
|
|
**kwargs):
|
|
super().__init__(
|
|
"_foreach_" + name,
|
|
dtypes=dtypes,
|
|
dtypesIfCUDA=dtypesIfCUDA,
|
|
dtypesIfROCM=dtypesIfROCM,
|
|
sample_inputs_func=sample_inputs_func,
|
|
**kwargs
|
|
)
|
|
|
|
foreach_method, foreach_method_inplace, torch_ref_method, torch_ref_inplace = get_foreach_method_names(name)
|
|
self.method_variant = foreach_method
|
|
self.inplace_variant = foreach_method_inplace
|
|
self.ref = torch_ref_method
|
|
self.ref_inplace = torch_ref_inplace
|
|
self.supports_alpha_param = supports_alpha_param
|
|
|
|
if name == "norm":
|
|
self.ref = torch.linalg.vector_norm
|
|
|
|
|
|
def sample_inputs_linalg_cholesky_inverse(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
from torch.testing._internal.common_utils import random_well_conditioned_matrix
|
|
|
|
# Cholesky factorization is for positive-definite matrices
|
|
single_well_conditioned_matrix = random_well_conditioned_matrix(S, S, dtype=dtype, device=device)
|
|
batch_well_conditioned_matrices = random_well_conditioned_matrix(2, S, S, dtype=dtype, device=device)
|
|
single_pd = single_well_conditioned_matrix @ single_well_conditioned_matrix.mH
|
|
batch_pd = batch_well_conditioned_matrices @ batch_well_conditioned_matrices.mH
|
|
|
|
inputs = (
|
|
torch.zeros(0, 0, dtype=dtype, device=device), # 0x0 matrix
|
|
torch.zeros(0, 2, 2, dtype=dtype, device=device), # zero batch of matrices
|
|
single_pd,
|
|
batch_pd
|
|
)
|
|
test_cases = (torch.linalg.cholesky(a, upper=False) for a in inputs)
|
|
for l in test_cases:
|
|
# generated lower-triangular samples
|
|
l.requires_grad = requires_grad
|
|
yield SampleInput(l) # upper=False by default
|
|
yield SampleInput(l.detach().clone().requires_grad_(requires_grad), kwargs=dict(upper=False))
|
|
|
|
# generate upper-triangular inputs
|
|
u = l.detach().clone().mT.contiguous().requires_grad_(requires_grad)
|
|
yield SampleInput(u, kwargs=dict(upper=True))
|
|
|
|
def sample_inputs_linalg_ldl_factor(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
from torch.testing._internal.common_utils import (
|
|
random_hermitian_pd_matrix,
|
|
random_symmetric_pd_matrix,
|
|
)
|
|
|
|
device = torch.device(device)
|
|
|
|
# Symmetric inputs
|
|
yield SampleInput(
|
|
random_symmetric_pd_matrix(S, dtype=dtype, device=device),
|
|
kwargs=dict(hermitian=False),
|
|
) # single matrix
|
|
yield SampleInput(
|
|
random_symmetric_pd_matrix(S, 2, dtype=dtype, device=device),
|
|
kwargs=dict(hermitian=False),
|
|
) # batch of matrices
|
|
yield SampleInput(
|
|
torch.zeros(0, 0, dtype=dtype, device=device), kwargs=dict(hermitian=False)
|
|
) # 0x0 matrix
|
|
yield SampleInput(
|
|
torch.zeros(0, 2, 2, dtype=dtype, device=device), kwargs=dict(hermitian=False)
|
|
) # zero batch of matrices
|
|
|
|
# Hermitian inputs
|
|
# hermitian=True for complex inputs on CUDA is supported only with MAGMA 2.5.4+
|
|
magma_254_available = device.type == 'cuda' and _get_magma_version() >= (2, 5, 4)
|
|
if dtype.is_complex and (device.type == 'cpu' or magma_254_available):
|
|
yield SampleInput(
|
|
random_hermitian_pd_matrix(S, dtype=dtype, device=device),
|
|
kwargs=dict(hermitian=True),
|
|
) # single matrix
|
|
yield SampleInput(
|
|
random_hermitian_pd_matrix(S, 2, dtype=dtype, device=device),
|
|
kwargs=dict(hermitian=True),
|
|
) # batch of matrices
|
|
|
|
def sample_inputs_linalg_ldl_solve(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
# Generate LDL factors of symmetric (and Hermitian on CPU) matrices
|
|
from torch.testing._internal.common_utils import random_hermitian_pd_matrix, random_symmetric_pd_matrix
|
|
device = torch.device(device)
|
|
symmetric_inputs = (
|
|
random_symmetric_pd_matrix(S, dtype=dtype, device=device), # single matrix
|
|
random_symmetric_pd_matrix(S, 2, dtype=dtype, device=device), # batch of matrices
|
|
torch.zeros(0, 0, dtype=dtype, device=device), # 0x0 matrix
|
|
torch.zeros(0, 2, 2, dtype=dtype, device=device), # zero batch of matrices
|
|
)
|
|
hermitian_inputs = (
|
|
random_hermitian_pd_matrix(S, dtype=dtype, device=device),
|
|
random_hermitian_pd_matrix(S, 2, dtype=dtype, device=device),
|
|
) if device.type == 'cpu' and dtype.is_complex else ()
|
|
test_cases1 = (torch.linalg.ldl_factor_ex(a, hermitian=False) for a in symmetric_inputs)
|
|
test_cases2 = (torch.linalg.ldl_factor_ex(a, hermitian=True) for a in hermitian_inputs)
|
|
|
|
# Symmetric case
|
|
for test_case in test_cases1:
|
|
factors, pivots, _ = test_case
|
|
factors.requires_grad = requires_grad
|
|
for B_batch_shape in ((), factors.shape[:-2]):
|
|
B = make_tensor((*B_batch_shape, factors.shape[-1], S), device=device, dtype=dtype, requires_grad=requires_grad)
|
|
yield SampleInput(factors, args=(pivots, B), kwargs=dict(hermitian=False))
|
|
clone_factors = factors.detach().clone().requires_grad_(requires_grad)
|
|
yield SampleInput(clone_factors, args=(pivots, B), kwargs=dict(hermitian=False))
|
|
|
|
# Hermitian case
|
|
for test_case in test_cases2:
|
|
factors, pivots, _ = test_case
|
|
factors.requires_grad = requires_grad
|
|
for B_batch_shape in ((), factors.shape[:-2]):
|
|
B = make_tensor((*B_batch_shape, factors.shape[-1], S), device=device, dtype=dtype, requires_grad=requires_grad)
|
|
yield SampleInput(factors, args=(pivots, B), kwargs=dict(hermitian=True))
|
|
clone_factors = factors.detach().clone().requires_grad_(requires_grad)
|
|
yield SampleInput(clone_factors, args=(pivots, B), kwargs=dict(hermitian=True))
|
|
|
|
def sample_inputs_linalg_lstsq(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
from torch.testing._internal.common_utils import random_well_conditioned_matrix
|
|
|
|
device = torch.device(device)
|
|
|
|
drivers: Tuple[str, ...]
|
|
if device.type == 'cuda':
|
|
drivers = ('gels',)
|
|
else:
|
|
drivers = ('gels', 'gelsy', 'gelss', 'gelsd')
|
|
|
|
# we generate matrices of shape (..., n + delta, n)
|
|
deltas: Tuple[int, ...]
|
|
if device.type == 'cpu' or has_cusolver():
|
|
deltas = (-1, 0, +1)
|
|
# only square systems if Cusolver is not available
|
|
# becase we solve a lstsq problem with a transposed matrix in the backward
|
|
else:
|
|
deltas = (0,)
|
|
|
|
out = []
|
|
for batch, driver, delta in product(((), (3,), (3, 3)), drivers, deltas):
|
|
shape = batch + (3 + delta, 3)
|
|
a = random_well_conditioned_matrix(*shape, dtype=dtype, device=device)
|
|
a.requires_grad_(requires_grad)
|
|
b = make_tensor(shape, dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad)
|
|
out.append(SampleInput(a, args=(b,), kwargs=dict(driver=driver)))
|
|
return out
|
|
|
|
def sample_inputs_householder_product(op_info, device, dtype, requires_grad, **kwargs):
|
|
"""
|
|
This function generates input for torch.linalg.householder_product (torch.orgqr).
|
|
The first argument should be a square matrix or batch of square matrices, the second argument is a vector or batch of vectors.
|
|
Empty, square, rectangular, batched square and batched rectangular input is generated.
|
|
"""
|
|
# Each column of the matrix is getting multiplied many times leading to very large values for
|
|
# the Jacobian matrix entries and making the finite-difference result of grad check less accurate.
|
|
# That's why gradcheck with the default range [-9, 9] fails and [-2, 2] is used here.
|
|
samples = (
|
|
SampleInput(make_tensor((S, S), dtype=dtype, device=device, low=-2, high=2, requires_grad=requires_grad),
|
|
args=(make_tensor((S,), dtype=dtype, device=device, low=-2, high=2, requires_grad=requires_grad),)),
|
|
|
|
SampleInput(make_tensor((S + 1, S), dtype=dtype, device=device, low=-2, high=2, requires_grad=requires_grad),
|
|
args=(make_tensor((S,), dtype=dtype, device=device, low=-2, high=2, requires_grad=requires_grad),)),
|
|
|
|
SampleInput(make_tensor((2, 1, S, S), dtype=dtype, device=device, low=-2, high=2, requires_grad=requires_grad),
|
|
args=(make_tensor((2, 1, S,), dtype=dtype, device=device, low=-2, high=2, requires_grad=requires_grad),)),
|
|
|
|
SampleInput(make_tensor((2, 1, S + 1, S), dtype=dtype, device=device, low=-2, high=2, requires_grad=requires_grad),
|
|
args=(make_tensor((2, 1, S,), dtype=dtype, device=device, low=-2, high=2, requires_grad=requires_grad),)),
|
|
|
|
SampleInput(make_tensor((0, 0), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),
|
|
args=(make_tensor((0,), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),)),
|
|
|
|
SampleInput(make_tensor((S, S), dtype=dtype, device=device, low=-2, high=2, requires_grad=requires_grad),
|
|
args=(make_tensor((0,), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),)),
|
|
|
|
# m = n = S, k = S - 2
|
|
SampleInput(make_tensor((S, S), dtype=dtype, device=device, low=-2, high=2, requires_grad=requires_grad),
|
|
args=(make_tensor((S - 2,), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),)),
|
|
|
|
# m = S, n = S -1, k = S - 2
|
|
SampleInput(make_tensor((S, S - 1), dtype=dtype, device=device, low=-2, high=2, requires_grad=requires_grad),
|
|
args=(make_tensor((S - 2,), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),)),
|
|
)
|
|
|
|
return samples
|
|
|
|
def sample_inputs_ormqr(op_info, device, dtype, requires_grad, **kwargs):
|
|
# create a helper function wrapping `make_tensor`
|
|
make_input = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
def gen_inputs():
|
|
batches = [(), (0, ), (2, ), (2, 1)]
|
|
ns = [5, 2, 0]
|
|
tf = [True, False]
|
|
for batch, (m, n), left, transpose in product(batches, product(ns, ns), tf, tf):
|
|
reflectors = make_input((*batch, m, n))
|
|
tau = make_input((*batch, min(m, n)))
|
|
other_matrix_shape = (m, n) if left else (n, m)
|
|
other = make_input((*batch, *other_matrix_shape))
|
|
kwargs = {"left": left, "transpose": transpose}
|
|
yield SampleInput(reflectors, args=(tau, other,), kwargs=kwargs)
|
|
|
|
return tuple(gen_inputs())
|
|
|
|
def sample_inputs_linalg_cholesky(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
"""
|
|
This function generates always positive-definite input for torch.linalg.cholesky using
|
|
random_hermitian_pd_matrix.
|
|
The input is generated as the itertools.product of 'batches' and 'ns'.
|
|
In total this function generates 8 SampleInputs
|
|
'batches' cases include:
|
|
() - single input,
|
|
(0,) - zero batched dimension,
|
|
(2,) - batch of two matrices,
|
|
(1, 1) - 1x1 batch of matrices
|
|
'ns' gives 0x0 and 5x5 matrices.
|
|
Zeros in dimensions are edge cases in the implementation and important to test for in order to avoid unexpected crashes.
|
|
"""
|
|
from torch.testing._internal.common_utils import random_hermitian_pd_matrix
|
|
|
|
batches = [(), (0, ), (2, ), (1, 1)]
|
|
ns = [5, 0]
|
|
out = []
|
|
for batch, n, upper in product(batches, ns, [True, False]):
|
|
a = random_hermitian_pd_matrix(n, *batch, dtype=dtype, device=device)
|
|
a.requires_grad = requires_grad
|
|
out.append(SampleInput(a, kwargs={"upper": upper}))
|
|
return out
|
|
|
|
def sample_inputs_symeig(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
out = sample_inputs_linalg_invertible(op_info, device, dtype, requires_grad)
|
|
|
|
for o in out:
|
|
o.kwargs = {"upper": bool(np.random.choice([True, False])),
|
|
"eigenvectors": True}
|
|
# A gauge-invariant function
|
|
o.output_process_fn_grad = lambda output: (output[0], abs(output[1]))
|
|
yield o
|
|
|
|
def sample_inputs_linalg_eig(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
"""
|
|
This function generates input for torch.linalg.eig
|
|
"""
|
|
def out_fn(output):
|
|
return output[0], abs(output[1])
|
|
|
|
samples = sample_inputs_linalg_invertible(op_info, device, dtype, requires_grad)
|
|
for sample in samples:
|
|
sample.output_process_fn_grad = out_fn
|
|
yield sample
|
|
|
|
def sample_inputs_linalg_eigh(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
"""
|
|
This function generates input for torch.linalg.eigh/eigvalsh with UPLO="U" or "L" keyword argument.
|
|
"""
|
|
def out_fn(output):
|
|
if isinstance(output, tuple):
|
|
# eigh function
|
|
return output[0], abs(output[1])
|
|
else:
|
|
# eigvalsh function
|
|
return output
|
|
|
|
# Samples do not need to be Hermitian, as we're using gradcheck_wrapper_hermitian_input
|
|
samples = sample_inputs_linalg_invertible(op_info, device, dtype, requires_grad)
|
|
for sample in samples:
|
|
sample.kwargs = {"UPLO": np.random.choice(["L", "U"])}
|
|
sample.output_process_fn_grad = out_fn
|
|
yield sample
|
|
|
|
|
|
def sample_inputs_linalg_slogdet(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
def out_fn(output):
|
|
return output[1]
|
|
|
|
samples = sample_inputs_linalg_invertible(op_info, device, dtype, requires_grad)
|
|
for sample in samples:
|
|
sample.output_process_fn_grad = out_fn
|
|
yield sample
|
|
|
|
|
|
def sample_inputs_linalg_pinv(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
"""
|
|
This function generates input for torch.linalg.pinv with hermitian=False keyword argument.
|
|
"""
|
|
for o in sample_inputs_linalg_invertible(op_info, device, dtype, requires_grad, **kwargs):
|
|
real_dtype = o.input.real.dtype if dtype.is_complex else dtype
|
|
# requires_grad path for rtol tensor is not implemented
|
|
for rtol in (None, 1.0, torch.tensor(1.0, dtype=real_dtype, device=device)):
|
|
o = clone_sample(o)
|
|
o.kwargs = {"rtol": rtol}
|
|
yield o
|
|
|
|
|
|
def sample_inputs_linalg_pinv_hermitian(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
"""
|
|
This function generates input for torch.linalg.pinv with hermitian=True keyword argument.
|
|
"""
|
|
for o in sample_inputs_linalg_invertible(op_info, device, dtype, requires_grad, **kwargs):
|
|
o.kwargs = {"hermitian": True}
|
|
yield o
|
|
|
|
def sample_inputs_linalg_solve(op_info, device, dtype, requires_grad=False, vector_rhs_allowed=True, **kwargs):
|
|
"""
|
|
This function generates always solvable input for torch.linalg.solve
|
|
We sample a fullrank square matrix (i.e. invertible) A
|
|
The first input to torch.linalg.solve is generated as the itertools.product of 'batches' and 'ns'.
|
|
The second input is generated as the product of 'batches', 'ns' and 'nrhs'.
|
|
In total this function generates 18 SampleInputs
|
|
'batches' cases include:
|
|
() - single input,
|
|
(0,) - zero batched dimension,
|
|
(2,) - batch of two matrices.
|
|
'ns' gives 0x0 and 5x5 matrices.
|
|
and 'nrhs' controls the number of vectors to solve for:
|
|
() - using 1 as the number of vectors implicitly
|
|
(1,) - same as () but explicit
|
|
(3,) - solve for 3 vectors.
|
|
Zeros in dimensions are edge cases in the implementation and important to test for in order to avoid unexpected crashes.
|
|
'vector_rhs_allowed' controls whether to include nrhs = () to the list of SampleInputs.
|
|
torch.solve / triangular_solve / cholesky_solve (opposed to torch.linalg.solve) do not allow
|
|
1D tensors (vectors) as the right-hand-side.
|
|
Once torch.solve / triangular_solve / cholesky_solve and its testing are removed,
|
|
'vector_rhs_allowed' may be removed here as well.
|
|
"""
|
|
make_fullrank = make_fullrank_matrices_with_distinct_singular_values
|
|
make_a = partial(make_fullrank, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
make_b = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
batches = [(), (0, ), (2, )]
|
|
ns = [5, 0]
|
|
if vector_rhs_allowed:
|
|
nrhs = [(), (1,), (3,)]
|
|
else:
|
|
nrhs = [(1,), (3,)]
|
|
|
|
for n, batch, rhs in product(ns, batches, nrhs):
|
|
yield SampleInput(make_a(*batch, n, n), args=(make_b((batch + (n,) + rhs)),))
|
|
|
|
|
|
def sample_inputs_linalg_solve_triangular(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device)
|
|
bs = (1, 2, 0)
|
|
ns = (3, 0)
|
|
ks = (1, 3, 0)
|
|
|
|
for b, n, k, (left, upper, uni) in product(bs, ns, ks, product((True, False), repeat=3)):
|
|
with torch.no_grad():
|
|
if b == 1:
|
|
A = make_arg((n, n)) if left else make_arg((k, k))
|
|
B = make_arg((n, k))
|
|
else:
|
|
A = make_arg((b, n, n)) if left else make_arg((b, k, k))
|
|
B = make_arg((b, n, k))
|
|
if uni:
|
|
# Not really necessary, but writing it for consistency
|
|
A.diagonal(0, -2, -1).fill_(1.)
|
|
else:
|
|
d = A.diagonal(0, -2, -1)
|
|
d[d.abs() < 1e-6] = 1.
|
|
if upper:
|
|
A.triu_()
|
|
else:
|
|
A.tril_()
|
|
kwargs = {"upper": upper, "left": left, "unitriangular": uni}
|
|
if requires_grad:
|
|
for grad_A, grad_B in product((True, False), repeat=2):
|
|
# Either A or B needs to have a gradient
|
|
if not grad_A and not grad_B:
|
|
continue
|
|
yield SampleInput(
|
|
A.clone().requires_grad_(grad_A),
|
|
args=(B.clone().requires_grad_(grad_B),),
|
|
kwargs=kwargs)
|
|
else:
|
|
yield SampleInput(A, args=(B,), kwargs=kwargs)
|
|
|
|
def sample_inputs_legacy_solve(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
"""
|
|
This function generates always solvable input for legacy solve functions
|
|
(the ones that are not in torch.linalg module).
|
|
The difference from sample_inputs_linalg_solve is that here the right-hand-side of A x = b equation
|
|
should have b.ndim >= 2, vectors are not allowed.
|
|
Also the arguments order is swapped.
|
|
"""
|
|
out = sample_inputs_linalg_solve(
|
|
op_info, device, dtype, requires_grad=requires_grad, vector_rhs_allowed=False
|
|
)
|
|
|
|
# Reverses tensor order
|
|
for sample in out:
|
|
sample.input, sample.args = sample.args[0], (sample.input,)
|
|
yield sample
|
|
|
|
|
|
def sample_inputs_cholesky_solve(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
cholesky_inverse_samples = sample_inputs_linalg_cholesky_inverse(
|
|
op_info, device, dtype, requires_grad=False
|
|
)
|
|
|
|
for sample in cholesky_inverse_samples:
|
|
psd_matrix = sample.input
|
|
sample.input = make_tensor(psd_matrix.shape, dtype=dtype, device=device, requires_grad=requires_grad, low=None, high=None)
|
|
sample.args = (psd_matrix.requires_grad_(requires_grad),)
|
|
yield sample
|
|
|
|
|
|
def sample_inputs_lu(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
make_arg = partial(make_fullrank_matrices_with_distinct_singular_values,
|
|
dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
# not needed once OpInfo tests support Iterables
|
|
batch_shapes = ((), (3,), (3, 3))
|
|
for batch_shape, get_infos, size_delta in product(batch_shapes, (True, False), (-2, -1, 0, +1, +2)):
|
|
shape = batch_shape + (S + size_delta, S)
|
|
input = make_arg(*shape)
|
|
yield SampleInput(input, args=(True, get_infos))
|
|
|
|
def sample_inputs_linalg_lu_factor(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
# When calling `lu_factor` we need to assure that the matrix is invertible
|
|
make_fn = make_tensor if "ex" in op_info.name else make_fullrank_matrices_with_distinct_singular_values
|
|
make_arg = partial(make_fn, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
# not needed once OpInfo tests support Iterables
|
|
batch_shapes = ((), (3,), (3, 3))
|
|
# pivot=False only supported in CUDA
|
|
pivots = (True, False) if torch.device(device).type == "cuda" else (True,)
|
|
deltas = (-2, -1, 0, +1, +2)
|
|
for batch_shape, pivot, delta in product(batch_shapes, pivots, deltas):
|
|
shape = batch_shape + (S + delta, S)
|
|
# Insanely annoying that make_fullrank_blablabla accepts a *shape and not a tuple!
|
|
A = make_arg(shape) if "ex" in op_info.name else make_arg(*shape)
|
|
yield SampleInput(A, kwargs={"pivot": pivot})
|
|
|
|
|
|
def sample_inputs_lu_solve(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
make_fn = make_fullrank_matrices_with_distinct_singular_values
|
|
make_a = partial(make_fn, dtype=dtype, device=device)
|
|
make_b = partial(make_tensor, dtype=dtype, device=device)
|
|
|
|
batches = ((), (0, ), (2, ))
|
|
ns = (5, 3, 0)
|
|
nrhs = (0, 1, 6)
|
|
|
|
for n, batch, rhs in product(ns, batches, nrhs):
|
|
shape_a = batch + (n, n)
|
|
a = make_a(*shape_a)
|
|
lu, pivs = a.lu()
|
|
lu = lu.contiguous()
|
|
|
|
shape_b = batch + (n, rhs)
|
|
b = make_b(shape_b)
|
|
|
|
grads = (False,) if not requires_grad else (True, False)
|
|
# we try all possible combinations of requires_grad for each input
|
|
for lu_grad, b_grad in product(grads, grads):
|
|
# when requires_grad == True, at least one input has to have requires_grad enabled
|
|
if requires_grad and not lu_grad and not b_grad:
|
|
continue
|
|
|
|
lu_ = lu.clone()
|
|
lu_.requires_grad_(lu_grad)
|
|
b_ = b.clone()
|
|
b_.requires_grad_(b_grad)
|
|
yield SampleInput(b_, args=(lu_, pivs))
|
|
|
|
def sample_inputs_lu_unpack(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
for lu_sample in sample_inputs_lu(op_info, device, dtype, requires_grad, **kwargs):
|
|
lu_data, pivots = torch.linalg.lu_factor(lu_sample.input)
|
|
lu_data.requires_grad_(requires_grad)
|
|
yield SampleInput(lu_data, args=(pivots,))
|
|
|
|
|
|
def sample_inputs_roll(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
args = ((0, 0), (1, 2), (0, 2), (2, 0), (-1, 0), (10000, 1), (2,), ((1, 2, -1), (0, 1, 2)))
|
|
|
|
for arg in args:
|
|
yield SampleInput(make_arg((S, S, S)), args=arg)
|
|
|
|
|
|
def sample_inputs_rot90(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
args = ((1, (0, 1),),
|
|
(1, (1, 2),),
|
|
(1, (1, -1),),
|
|
())
|
|
|
|
for arg in args:
|
|
yield SampleInput(make_arg((S, S, S)), args=arg)
|
|
|
|
|
|
def sample_inputs_std_var(op_info, device, dtype, requires_grad, **kwargs):
|
|
tensor_nd = partial(make_tensor, (S, S, S), device=device, dtype=dtype,
|
|
requires_grad=requires_grad)
|
|
tensor_1d = partial(make_tensor, (S,), device=device, dtype=dtype,
|
|
requires_grad=requires_grad)
|
|
|
|
return [
|
|
SampleInput(tensor_nd()),
|
|
SampleInput(tensor_nd(), kwargs=dict(dim=1)),
|
|
SampleInput(tensor_nd(), kwargs=dict(dim=1, unbiased=True, keepdim=True)),
|
|
SampleInput(tensor_1d(), kwargs=dict(dim=0, unbiased=True, keepdim=True)),
|
|
SampleInput(tensor_1d(), kwargs=dict(dim=0, unbiased=False, keepdim=False)),
|
|
|
|
SampleInput(tensor_nd(), kwargs=dict(dim=(1,), correction=S // 2)),
|
|
SampleInput(tensor_nd(), kwargs=dict(dim=None, correction=0, keepdim=True)),
|
|
]
|
|
|
|
|
|
def _generate_correlation_inputs(device, dtype, requires_grad, **kwargs):
|
|
shapes = [(2,), (1, 2), (3, 2), (2, 3)]
|
|
for shape in shapes:
|
|
yield make_tensor(shape, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
|
|
def sample_inputs_corrcoef(op_info, device, dtype, requires_grad, **kwargs):
|
|
return [SampleInput(t) for t in _generate_correlation_inputs(device, dtype, requires_grad)]
|
|
|
|
|
|
def sample_inputs_cov(op_info, device, dtype, requires_grad, **kwargs):
|
|
inputs = []
|
|
for t in _generate_correlation_inputs(device, dtype, requires_grad):
|
|
inputs.append(SampleInput(t))
|
|
num_observations = t.numel() if t.ndimension() < 2 else t.size(1)
|
|
fweights = make_tensor((num_observations,), dtype=torch.int, device=device, low=1, high=10)
|
|
aweights = make_tensor((num_observations,), dtype=torch.float, device=device, low=0, high=1, requires_grad=requires_grad)
|
|
for correction, fw, aw in product(range(num_observations), [None, fweights], [None, aweights]):
|
|
inputs.append(SampleInput(t.clone().requires_grad_(requires_grad),
|
|
kwargs={'correction': correction, 'fweights': fw, 'aweights': aw}))
|
|
return inputs
|
|
|
|
|
|
def error_inputs_cov(op_info, device, **kwargs):
|
|
a = torch.rand(S, device=device)
|
|
error_inputs = []
|
|
error_inputs.append(ErrorInput(
|
|
SampleInput(torch.rand(S, S, S, device=device)),
|
|
error_regex="expected input to have two or fewer dimensions"))
|
|
error_inputs.append(ErrorInput(
|
|
SampleInput(a, kwargs={'fweights': torch.rand(S, S, device=device)}),
|
|
error_regex="expected fweights to have one or fewer dimensions"))
|
|
error_inputs.append(ErrorInput(
|
|
SampleInput(a, kwargs={'aweights': torch.rand(S, S, device=device)}),
|
|
error_regex="expected aweights to have one or fewer dimensions"))
|
|
error_inputs.append(ErrorInput(
|
|
SampleInput(a, kwargs={'fweights': torch.rand(S, device=device)}),
|
|
error_regex="expected fweights to have integral dtype"))
|
|
error_inputs.append(ErrorInput(
|
|
SampleInput(a, kwargs={'aweights': torch.tensor([1, 1], device=device)}),
|
|
error_regex="expected aweights to have floating point dtype"))
|
|
error_inputs.append(ErrorInput(
|
|
SampleInput(a, kwargs={'fweights': torch.tensor([1], device=device)}),
|
|
error_regex="expected fweights to have the same numel"))
|
|
error_inputs.append(ErrorInput(
|
|
SampleInput(a, kwargs={'aweights': torch.rand(1, device=device)}),
|
|
error_regex="expected aweights to have the same numel"))
|
|
error_inputs.append(ErrorInput(
|
|
SampleInput(a, kwargs={'fweights': torch.tensor([-1, -2, -3, -4 , -5], device=device)}),
|
|
error_regex="fweights cannot be negative"))
|
|
error_inputs.append(ErrorInput(
|
|
SampleInput(a, kwargs={'aweights': torch.tensor([-1., -2., -3., -4., -5.], device=device)}),
|
|
error_regex="aweights cannot be negative"))
|
|
return error_inputs
|
|
|
|
|
|
def sample_inputs_svd(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
make_fullrank = make_fullrank_matrices_with_distinct_singular_values
|
|
make_arg = partial(make_fullrank, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
is_linalg_svd = (op_info.name == "linalg.svd")
|
|
batches = [(), (0, ), (3, )]
|
|
ns = [0, 3, 5]
|
|
|
|
def uniformize(usv):
|
|
S = usv[1]
|
|
k = S.shape[-1]
|
|
U = usv[0][..., :k]
|
|
Vh = usv[2] if is_linalg_svd else usv[2].mH
|
|
Vh = Vh[..., :k, :]
|
|
return U, S, Vh
|
|
|
|
def fn_U(usv):
|
|
U, _, _ = uniformize(usv)
|
|
return U.abs()
|
|
|
|
|
|
def fn_S(usv):
|
|
return uniformize(usv)[1]
|
|
|
|
def fn_Vh(usv):
|
|
# We also return S to test
|
|
_, S, Vh = uniformize(usv)
|
|
return S, Vh.abs()
|
|
|
|
def fn_UVh(usv):
|
|
U, S, Vh = uniformize(usv)
|
|
return U @ Vh, S
|
|
|
|
fns = (fn_U, fn_S, fn_Vh, fn_UVh)
|
|
|
|
fullmat = 'full_matrices' if is_linalg_svd else 'some'
|
|
|
|
for batch, n, k, fullmat_val, fn in product(batches, ns, ns, (True, False), fns):
|
|
shape = batch + (n, k)
|
|
yield SampleInput(make_arg(*shape), kwargs={fullmat: fullmat_val}, output_process_fn_grad=fn)
|
|
|
|
|
|
def sample_inputs_permute(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
cases = [((1, 2, 3, 4), (0, 2, 3, 1)),
|
|
((1, 2, 3, 4), (0, -2, -1, 1)),
|
|
((), ()),
|
|
((1, 2, 3, 4), (2, 1, 3, 0))]
|
|
|
|
for shape, args in cases:
|
|
yield SampleInput(make_arg(shape), args=(args,))
|
|
|
|
def reference_inputs_permute(op, device, dtype, requires_grad, **kwargs):
|
|
yield from sample_inputs_permute(op, device, dtype, requires_grad, **kwargs)
|
|
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
cases = (
|
|
((), ()),
|
|
((1,), (0,)),
|
|
((2, 2), (1, 0)),
|
|
((2, 2), (0, 1)),
|
|
((2, 0, 1), (0, 2, 1)),
|
|
((3, 4, 2), (2, 1, 0)),
|
|
((3, 4, 2), (1, 0, 2)),
|
|
((3, 4, 2), (0, 1, 2)),
|
|
)
|
|
|
|
# Adds tricky permutations and permutations with noncontiguity
|
|
for shape, permutation in cases:
|
|
for p in itertools.permutations(permutation):
|
|
a = make_arg(shape).permute(p)
|
|
yield SampleInput(a, args=(permutation,))
|
|
|
|
a = make_arg(shape, noncontiguous=True).permute(p)
|
|
yield SampleInput(a, args=(permutation,))
|
|
|
|
def sample_inputs_linalg_svdvals(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
batches = [(), (0, ), (2, ), (1, 1)]
|
|
ns = [5, 2, 0]
|
|
|
|
for batch, m, n in product(batches, ns, ns):
|
|
yield SampleInput(make_arg(batch + (m, n)))
|
|
|
|
|
|
def sample_inputs_softshrink_hardshrink_hardtanh(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
N = 10
|
|
tensors = [SampleInput(make_tensor((N, N), device=device, dtype=dtype,
|
|
requires_grad=requires_grad)) for _ in range(1, N)]
|
|
return tensors
|
|
|
|
def sample_inputs_eig(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
eigvecs = make_tensor((S, S), device=device, dtype=dtype,
|
|
low=None, high=None)
|
|
eigvals = make_tensor((S,), device=device, dtype=dtype,
|
|
low=None, high=None)
|
|
# we produce only diagonazible inputs which do not have
|
|
# complex eigenvalues for real inputs, as there is no
|
|
# backward implementation for real inputs with complex
|
|
# eigenvalues yet.
|
|
input = (eigvecs * eigvals.unsqueeze(-2)) @ eigvecs.inverse()
|
|
input.requires_grad_(requires_grad)
|
|
|
|
def process_output(eigpair):
|
|
eigvals, eigvecs = eigpair
|
|
if dtype.is_complex:
|
|
# eig produces eigenvectors which are normalized to 1 norm.
|
|
# Note that if v is an eigenvector, so is v * e^{i \phi},
|
|
# and |v| = |v * e^{i \phi}| = 1.
|
|
# This, however, makes the eigenvector backward computation process
|
|
# rather unstable unless the objective function is gauge-invariant,
|
|
# that is if f(z) == f(|z|), for example.
|
|
# Hence for complex inputs we ignore the phases and return only
|
|
# the absolute values.
|
|
return eigvals, eigvecs.abs()
|
|
else:
|
|
return eigvals, eigvecs
|
|
|
|
return [
|
|
SampleInput(
|
|
input,
|
|
kwargs=dict(eigenvectors=True),
|
|
output_process_fn_grad=process_output
|
|
),
|
|
]
|
|
|
|
|
|
def sample_inputs_einsum(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
def c(t):
|
|
return t.clone().requires_grad_(requires_grad)
|
|
|
|
x = make_tensor((3,), dtype=dtype, device=device, requires_grad=requires_grad)
|
|
y = make_tensor((4,), dtype=dtype, device=device, requires_grad=requires_grad)
|
|
A = make_tensor((2, 3,), dtype=dtype, device=device, requires_grad=requires_grad)
|
|
B = make_tensor((1, 3,), dtype=dtype, device=device, requires_grad=requires_grad)
|
|
C = make_tensor((1, 2, 3,), dtype=dtype, device=device, requires_grad=requires_grad)
|
|
D = make_tensor((1, 3, 4,), dtype=dtype, device=device, requires_grad=requires_grad)
|
|
E = make_tensor((4, 4,), dtype=dtype, device=device, requires_grad=requires_grad)
|
|
H = make_tensor((3, 3,), dtype=dtype, device=device, requires_grad=requires_grad)
|
|
I = make_tensor((1, 3, 1,), dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
inputs = []
|
|
|
|
# Vector operations
|
|
inputs.append(SampleInput([c(x)], args=('i->',))) # sum
|
|
inputs.append(SampleInput([c(x), c(y)], args=('i,j->ij',))) # outer
|
|
|
|
# Matrix operations
|
|
inputs.append(SampleInput([c(A)], args=("ij->i",))) # col sum
|
|
inputs.append(SampleInput([c(A), c(B)], args=("ij,kj->ik",))) # matmul
|
|
inputs.append(SampleInput([c(A), c(E)], args=("ij,Ab->ijAb",))) # matrix outer product
|
|
|
|
# Tensor operations
|
|
inputs.append(SampleInput([c(C), c(D)], args=("aij,ajk->aik",))) # batch matmul
|
|
inputs.append(SampleInput([c(D), c(E)], args=("aij,jk->aik",))) # tensor matrix contraction
|
|
inputs.append(SampleInput([c(C), c(B)], args=("ijk,ik->j",))) # non contiguous
|
|
|
|
# Test diagonals
|
|
inputs.append(SampleInput([c(I)], args=('iji->j',))) # non-contiguous trace
|
|
|
|
# Test ellipsis
|
|
inputs.append(SampleInput([c(H)], args=("i...->...",)))
|
|
inputs.append(SampleInput([c(C), c(x)], args=('...ik, ...j -> ij',)))
|
|
|
|
return inputs
|
|
|
|
|
|
def sample_inputs_linalg_qr_geqrf(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
# QR is just well defined when the matrix is full rank
|
|
make_fullrank = make_fullrank_matrices_with_distinct_singular_values
|
|
make_arg = partial(make_fullrank, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
batches = [(), (0,), (2, ), (1, 1)]
|
|
ns = [5, 2, 0]
|
|
|
|
for batch, (m, n) in product(batches, product(ns, ns)):
|
|
shape = batch + (m, n)
|
|
yield SampleInput(make_arg(*shape))
|
|
|
|
def sample_inputs_flip(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
sizes = ((S, M, S), (S, 0, M))
|
|
all_dims = ((0, 1, 2), (0,), (0, 2), (-1,), ())
|
|
|
|
for size, dims in product(sizes, all_dims):
|
|
yield SampleInput(make_arg(size), kwargs={"dims": dims})
|
|
|
|
def sample_inputs_fliplr_flipud(op_info, device, dtype, requires_grad, **kwargs):
|
|
tensors = (
|
|
make_tensor((S, M, S), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),
|
|
make_tensor((S, 0, M), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad)
|
|
)
|
|
return [SampleInput(tensor) for tensor in tensors]
|
|
|
|
# TODO: clamp shares tensors among its sample inputs --- we should prohibit this!
|
|
def sample_inputs_clamp(op_info, device, dtype, requires_grad, **kwargs):
|
|
x = make_tensor((S, M, S), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad)
|
|
lb = make_tensor((S, M, S), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad)
|
|
ub = make_tensor((S, M, S), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad)
|
|
|
|
def detach(tensor):
|
|
return tensor.clone().detach_().requires_grad_(requires_grad)
|
|
|
|
return [
|
|
SampleInput(detach(x), args=(lb, ub)),
|
|
SampleInput(detach(x), args=(detach(lb[0]), detach(ub[0]))),
|
|
SampleInput(detach(x), args=(detach(lb[:, :1]),)),
|
|
]
|
|
|
|
def sample_inputs_clamp_scalar(op_info, device, dtype, requires_grad, **kwargs):
|
|
tensors = (
|
|
make_tensor((2, 3, 2), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),
|
|
make_tensor((2, 0, 3), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),
|
|
)
|
|
|
|
if dtype is torch.uint8:
|
|
min_max_vals = ((2, 5), (3, 7))
|
|
else:
|
|
min_max_vals = ((0, 1), (-1, 1))
|
|
|
|
output = [SampleInput(
|
|
tensor.clone().requires_grad_(requires_grad),
|
|
args=vals) for tensor, vals in product(tensors, min_max_vals)]
|
|
output += [
|
|
SampleInput(tensors[0].clone().requires_grad_(requires_grad),
|
|
args=(0.5, None)),
|
|
SampleInput(tensors[0].clone().requires_grad_(requires_grad),
|
|
args=(None, 0.5))]
|
|
empty_tensor = make_tensor((), device=device, dtype=dtype, low=None, high=None, requires_grad=requires_grad)
|
|
output.append(SampleInput(empty_tensor, args=(0.0, 1.0)))
|
|
return output
|
|
|
|
def sample_kwargs_clamp_scalar(device, dtype, input):
|
|
if dtype is torch.uint8:
|
|
min_val, max_val = (random.randint(1, 3), random.randint(4, 8))
|
|
elif dtype.is_floating_point:
|
|
min_val, max_val = (random.uniform(-8, 0), random.uniform(1, 8)) # type: ignore[assignment]
|
|
else:
|
|
min_val, max_val = (random.randint(-8, 0), random.randint(1, 8))
|
|
return {'min': min_val, 'max': max_val}, {'a_min': min_val, 'a_max': max_val}
|
|
|
|
def sample_inputs_cross(op_info, device, dtype, requires_grad, **kwargs):
|
|
sample0 = SampleInput(make_tensor((S, 3), device=device, dtype=dtype, requires_grad=requires_grad),
|
|
args=(make_tensor((S, 3), device=device, dtype=dtype, requires_grad=requires_grad),))
|
|
sample1 = SampleInput(make_tensor((S, 3, S), device=device, dtype=dtype, requires_grad=requires_grad),
|
|
args=(make_tensor((S, 3, S), device=device, dtype=dtype, requires_grad=requires_grad),),
|
|
kwargs={'dim': 1})
|
|
sample2 = SampleInput(make_tensor((S, 3), device=device, dtype=dtype, requires_grad=requires_grad),
|
|
args=(make_tensor((S, 3), device=device, dtype=dtype, requires_grad=requires_grad),),
|
|
kwargs={'dim': -1})
|
|
|
|
return (sample0, sample1, sample2)
|
|
|
|
def sample_inputs_cumprod(op_info, device, dtype, requires_grad, **kwargs):
|
|
def make_arg(shape):
|
|
# shrink values to be in the interval [-1, +1] for better precision in gradgradcheck
|
|
return make_tensor(shape, dtype=dtype, device=device, low=-1, high=+1, requires_grad=requires_grad)
|
|
|
|
def prod_zeros(dim_select):
|
|
assert len(dim_select) == 2
|
|
result = make_arg(3 * (S,))
|
|
result.narrow(dim_select[0], 0, 1).narrow(dim_select[1], 1, 1).zero_()
|
|
result.narrow(dim_select[0], 2, 1).narrow(dim_select[1], 3, 1).zero_()
|
|
result.narrow(dim_select[0], 4, 1).narrow(dim_select[1], 3, 1).zero_()
|
|
return result
|
|
|
|
for dim in range(3):
|
|
yield SampleInput(make_arg((S, S, S)), args=(dim,))
|
|
# Scalar tensors and empty tensor
|
|
for size in [(), (1,), (0,)]:
|
|
yield SampleInput(make_arg(size), args=(0,))
|
|
|
|
yield SampleInput(prod_zeros([0, 1]), args=(1,))
|
|
yield SampleInput(prod_zeros([0, 2]), args=(1,))
|
|
yield SampleInput(prod_zeros([1, 2]), args=(1,))
|
|
|
|
# test dtype kwarg
|
|
yield SampleInput(prod_zeros([1, 2]), args=(1,), kwargs={'dtype': dtype})
|
|
|
|
def sample_inputs_view_as_complex(op_info, device, dtype, requires_grad, **kwargs):
|
|
return [SampleInput(make_tensor((S, 2), dtype=dtype, device=device, requires_grad=requires_grad),)]
|
|
|
|
def sample_inputs_view_as_real(op_info, device, dtype, requires_grad, **kwargs):
|
|
tensors = (
|
|
make_tensor((S, S), dtype=dtype, device=device, requires_grad=requires_grad),
|
|
make_tensor((), dtype=dtype, device=device, requires_grad=requires_grad)
|
|
)
|
|
return [SampleInput(tensor) for tensor in tensors]
|
|
|
|
def sample_inputs_prod(op_info, device, dtype, requires_grad, **kwargs):
|
|
def make_arg(shape):
|
|
# shrink values to be in the interval [-1, +1] for better precision in gradgradcheck
|
|
return make_tensor(shape, dtype=dtype, device=device, low=-1, high=+1, requires_grad=requires_grad)
|
|
|
|
def prod_single_zero():
|
|
result = make_arg(2 * (S,))
|
|
result[0, 1] = 0
|
|
return result
|
|
|
|
for sample in sample_inputs_cumprod(op_info, device, dtype, requires_grad):
|
|
# only Tensor, ignore other inputs
|
|
yield SampleInput(sample.input.clone().requires_grad_(requires_grad))
|
|
yield sample
|
|
|
|
# Generates samples with keepdim = True
|
|
for sample in sample_inputs_cumprod(op_info, device, dtype, requires_grad):
|
|
sample.kwargs['keepdim'] = True
|
|
yield sample
|
|
|
|
yield SampleInput(prod_single_zero())
|
|
yield SampleInput(make_arg((3, 3, 3)), args=(1,))
|
|
yield SampleInput(make_arg((3, 3, 3)), args=(1,), kwargs={'keepdim': True})
|
|
|
|
# test zero scalar tensor
|
|
zero = make_arg(())
|
|
zero.zero_()
|
|
yield SampleInput(zero.clone().requires_grad_(requires_grad))
|
|
yield SampleInput(zero.clone().requires_grad_(requires_grad), args=(0,))
|
|
yield SampleInput(zero.clone().requires_grad_(requires_grad),
|
|
args=(0,),
|
|
kwargs={'keepdim': True})
|
|
|
|
def error_inputs_neg(op_info, device, **kwargs):
|
|
si = SampleInput(torch.tensor((False, True), device=device))
|
|
msg = ("Negation, the `\\-` operator, on a bool tensor is not supported."
|
|
" If you are trying to invert a mask, use the `\\~` or"
|
|
" `logical_not\\(\\)` operator instead.")
|
|
return (ErrorInput(si, error_regex=msg),)
|
|
|
|
def sample_inputs_diag(op_info, device, dtype, requires_grad, **kwargs):
|
|
vec_sample = SampleInput(make_tensor((M, ), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad))
|
|
|
|
tensors = (
|
|
make_tensor((M, M), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),
|
|
make_tensor((3, 5), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),
|
|
make_tensor((5, 3), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),
|
|
)
|
|
|
|
args = ((), (2,), (-2,), (1,), (2,))
|
|
|
|
samples = []
|
|
for tensor, arg in product(tensors, args):
|
|
samples.append(SampleInput(tensor.clone().requires_grad_(requires_grad), args=arg))
|
|
|
|
return samples + [vec_sample]
|
|
|
|
def sample_inputs_diagonal_diag_embed(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
# Shapes for 2D Tensors
|
|
shapes_2d = ((M, M), (3, 5), (5, 3))
|
|
|
|
# Shapes for 3D Tensors
|
|
shapes_3d = ((M, M, M),)
|
|
|
|
kwargs_2d = (dict(), dict(offset=2), dict(offset=2), dict(offset=1))
|
|
kwargs_3d = (dict(offset=1, dim1=1, dim2=2),
|
|
dict(offset=2, dim1=0, dim2=1),
|
|
dict(offset=-2, dim1=0, dim2=1))
|
|
|
|
for shape, kwarg in chain(product(shapes_2d, kwargs_2d), product(shapes_3d, kwargs_3d)):
|
|
yield SampleInput(make_arg(shape), kwargs=kwarg)
|
|
|
|
|
|
def sample_inputs_diagonal_scatter(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
# Shapes for 2D Tensors
|
|
shapes_2d = ((M, M), (3, 5), (5, 3))
|
|
|
|
# Shapes for 3D Tensors
|
|
shapes_3d = ((M, M, M),)
|
|
|
|
args_2d = ((), (2,), (-2,), (1,))
|
|
args_3d = ((1, 1, 2), (2, 0, 1), (-2, 0, 1))
|
|
|
|
for input_shape, arg in chain(product(shapes_2d, args_2d), product(shapes_3d, args_3d)):
|
|
input_ = make_arg(input_shape)
|
|
# We can programatically figure out the right shape for src:
|
|
# It should be the same size as input.diagonal(other_args...)
|
|
if not isinstance(arg, tuple):
|
|
arg_tuple = (arg,)
|
|
else:
|
|
arg_tuple = arg
|
|
src_shape = input_.diagonal(*arg_tuple).size()
|
|
src = make_arg(src_shape)
|
|
yield SampleInput(input_, args=(src, *arg_tuple))
|
|
|
|
|
|
def sample_inputs_to_sparse(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
return (SampleInput(make_arg((S, S)), args=(), output_process_fn_grad=lambda x: x.to_dense()),
|
|
SampleInput(make_arg((S, S)), args=(1,), output_process_fn_grad=lambda x: x.to_dense()),)
|
|
|
|
def sample_inputs_cross_entropy(op_info, device, dtype, requires_grad, **kwargs):
|
|
batch_size, num_classes = shape = (2, 3)
|
|
reductions = ("mean", "sum", "none")
|
|
|
|
input_shape_and_kwargs: List[Tuple[Tuple[int, ...], Dict[str, Any]]] = [
|
|
(shape, dict()),
|
|
((*shape, 1), dict()),
|
|
((*shape, 1, 2), dict()),
|
|
((*shape, 1, 2, 3), dict()),
|
|
*[(shape, dict(reduction=reduction)) for reduction in reductions],
|
|
*[
|
|
(
|
|
shape,
|
|
dict(
|
|
weight=make_tensor((num_classes,), device=device, dtype=dtype),
|
|
reduction=reduction,
|
|
),
|
|
)
|
|
for reduction in reductions
|
|
],
|
|
(shape, dict(ignore_index=1)),
|
|
]
|
|
|
|
sample_inputs = []
|
|
for (input_shape, kwargs), probabilities_target in itertools.product(input_shape_and_kwargs, (False, True)):
|
|
input = make_tensor(input_shape, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
if probabilities_target:
|
|
# ignore_index is not supported for probabilities target
|
|
if "ignore_index" in kwargs:
|
|
continue
|
|
|
|
target = make_tensor(
|
|
input_shape,
|
|
low=0,
|
|
high=1,
|
|
device=device,
|
|
dtype=dtype,
|
|
requires_grad=requires_grad,
|
|
)
|
|
else:
|
|
target = make_tensor(
|
|
(batch_size, *input_shape[2:]),
|
|
low=0,
|
|
high=num_classes,
|
|
device=device,
|
|
dtype=torch.long,
|
|
)
|
|
|
|
if "ignore_index" in kwargs and torch.all(target == kwargs["ignore_index"]):
|
|
# make sure at least one item in target is not ignored
|
|
target[0] = random.sample(set(range(num_classes)) - {kwargs["ignore_index"]}, 1)[0]
|
|
|
|
sample_inputs.append(SampleInput(input, args=(target,), kwargs=kwargs))
|
|
|
|
return sample_inputs
|
|
|
|
# Used for log_softmax, softmax, softmin
|
|
def sample_inputs_softmax_variant(op_info, device, dtype, requires_grad, with_dtype=False, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
cases = [
|
|
((S, ), (0, )),
|
|
((S, S), (0, )),
|
|
((S, S), (1, )),
|
|
((S, S), (-1, )),
|
|
((S, M, S), (2, )),
|
|
]
|
|
|
|
# PyTorch on XLA throws an error when passed with dim argument for 0d tensor.
|
|
# See https://github.com/pytorch/xla/issues/3061 for more details.
|
|
if torch.device(device).type != 'xla':
|
|
cases.append(((), (0, )))
|
|
|
|
return [
|
|
SampleInput(make_arg(shape), args=dim, kwargs=dict(dtype=torch.float64) if with_dtype else None)
|
|
for shape, dim in cases
|
|
]
|
|
|
|
def sample_inputs_masked_softmax(op_info, device, dtype, requires_grad, with_dtype=False, **kwargs):
|
|
"""Sample inputs for masked softmax, log_softmax, and softmin.
|
|
|
|
Masked normalization operator is a reduction operator with
|
|
trailing mask optional argument. A mask is a bool tensor with the
|
|
same shape as input or a shape that is broadcastable to input
|
|
shape.
|
|
"""
|
|
inputs: List[SampleInput] = []
|
|
for sample_input in sample_inputs_softmax_variant(op_info, device, dtype, requires_grad, with_dtype=with_dtype, **kwargs):
|
|
for mask in _generate_masked_op_mask(sample_input.input.shape, device, **kwargs):
|
|
sample_input_args, sample_input_kwargs = sample_input.args, dict(mask=mask, **sample_input.kwargs)
|
|
inputs.append(SampleInput(sample_input.input.clone().requires_grad_(requires_grad),
|
|
args=sample_input_args, kwargs=sample_input_kwargs))
|
|
return inputs
|
|
|
|
def sample_inputs_masked_normalize(op_info, device, dtype, requires_grad, **kwargs):
|
|
"""Sample inputs for masked normalize.
|
|
"""
|
|
inputs: List[SampleInput] = []
|
|
for ord in [2.0, 1, float('inf'), float('-inf'), 0]:
|
|
for sample_input in sample_inputs_softmax_variant(op_info, device, dtype, requires_grad, **kwargs):
|
|
sample_input_args, sample_input_kwargs = (ord,) + sample_input.args, sample_input.kwargs.copy()
|
|
inputs.append(SampleInput(sample_input.input.clone().requires_grad_(requires_grad),
|
|
args=sample_input_args, kwargs=sample_input_kwargs))
|
|
return inputs
|
|
|
|
def sample_inputs_logit(op_info, device, dtype, requires_grad, **kwargs):
|
|
low, high = op_info.domain
|
|
|
|
# Note: Operator is very sensitive at points near the
|
|
# start and end of domain and leads to NaN for float16
|
|
# if domain_eps is 1e-5.
|
|
domain_eps = op_info._domain_eps if dtype != torch.float16 else 3e-2
|
|
|
|
low = low + domain_eps
|
|
high = high - domain_eps
|
|
|
|
samples = (
|
|
SampleInput(make_tensor((S, S, S), dtype=dtype, device=device, low=low, high=high, requires_grad=requires_grad)),
|
|
SampleInput(make_tensor((S, S, S), dtype=dtype, device=device, low=low,
|
|
high=high, requires_grad=requires_grad), args=(0.2,)),
|
|
SampleInput(make_tensor((), dtype=dtype, device=device, low=low, high=high, requires_grad=requires_grad)),
|
|
SampleInput(make_tensor((), dtype=dtype, device=device, low=low,
|
|
high=high, requires_grad=requires_grad), args=(0.2,)),
|
|
)
|
|
|
|
return samples
|
|
|
|
def sample_inputs_isin(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
# isin has two paths based on the size of elements and test_elements.
|
|
# if elements.numel() < 10 * pow(test_elements.numel(), 0.145):
|
|
yield SampleInput(make_arg((L,)), args=(make_arg((S,)),))
|
|
# else:
|
|
yield SampleInput(make_arg((S,)), args=(make_arg((L,)),))
|
|
|
|
def sample_inputs_masked_scatter(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
yield SampleInput(make_arg((S, S)), args=(torch.randn(S, S, device=device) > 0, make_arg((S, S))))
|
|
yield SampleInput(make_arg((S, S)), args=(torch.randn((S,), device=device) > 0, make_arg((S, S))))
|
|
yield SampleInput(make_arg((S, S)), args=(bernoulli_scalar().to(device), make_arg((S, S))))
|
|
yield SampleInput(make_arg((S,)),
|
|
args=(torch.randn(S, S, device=device) > 0, make_arg((S, S))),
|
|
broadcasts_input=True)
|
|
|
|
|
|
def sample_inputs_masked_fill(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
yield SampleInput(make_arg((S, S)), args=(torch.randn(S, S, device=device) > 0, 10))
|
|
yield SampleInput(make_arg((S, S)), args=(torch.randn(S, S, device=device) > 0, make_arg(())))
|
|
yield SampleInput(make_arg((S, S)), args=(torch.randn(S, device=device) > 0, 10))
|
|
yield SampleInput(make_arg(()), args=(torch.randn((), device=device) > 0, 10))
|
|
yield SampleInput(make_arg(()), args=(torch.randn((), device=device) > 0, make_arg(())))
|
|
yield SampleInput(make_arg((S, S)), args=(torch.randn((), device=device) > 0, 10))
|
|
|
|
yield SampleInput(make_arg((S,)),
|
|
args=(torch.randn(S, S, device=device) > 0, make_arg(())),
|
|
broadcasts_input=True)
|
|
yield SampleInput(make_arg((S,)),
|
|
args=(torch.randn(S, S, device=device) > 0, 10),
|
|
broadcasts_input=True)
|
|
|
|
|
|
def sample_inputs_masked_select(op_info, device, dtype, requires_grad, **kwargs):
|
|
samples = (
|
|
SampleInput(make_tensor((M, M), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),
|
|
args=(torch.randn(M, M, device=device) > 0,)),
|
|
|
|
SampleInput(make_tensor((M, M), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),
|
|
args=(torch.randn((M,), device=device) > 0,)),
|
|
|
|
SampleInput(make_tensor((M,), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),
|
|
args=(torch.randn((M, M), device=device) > 0,)),
|
|
|
|
SampleInput(make_tensor((M, 1, M), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),
|
|
args=(torch.randn((M, M), device=device) > 0,)),
|
|
|
|
SampleInput(make_tensor((), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),
|
|
args=(torch.tensor(1, device=device, dtype=torch.bool),)),
|
|
|
|
SampleInput(make_tensor((M, M), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),
|
|
args=(torch.tensor(1, device=device, dtype=torch.bool),)),
|
|
|
|
SampleInput(make_tensor((), dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad),
|
|
args=(torch.randn((M, M), device=device) > 0,)),
|
|
)
|
|
|
|
return samples
|
|
|
|
def sample_inputs_matrix_exp(op_info, device, dtype, requires_grad, **kwargs):
|
|
samples = (
|
|
SampleInput(make_tensor((S, S), dtype=dtype, device=device, requires_grad=requires_grad)),
|
|
SampleInput(make_tensor((S, S, S), dtype=dtype, device=device, requires_grad=requires_grad)),
|
|
)
|
|
|
|
return samples
|
|
|
|
def sample_inputs_matmul(op_info, device, dtype, requires_grad, **kwargs):
|
|
test_cases = (((L,), (L,)),
|
|
((S, M), (M,)),
|
|
((M,), (M, S)),
|
|
((S, M), (M, S)),
|
|
((S, 0), (0, M)),
|
|
((S, S, M), (M,)),
|
|
((S, S, M), (M, S)),
|
|
((S, S, 0), (0, S)),
|
|
((M,), (S, M, S)),
|
|
((S, M), (S, M, S)),
|
|
((0, 0), (S, 0, 0)),
|
|
((S, S, M, M), (S, S, M, S)),
|
|
((S, S, M, M), (M,)),
|
|
((M,), (S, S, M, S)))
|
|
sample_inputs = []
|
|
for lhs_shape, rhs_shape in test_cases:
|
|
lhs = make_tensor(lhs_shape, dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad)
|
|
rhs = make_tensor(rhs_shape, dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad)
|
|
if op_info.name == 'matmul':
|
|
sample_inputs.append(SampleInput(lhs, args=(rhs,)))
|
|
elif op_info.name == '__rmatmul__':
|
|
sample_inputs.append(SampleInput(rhs, args=(lhs,)))
|
|
else:
|
|
raise RuntimeError("`op_info.name` must be 'matmul' or '__rmatmul__'")
|
|
return tuple(sample_inputs)
|
|
|
|
|
|
def sample_inputs_meshgrid(op_info: OpInfo, device: torch.device, dtype: torch.dtype,
|
|
requires_grad: bool,
|
|
*, variant: str, **kwargs) -> List[SampleInput]:
|
|
if variant == 'variadic':
|
|
def make_inputs(
|
|
tensors: List[torch.Tensor]) -> Tuple[Union[torch.Tensor,
|
|
List[torch.Tensor]],
|
|
Tuple[torch.Tensor, ...]]:
|
|
return tensors[0], tuple(tensors[1:])
|
|
elif variant == 'list':
|
|
def make_inputs(
|
|
tensors: List[torch.Tensor]) -> Tuple[Union[torch.Tensor,
|
|
List[torch.Tensor]],
|
|
Tuple[torch.Tensor, ...]]:
|
|
return tensors, ()
|
|
else:
|
|
raise ValueError(
|
|
'Unsupported variant, must be one of {"variadic", "list"}. '
|
|
f'Got "{variant}".')
|
|
|
|
SCALAR = torch.Size([])
|
|
VECTOR = torch.Size([3])
|
|
test_cases: List[List[torch.Size]] = [
|
|
[SCALAR],
|
|
[VECTOR],
|
|
[VECTOR, SCALAR],
|
|
[VECTOR, SCALAR, VECTOR],
|
|
[VECTOR, SCALAR, VECTOR, SCALAR],
|
|
]
|
|
|
|
sample_inputs = []
|
|
for shapes, indexing in itertools.product(test_cases, {'xy', 'ij'}):
|
|
input, args = make_inputs(
|
|
[make_tensor(shape, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
for shape in shapes])
|
|
sample_inputs.append(SampleInput(input=input, args=args,
|
|
kwargs=dict(indexing=indexing)))
|
|
return sample_inputs
|
|
|
|
def sample_inputs_polygamma(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
tensor_shapes = ((S, S), ())
|
|
ns = (1, 2, 3, 4, 5)
|
|
|
|
for shape, n in product(tensor_shapes, ns):
|
|
yield SampleInput(make_arg(shape), args=(n,))
|
|
|
|
|
|
def sample_inputs_mvlgamma(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
tensor_shapes = ((S, S), ())
|
|
ns = (1, 2, 3, 4, 5)
|
|
|
|
# Since the accepted lower bound for input
|
|
# to mvlgamma depends on `p` argument,
|
|
# the following function computes the lower bound
|
|
# which we pass to `make_tensor`.
|
|
def compute_min_val(p):
|
|
return (p - 1.) / 2
|
|
|
|
for shape, n in product(tensor_shapes, ns):
|
|
min_val = compute_min_val(n)
|
|
if not dtype.is_floating_point:
|
|
# Round-up minimum value for integral dtypes
|
|
min_val += 1
|
|
else:
|
|
min_val += 2 * torch.finfo(dtype).eps
|
|
yield SampleInput(make_arg(shape, low=min_val), args=(n,))
|
|
|
|
|
|
# Since `mvlgamma` has multiple entries,
|
|
# there are multiple common skips for the additional
|
|
# entries. Following function is a helper to that end.
|
|
def skips_mvlgamma(skip_redundant=False):
|
|
skips = (
|
|
# outside domain values are hard error for mvlgamma op.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_float_domains'),
|
|
)
|
|
if skip_redundant:
|
|
# Redundant tests
|
|
skips = skips + ( # type: ignore[assignment]
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon'),
|
|
)
|
|
return skips
|
|
|
|
|
|
# To test reference numerics against multiple values of argument `p`,
|
|
# we make multiple OpInfo entries with each entry corresponding to different value of p.
|
|
# We run the op tests from test_ops.py only for `p=1` to avoid redundancy in testing.
|
|
# Class `MvlGammaInfo` already contains the basic information related to the operator,
|
|
# it only takes arguments like `domain`, `skips` and `sample_kwargs`, which
|
|
# differ between the entries.
|
|
class MvlGammaInfo(UnaryUfuncInfo):
|
|
def __init__(self, variant_test_name, domain, skips, sample_kwargs):
|
|
super(MvlGammaInfo, self).__init__(
|
|
'mvlgamma',
|
|
ref=reference_mvlgamma if TEST_SCIPY else _NOTHING,
|
|
aliases=('special.multigammaln',),
|
|
variant_test_name=variant_test_name,
|
|
domain=domain,
|
|
decorators=(precisionOverride({torch.float16: 5e-2}),),
|
|
dtypes=all_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.half),
|
|
sample_inputs_func=sample_inputs_mvlgamma,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=skips,
|
|
sample_kwargs=sample_kwargs)
|
|
|
|
|
|
def sample_inputs_entr(op_info, device, dtype, requires_grad, **kwargs):
|
|
low, _ = op_info.domain
|
|
|
|
if requires_grad:
|
|
low = 0 + op_info._domain_eps
|
|
|
|
return (SampleInput(make_tensor((L,), dtype=dtype, device=device,
|
|
low=low,
|
|
requires_grad=requires_grad)),
|
|
SampleInput(make_tensor((), dtype=dtype, device=device,
|
|
low=low,
|
|
requires_grad=requires_grad)))
|
|
|
|
# TODO: Consolidate `i0e` with sample_inputs_unary when `make_tensor`,
|
|
# supports `exclude` argument.
|
|
# For more context: https://github.com/pytorch/pytorch/pull/56352#discussion_r633277617
|
|
def sample_inputs_i0_i1(op_info, device, dtype, requires_grad, **kwargs):
|
|
|
|
samples = (SampleInput(make_tensor((S,), dtype=dtype, device=device,
|
|
requires_grad=requires_grad)),
|
|
SampleInput(make_tensor((), dtype=dtype, device=device,
|
|
requires_grad=requires_grad)))
|
|
|
|
if requires_grad and op_info.op == torch.special.i0e:
|
|
# NOTE: `i0e`'s first-order gradient is not continous
|
|
# at `0`, hence we don't test `i0e` with any input being `0`.
|
|
# TODO: Remove this when `make_tensor` supports excluding `0`.
|
|
for sample in samples:
|
|
t = sample.input
|
|
t[t == 0] = torch.finfo(dtype).eps # type: ignore[index]
|
|
elif requires_grad and op_info.op != torch.special.i0e:
|
|
# Special Case for gradient
|
|
# Sample with `0` in the input
|
|
t = make_tensor((S,), dtype=dtype, device=device,
|
|
requires_grad=requires_grad)
|
|
t[0] = 0
|
|
|
|
samples += (SampleInput(t),) # type: ignore[assignment]
|
|
|
|
return samples
|
|
|
|
def sample_inputs_cumulative_ops(op_info, device, dtype, requires_grad, supports_dtype_kwargs=True, **kwargs):
|
|
def _make_tensor_helper(shape, low=None, high=None):
|
|
return make_tensor(shape, dtype=dtype, device=device, low=low, high=high, requires_grad=requires_grad)
|
|
|
|
samples = [
|
|
SampleInput(_make_tensor_helper((S, S, S)), args=(0,)),
|
|
SampleInput(_make_tensor_helper((S, S, S)), args=(1,)),
|
|
SampleInput(_make_tensor_helper(()), args=(0,)),
|
|
]
|
|
|
|
if supports_dtype_kwargs:
|
|
# NOTE: if `dtype` is not same as input, then inplace variants fail with
|
|
# `provided dtype must match the dtype of self tensor in cumsum`
|
|
samples.append(SampleInput(_make_tensor_helper((S, S, S)), args=(1,), kwargs={'dtype': dtype}))
|
|
|
|
return samples
|
|
|
|
|
|
def sample_inputs_unfold(op_info, device, dtype, requires_grad, **kwargs):
|
|
test_cases = (
|
|
((), (0, 1, 1)),
|
|
((S, S, S, S), (0, 3, 1)),
|
|
((S, S, S, S), (1, 3, 1)),
|
|
((S, S, S, S), (2, 3, 1)),
|
|
((S, S, S, S), (3, 3, 1)),
|
|
((S, S, S, S), (0, 3, 2)),
|
|
((S, S, S, S), (1, 3, 2)),
|
|
((S, S, S, S), (2, 3, 2)),
|
|
((S, S, S, S), (3, 3, 2)),
|
|
((S, S, S, S), (0, 4, 1)),
|
|
((S, S, S, S), (1, 4, 1)),
|
|
((S, S, S, S), (2, 4, 1)),
|
|
((S, S, S, S), (3, 4, 1)),
|
|
((M,), (0, 3, 1)),
|
|
((M,), (0, 3, 2)),
|
|
((M,), (0, 3, 3)),
|
|
((1000,), (0, 3, 11)),
|
|
((1000,), (0, 2, 27)),
|
|
((10, 10), (0, 1, 2)),
|
|
((10, 10), (1, 2, 3)),
|
|
((10, 10), (1, 2, 2)),
|
|
((S, S, S), (2, 3, 2)),
|
|
)
|
|
|
|
sample_inputs = []
|
|
for shape, arguments in test_cases:
|
|
sample_inputs += [SampleInput(make_tensor(shape, dtype=dtype, device=device,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=arguments)]
|
|
return sample_inputs
|
|
|
|
def sample_inputs_split(op_info, device, dtype, requires_grad, *, list_args=False, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
if list_args:
|
|
cases = (
|
|
((S, S, S), ([int(S / 3), S - int(S / 3) * 2, int(S / 3)],)),
|
|
((S, S, S), ([int(S / 2), S - int(S / 2) * 2, int(S / 2)], 2),),
|
|
((S, S, S), ([int(S / 2), S - int(S / 2) * 2, int(S / 2)], -2),)
|
|
)
|
|
else:
|
|
cases = ( # type: ignore[assignment]
|
|
((S, S, S), (2,)),
|
|
((S, S, S), (S, 1)),
|
|
)
|
|
|
|
for shape, args in cases:
|
|
yield SampleInput(make_arg(shape), args=args)
|
|
|
|
|
|
def sample_inputs_split_with_sizes(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
cases = (((S, S, S), ([int(S / 3), S - int(S / 3) * 2, int(S / 3)],)),
|
|
((S, S, S), ([int(S / 3), S - int(S / 3), 0],)),
|
|
((S, S, S), ([int(S / 3), S - int(S / 3) * 2, int(S / 3)], 2)),
|
|
((S, S, S), ([int(S / 3), S - int(S / 3) * 2, int(S / 3)], -2)),
|
|
)
|
|
|
|
for shape, args in cases:
|
|
yield SampleInput(make_arg(shape), args=args)
|
|
|
|
|
|
def sample_inputs_msort(op_info, device, dtype, requires_grad, **kwargs):
|
|
def apply_grad(t):
|
|
if dtype in floating_types_and(torch.float16, torch.bfloat16):
|
|
t.requires_grad_(requires_grad)
|
|
|
|
def large_1d_unique(dtype, device):
|
|
res = torch.randperm(L * L * L, dtype=torch.int64, device=device)
|
|
res = res.to(dtype)
|
|
apply_grad(res)
|
|
return res
|
|
|
|
samples = []
|
|
# Test case for large tensor.
|
|
largesample = SampleInput(large_1d_unique(dtype, device))
|
|
|
|
sample = SampleInput(make_tensor((S, M, S), dtype=dtype, device=device,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad))
|
|
|
|
return [largesample, sample]
|
|
|
|
def sample_inputs_lerp(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
samples = (
|
|
# no broadcast
|
|
SampleInput(make_arg((S, S)), args=(make_arg((S, S)), 0.4)),
|
|
# broadcast rhs
|
|
SampleInput(make_arg((S, S)), args=(make_arg((S,)), 0.4)),
|
|
# scalar tensor
|
|
SampleInput(make_arg(()), args=(make_arg(()), 0.4)),
|
|
# broadcast rhs scalar-tensor
|
|
SampleInput(make_arg((S, S)), args=(make_arg(()), 0.4)),
|
|
# broadcast rhs with weight tensor
|
|
SampleInput(make_arg((S, S)), args=(make_arg((S,)), make_arg((S, S)))),
|
|
# broadcast rhs and weight tensor
|
|
SampleInput(make_arg((S, S)), args=(make_arg((S, 1)), make_arg((S,)))),
|
|
# broadcast lhs
|
|
SampleInput(make_arg((S,)), args=(make_arg((S, S)), 0.4), broadcasts_input=True),
|
|
# scalar broadcast_lhs
|
|
SampleInput(make_arg(()), args=(make_arg((S, S)), 0.4), broadcasts_input=True),
|
|
# broadcast all
|
|
SampleInput(make_arg((S, 1)), args=(make_arg((S, S)), 0.4), broadcasts_input=True),
|
|
# tensor broadcast all
|
|
SampleInput(make_arg((S, 1)), args=(make_arg((S, S)), make_arg((S, 1))),
|
|
broadcasts_input=True),
|
|
# no broadcast with weight tensor
|
|
SampleInput(make_arg((S, S)), args=(make_arg((S, S)), make_arg((S, S)))),
|
|
# broadcast lhs with weight tensor
|
|
SampleInput(make_arg((S,)), args=(make_arg((S, S)), make_arg((S, S))), broadcasts_input=True),
|
|
# broadcast lhs and weight tensor
|
|
SampleInput(make_arg((S,)), args=(make_arg((S, S, S)), make_arg((S, S))), broadcasts_input=True),
|
|
# broadcast lhs and weight tensor variant
|
|
SampleInput(make_arg((S, S)), args=(make_arg((S, S, S)), make_arg((S,))), broadcasts_input=True),
|
|
)
|
|
|
|
if dtype.is_complex:
|
|
samples = samples + ( # type: ignore[assignment]
|
|
# no broadcast
|
|
SampleInput(make_arg((S, S)), args=(make_arg((S, S)), 0.4j)),
|
|
SampleInput(make_arg((S, S)), args=(make_arg((S, S)), 1.2 + 0.1j)),
|
|
# broadcast rhs
|
|
SampleInput(make_arg((S, S)), args=(make_arg((S,)), 0.4j)),
|
|
SampleInput(make_arg((S, S)), args=(make_arg((S, S)), 5.4 + 9j)),
|
|
# scalar tensor
|
|
SampleInput(make_arg(()), args=(make_arg(()), 0.4j)),
|
|
SampleInput(make_arg(()), args=(make_arg(()), 6.1 + 0.004j)),
|
|
# broadcast rhs scalar-tensor
|
|
SampleInput(make_arg((S, S)), args=(make_arg(()), 0.4j)),
|
|
SampleInput(make_arg((S, S)), args=(make_arg(()), 1 + 2j)),
|
|
)
|
|
|
|
return samples
|
|
|
|
def sample_inputs_tensordot(self, device, dtype, requires_grad, **kwargs):
|
|
cases = (
|
|
((2, 2, 2), (2, 2, 2), (2)),
|
|
((2, 2, 1), (2, 1, 2), ([0, 1], [2, 0])),
|
|
)
|
|
samples = []
|
|
for first_shape, second_shape, dims in cases:
|
|
samples.append(SampleInput(make_tensor(first_shape, dtype=dtype, device=device,
|
|
requires_grad=requires_grad),
|
|
args=(make_tensor(second_shape, dtype=dtype, device=device,
|
|
requires_grad=requires_grad),),
|
|
kwargs=dict(dims=dims,)))
|
|
return tuple(samples)
|
|
|
|
def sample_inputs_kron(op_info, device, dtype, requires_grad, **kwargs):
|
|
test_cases = (
|
|
((S, S), (M, L)),
|
|
)
|
|
|
|
sample_inputs = []
|
|
for input_shape, other_shape in test_cases:
|
|
input = make_tensor(input_shape, dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad)
|
|
other = make_tensor(other_shape, dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad)
|
|
sample = SampleInput(input, args=(other,))
|
|
sample_inputs.append(sample)
|
|
return tuple(sample_inputs)
|
|
|
|
def sample_inputs_inner(self, device, dtype, requires_grad, **kwargs):
|
|
return (
|
|
SampleInput(
|
|
make_tensor((S, ), dtype=dtype, device=device, requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor((S, ), dtype=dtype, device=device, requires_grad=requires_grad),
|
|
)
|
|
),
|
|
SampleInput(
|
|
make_tensor((), dtype=dtype, device=device, requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor((S, S), dtype=dtype, device=device, requires_grad=requires_grad),
|
|
)
|
|
),
|
|
)
|
|
|
|
def sample_inputs_scatter(op_info, device, dtype, requires_grad, **kwargs):
|
|
def _tensor(shape, dtype=dtype, low=None, high=None):
|
|
return make_tensor(shape, dtype=dtype, device=device, low=low, high=high, requires_grad=requires_grad)
|
|
|
|
def _gather(shape, index_dim, max_indices):
|
|
return gather_variable(shape, index_dim, max_indices, device=device)
|
|
|
|
zero = torch.tensor(0, dtype=torch.long, device=device)
|
|
test_cases = (
|
|
(_tensor((M, S)), (0, _gather((S, S), 1, M), _tensor((S, S)))),
|
|
(_tensor((M, S)), (1, _gather((S, S), 0, S), _tensor((S, S)))),
|
|
(_tensor((M, S)), (-1, _gather((S, S), 0, S), _tensor((S, S)))),
|
|
(_tensor((M, S)), (0, _gather((M, S // 2), 1, M), _tensor((M, S // 2)))),
|
|
(_tensor((M, S)), (1, _gather((M, S // 2), 0, S), _tensor((M, S // 2)))),
|
|
(_tensor((M, S)), (-1, _gather((M, S // 2), 0, S), _tensor((M, S // 2)))),
|
|
(_tensor(()), (0, zero.clone().detach(), _tensor(()))),
|
|
(_tensor(()), (0, zero.clone().detach(), 2.5)),
|
|
)
|
|
|
|
samples = []
|
|
for tensor, args in test_cases:
|
|
samples.append(SampleInput(tensor, args=args))
|
|
|
|
if not requires_grad:
|
|
samples.append(SampleInput(
|
|
tensor.clone().detach(),
|
|
args=args, kwargs={'reduce': 'add'}
|
|
))
|
|
|
|
if dtype.is_floating_point:
|
|
samples.append(SampleInput(
|
|
tensor.clone().detach(),
|
|
args=args, kwargs={'reduce': 'multiply'}
|
|
))
|
|
|
|
return samples
|
|
|
|
def sample_inputs_scatter_add(op_info, device, dtype, requires_grad, **kwargs):
|
|
def _tensor(shape, dtype=dtype, low=None, high=None):
|
|
return make_tensor(shape, dtype=dtype, device=device, low=low, high=high, requires_grad=requires_grad)
|
|
|
|
def _gather(shape, index_dim, max_indices):
|
|
return gather_variable(shape, index_dim, max_indices, device=device)
|
|
|
|
zero = torch.tensor(0, dtype=torch.long, device=device)
|
|
test_cases = (
|
|
(_tensor((M, S)), (0, _gather((S, S), 1, M), _tensor((S, S)))),
|
|
(_tensor((M, S)), (1, _gather((S, S), 0, S), _tensor((S, S)))),
|
|
(_tensor((M, S)), (-1, _gather((S, S), 0, S), _tensor((S, S)))),
|
|
(_tensor((M, S)), (0, _gather((M, S // 2), 1, M), _tensor((M, S // 2)))),
|
|
(_tensor((M, S)), (1, _gather((M, S // 2), 0, S), _tensor((M, S // 2)))),
|
|
(_tensor((M, S)), (-1, _gather((M, S // 2), 0, S), _tensor((M, S // 2)))),
|
|
(_tensor(()), (0, zero.clone().detach(), _tensor(()))),
|
|
)
|
|
|
|
return [SampleInput(tensor, args=args) for tensor, args in test_cases]
|
|
|
|
def sample_inputs_scatter_reduce(op_info, device, dtype, requires_grad, **kwargs):
|
|
def _tensor(shape, dtype=dtype, low=None, high=None):
|
|
return make_tensor(shape, dtype=dtype, device=device, low=low, high=high, requires_grad=requires_grad)
|
|
|
|
def _gather(shape, index_dim, max_indices):
|
|
return gather_variable(shape, index_dim, max_indices, device=device)
|
|
|
|
zero = torch.tensor(0, dtype=torch.long, device=device)
|
|
test_cases = (
|
|
((M, S), 0, _gather((S, S), 1, M), (S, S)),
|
|
((M, S), 1, _gather((S, S), 0, S), (S, S)),
|
|
((M, S), -1, _gather((S, S), 0, S), (S, S)),
|
|
((M, S), 0, _gather((M, S // 2), 1, M), (M, S // 2)),
|
|
((M, S), 1, _gather((M, S // 2), 0, S), (M, S // 2)),
|
|
((M, S), -1, _gather((M, S // 2), 0, S), (M, S // 2)),
|
|
((), 0, zero.clone().detach(), ()),
|
|
)
|
|
|
|
reduce = op_info.variant_test_name
|
|
sample_inputs = []
|
|
for args, include_self in product(test_cases, [True, False]):
|
|
inp_shape, dim, index, src_shape = args
|
|
sample_inputs.append(
|
|
SampleInput(
|
|
_tensor(inp_shape),
|
|
args=(dim, index, _tensor(src_shape), reduce),
|
|
kwargs={'include_self': include_self}
|
|
)
|
|
)
|
|
|
|
return sample_inputs
|
|
|
|
def sample_inputs_ravel(op_info, device, dtype, requires_grad, **kwargs):
|
|
samples = (SampleInput(make_tensor((S, S, S), dtype=dtype, device=device,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad)),
|
|
SampleInput(make_tensor((), dtype=dtype, device=device,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad)),)
|
|
|
|
return samples
|
|
|
|
|
|
def sample_inputs_tril_triu(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
cases = (((M, M), ()),
|
|
((M, M), (2,),),
|
|
((S, M, M), ()),
|
|
((S, M, M), (2,)),
|
|
((3, 3, S, S), ()),)
|
|
|
|
for shape, args in cases:
|
|
yield SampleInput(make_arg(shape), args=args)
|
|
|
|
|
|
def sample_inputs_clone(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
yield SampleInput(make_arg((S, M, S)))
|
|
yield SampleInput(make_arg(()))
|
|
|
|
|
|
def sample_inputs_contiguous(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
yield SampleInput(make_arg((S, S)))
|
|
|
|
|
|
def sample_inputs_sum_to_size(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
# list of tuples (shape, shape) defining the shapes of the input and output tensors
|
|
sample_shapes = [
|
|
((), ()),
|
|
((S), (1)),
|
|
((S, S), (1, 1)),
|
|
((S, S), (1, S)),
|
|
((S, S), (S, S)),
|
|
((S, S, S), (S, 1, S)),
|
|
]
|
|
|
|
samples = []
|
|
|
|
for input_shape, output_shape in sample_shapes:
|
|
input_t = make_arg(input_shape)
|
|
samples.append(SampleInput(input_t, args=(output_shape,)))
|
|
|
|
return samples
|
|
|
|
def sample_inputs_resize_ops(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device)
|
|
cases = (((S, S, S), (S * S, S)),
|
|
((), ()),
|
|
((), (1, 1, 1)),
|
|
)
|
|
|
|
for shape, args_or_shape in cases:
|
|
# Update `args` based on operator
|
|
if op_info.name == 'resize_':
|
|
# resize_ takes shape/tuple of ints,
|
|
args = (args_or_shape, )
|
|
elif op_info.name == 'resize_as_':
|
|
# resize_as_ takes another tensor
|
|
args = (make_arg(shape, requires_grad=False), ) # type:ignore[assignment]
|
|
else:
|
|
raise ValueError("sample_inputs_resize_ops is being used with incorrect operator")
|
|
|
|
yield(SampleInput(make_arg(shape, requires_grad=requires_grad), args=args))
|
|
|
|
def sample_inputs_view_reshape(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
cases = (((S, S, S), (S * S, S)),
|
|
((S * S, S), (S, S, S)),
|
|
((S * S, S), (S, -1, S)),
|
|
((S * S * 2, S), (S, -1)),
|
|
((S,), (S,)),
|
|
((), ()),
|
|
((), (1,)))
|
|
|
|
for case in cases:
|
|
shape, args = case
|
|
inp = make_arg(shape, requires_grad=requires_grad)
|
|
yield(SampleInput(inp, args=(args, )))
|
|
|
|
if op_info.name != "view" and len(shape) >= 2:
|
|
yield(SampleInput(
|
|
inp.clone().transpose(0, 1).requires_grad_(requires_grad),
|
|
args=(args, )))
|
|
|
|
def sample_inputs_view_as_reshape_as(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device)
|
|
|
|
cases = (((S, S, S), (S * S, S)),
|
|
((), ()),
|
|
((), (1, 1)),
|
|
)
|
|
|
|
for case in cases:
|
|
shape, shape_other = case
|
|
inp = make_arg(shape, requires_grad=requires_grad)
|
|
yield(SampleInput(inp, args=(make_arg(shape_other, requires_grad=False),)))
|
|
|
|
if op_info.name != "view_as" and len(shape) >= 2:
|
|
yield(SampleInput(
|
|
inp.clone().transpose(0, 1).requires_grad_(requires_grad),
|
|
args=(make_arg(shape_other, requires_grad=False),)))
|
|
|
|
def sample_inputs_atleast1d2d3d(op_info, device, dtype, requires_grad, **kwargs):
|
|
input_list = []
|
|
shapes = ((S, S, S, S), (S, S, S), (S, S), (S, ), (),)
|
|
make_tensor_partial = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
samples = []
|
|
for shape in shapes:
|
|
input_list.append(make_tensor_partial(shape))
|
|
samples.append(SampleInput(make_tensor_partial(shape)))
|
|
samples.append(SampleInput(input_list, ))
|
|
return samples
|
|
|
|
def sample_inputs_column_stack(op_info, device, dtype, requires_grad, **kwargs):
|
|
input_list = []
|
|
cases: Tuple[tuple, tuple] = ( # type: ignore[assignment]
|
|
((S, 2, 1), (S, 3, 1)),
|
|
((S), (S, 5)), ((), (1, S))
|
|
)
|
|
make_tensor_partial = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
for shape1, shape2 in cases:
|
|
input_list.append(SampleInput([make_tensor_partial(shape1), make_tensor_partial(shape2)]))
|
|
|
|
return input_list
|
|
|
|
def sample_inputs_flatten(op_info, device, dtype, requires_grad, **kwargs):
|
|
samples = []
|
|
shapes = ((S, S, S), (S, S), (S, ), (),)
|
|
make_tensor_partial = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
for shape in shapes:
|
|
samples.append(SampleInput(make_tensor_partial(shape)))
|
|
if len(shape) > 1:
|
|
samples.append(SampleInput(make_tensor_partial(shape), kwargs=dict(start_dim=1, end_dim=-1)))
|
|
return samples
|
|
|
|
def sample_inputs_select(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
cases = (((S, S, S), (1, 2)),
|
|
((S, S, S), (-1, 2)),
|
|
((S, S, S), (-1, -1)),
|
|
((S, S, S), (1, -1)),
|
|
((S,), (0, 2))
|
|
)
|
|
|
|
for shape, args in cases:
|
|
yield SampleInput(make_arg(shape), args=args)
|
|
|
|
|
|
def sample_inputs_select_scatter(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
cases = (((S, S, S), (S, S), (1, 2)),
|
|
((S, S, S), (S, S), (-1, 2)),
|
|
((S, S, S), (S, S), (-1, -1)),
|
|
((S, S, S), (S, S), (1, -1)),
|
|
((S,), (), (0, 2))
|
|
)
|
|
|
|
for input_shape, src_shape, args in cases:
|
|
input_ = make_arg(input_shape)
|
|
src = make_arg(src_shape)
|
|
yield SampleInput(input_, args=(src, *args))
|
|
|
|
|
|
def sample_inputs_slice_scatter(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
cases = (((L, L, L), (L, L, L,), (0, 0, L, 1)),
|
|
((L, L, L), (L // 2, L, L,), (0, L // 2, L, 1)),
|
|
((L, L, L), (L // 4, L, L,), (0, L // 2, L, 2)),
|
|
((L, L, L), (L, L, L,), (1, 0, L, 1)),
|
|
((L, L, L), (L, L // 2, L,), (1, L // 2, L, 1)),
|
|
((L, L, L), (L, L // 4, L,), (1, L // 2, L, 2)),
|
|
((L, L, L), (L, L, L,), (2, 0, L, 1)),
|
|
((L, L, L), (L, L, L // 2,), (2, L // 2, L, 1)),
|
|
((L, L, L), (L, L, L // 4,), (2, L // 2, L, 2)),
|
|
)
|
|
|
|
for input_shape, src_shape, args in cases:
|
|
input_ = make_arg(input_shape)
|
|
src = make_arg(src_shape)
|
|
yield SampleInput(input_, args=(src, *args))
|
|
|
|
def sample_inputs_expand(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
cases = (((S, 1, 1), (S, S, S)),
|
|
((S, 1, S), (S, S, S)),
|
|
((S, 1, S), (-1, S, -1)),
|
|
((S, 1, S), (-1, S, S)),
|
|
((S, 1), (S, S, S)),
|
|
((1,), (S, S, S)),
|
|
((1, S), (1, 1, S)),
|
|
((), ()),
|
|
((), (1, 3, 2)),
|
|
)
|
|
|
|
for case in cases:
|
|
shape, args = case
|
|
yield(SampleInput(make_arg(shape), args=(args, )))
|
|
|
|
def sample_inputs_conversion(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
shapes = ((),
|
|
(2, 3))
|
|
memory_format_options = [None, torch.contiguous_format]
|
|
|
|
for shape, memory_format in itertools.product(shapes, memory_format_options):
|
|
yield SampleInput(make_arg(shape),
|
|
kwargs={'memory_format': memory_format} if memory_format else {})
|
|
yield SampleInput(make_arg((2, 3, 2, 3)), kwargs={'memory_format': torch.channels_last})
|
|
|
|
def sample_inputs_expand_as(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device)
|
|
|
|
cases = (((S, 1, 1), (S, S, S)),
|
|
((), ()),
|
|
((), (1, 1)),
|
|
)
|
|
|
|
for shape, shape_other in cases:
|
|
yield(SampleInput(make_arg(shape, requires_grad=requires_grad),
|
|
args=(make_arg(shape_other, requires_grad=False), )))
|
|
|
|
|
|
def sample_inputs_where(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
def make_bool_mask(shape):
|
|
# Make sure atleast one element is nonzero,
|
|
# except for empty tensor
|
|
mask_t = make_tensor(shape, dtype=torch.bool, device=device, requires_grad=False)
|
|
|
|
if mask_t.numel() == 0:
|
|
return mask_t
|
|
elif mask_t.numel() == 1:
|
|
mask_t.fill_(True)
|
|
return mask_t
|
|
|
|
if mask_t.sum() == 0:
|
|
def random_index(shape):
|
|
return tuple(map(lambda max_idx: random.randint(0, max_idx), shape))
|
|
|
|
mask_t[random_index(mask_t.shape)] = True
|
|
return mask_t
|
|
|
|
return mask_t
|
|
|
|
cases = (((M, M), (M, M), (M, M), False),
|
|
((M, 1, M), (M, M), (M, M, 1), True),
|
|
((), (), (), False),
|
|
((M, 1, M), (), (M, M, 1), True),
|
|
((), (M, M), (), True),)
|
|
|
|
for shape, mask_shape, other_shape, broadcasts_input in cases:
|
|
yield SampleInput(make_arg(shape),
|
|
args=(make_bool_mask(mask_shape), make_arg(other_shape)),
|
|
broadcasts_input=broadcasts_input)
|
|
|
|
def error_inputs_where(op_info, device, **kwargs):
|
|
shape = (S,)
|
|
err_msg = "Expected all tensors to be on the same device"
|
|
for devices in product(('cpu', device), repeat=3):
|
|
if len(set(devices)) == 2:
|
|
si = SampleInput(make_tensor(shape, device=devices[0], dtype=torch.float32),
|
|
args=(make_tensor(shape, dtype=torch.bool, device=devices[1]),
|
|
make_tensor(shape, device=devices[2], dtype=torch.float32)))
|
|
yield ErrorInput(si, error_regex=err_msg)
|
|
|
|
def sample_inputs_nonzero(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
sizes = ((), (S,), (S, S), (S, S, S), (S, 1, S), (S, 0, S))
|
|
|
|
inputs = []
|
|
for shape in sizes:
|
|
# construct input without any non-zero elements
|
|
zeros = torch.zeros(shape, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
inputs.append(zeros)
|
|
|
|
# construct input with mixed zero and non-zero elements
|
|
mixed = make_arg(shape).requires_grad_(False)
|
|
mask_t = make_tensor(shape, dtype=torch.bool, device=device, requires_grad=False)
|
|
mixed[mask_t] = 0
|
|
inputs.append(mixed)
|
|
|
|
for input_t, as_tuple in product(inputs, [False, True]):
|
|
yield(SampleInput(input_t.clone().requires_grad_(requires_grad),
|
|
kwargs=dict(as_tuple=as_tuple)))
|
|
|
|
def sample_inputs_chunk(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device)
|
|
|
|
cases = (((S, S, S), (2,)),
|
|
((S, S, S), (S, 1)),
|
|
((S, S, S), (S, -1)))
|
|
|
|
for case in cases:
|
|
shape, args = case
|
|
yield(SampleInput(make_arg(shape, requires_grad=requires_grad), args=args))
|
|
|
|
def sample_inputs_kthvalue(op_info, device, dtype, requires_grad, **kwargs):
|
|
def _tensor(shape, dtype=dtype, low=None, high=None):
|
|
return make_tensor(shape, dtype=dtype, device=device, low=low, high=high, requires_grad=requires_grad)
|
|
|
|
test_cases = [
|
|
(_tensor((S, S, S)), (2,)),
|
|
(_tensor((S, S, S)), (2, 1,)),
|
|
(_tensor((S, S, S)), (2, -1,)),
|
|
(_tensor((S, S, S)), (2, 1, True,)),
|
|
(_tensor((S, S, S)), (2, -1, True,)),
|
|
(_tensor((S,)), (2, 0,)),
|
|
(_tensor((S,)), (2, 0, True,)),
|
|
(_tensor(()), (1,)),
|
|
(_tensor(()), (1, 0,)),
|
|
(_tensor(()), (1, 0, True))
|
|
]
|
|
|
|
return [SampleInput(tensor, args=args) for tensor, args in test_cases]
|
|
|
|
def error_inputs_kthvalue(op_info, device, **kwargs):
|
|
# tests overlapping output fails
|
|
t = make_tensor(10, dtype=torch.float32, device=device)
|
|
indices = torch.empty((), device=device, dtype=torch.long)
|
|
si = SampleInput(t, args=(5,), kwargs={'out': (t, indices)})
|
|
|
|
k_out_of_range_err = "selected number k out of range for dimension"
|
|
return (ErrorInput(si, error_regex="unsupported operation"),
|
|
ErrorInput(SampleInput(torch.randn(2, 2, device=device), args=(3, 0)),
|
|
error_regex=k_out_of_range_err),
|
|
ErrorInput(SampleInput(torch.randn(2, 2, device=device), args=(3,)),
|
|
error_regex=k_out_of_range_err),
|
|
ErrorInput(SampleInput(torch.tensor(2, device=device), args=(3,)),
|
|
error_regex=k_out_of_range_err),)
|
|
|
|
def sample_inputs_dropout(op_info, device, dtype, requires_grad, *,
|
|
train=None, valid_input_dim=None, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
if valid_input_dim:
|
|
cases = ((S,) * i for i in valid_input_dim)
|
|
else:
|
|
cases = ((S, S), (S,), ())
|
|
p_vals = [0.0, 0.5, 1.0]
|
|
# This is to handle special case for feature_alpha_dropout which has different
|
|
# supported dtypes depending on `train` parameter
|
|
training_vals = [train] if train is not None else [True, False]
|
|
|
|
for case, p, training in product(cases, p_vals, training_vals):
|
|
yield SampleInput(make_arg(case), kwargs=dict(p=p, training=training))
|
|
yield SampleInput(make_arg(case), kwargs=dict())
|
|
|
|
|
|
def sample_inputs_embedding_bag(op_info, device, dtype, requires_grad, **kwargs):
|
|
def make_input(shape):
|
|
return make_tensor(shape, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
def make_long_input(shape, *, low, high, noncontiguous=False):
|
|
return make_tensor(shape, device=device, dtype=torch.long, low=low, high=high,
|
|
noncontiguous=noncontiguous)
|
|
|
|
def make_per_sample_weight(flag, idx):
|
|
# a tensor of float / double weights, or None
|
|
# to indicate all weights should be taken to be 1
|
|
if flag:
|
|
return make_input(idx.shape)
|
|
return None
|
|
|
|
offsets = torch.tensor([0, 3], device=device, dtype=torch.long)
|
|
for generate_per_sample_weight in (True, False):
|
|
for mode in ('sum', 'mean', 'max'):
|
|
# per_sample_weights is only supported for mode='sum' (got mode='****')
|
|
if generate_per_sample_weight and mode in ('mean', 'max'):
|
|
continue
|
|
|
|
# 1-D index tensor
|
|
idx = make_long_input((S,), low=0, high=M)
|
|
per_sample_weights = make_per_sample_weight(generate_per_sample_weight, idx)
|
|
yield SampleInput(make_input((M, S)), args=(idx,),
|
|
kwargs={'offsets': offsets, 'mode': mode,
|
|
'per_sample_weights': per_sample_weights})
|
|
|
|
idx = make_long_input((S,), low=0, high=M, noncontiguous=True)
|
|
per_sample_weights = make_per_sample_weight(generate_per_sample_weight, idx)
|
|
yield SampleInput(make_input((M, S)), args=(idx,),
|
|
kwargs={'offsets': offsets, 'mode': mode,
|
|
'per_sample_weights': per_sample_weights})
|
|
|
|
# bag with zero length
|
|
idx = make_long_input((S,), low=0, high=M, noncontiguous=True)
|
|
per_sample_weights = make_per_sample_weight(generate_per_sample_weight, idx)
|
|
yield SampleInput(make_input((M, S)), args=(idx,),
|
|
kwargs={'offsets': torch.tensor([0, 0, 3], device=device, dtype=torch.long),
|
|
'mode': mode,
|
|
'per_sample_weights': per_sample_weights})
|
|
|
|
# 2-D index tensor
|
|
idx = make_long_input((S, S), low=0, high=M)
|
|
per_sample_weights = make_per_sample_weight(generate_per_sample_weight, idx)
|
|
yield SampleInput(make_input((M, S)), args=(idx,),
|
|
kwargs={'mode': mode, 'per_sample_weights': per_sample_weights})
|
|
|
|
idx = make_long_input((S, S), low=0, high=M, noncontiguous=True)
|
|
per_sample_weights = make_per_sample_weight(generate_per_sample_weight, idx)
|
|
yield SampleInput(make_input((M, S)), args=(idx,),
|
|
kwargs={'mode': mode, 'per_sample_weights': per_sample_weights})
|
|
|
|
# The gradient vector at `padding_idx` is not updated.
|
|
# Negative padding_idx
|
|
idx = make_long_input((6,), low=0, high=S)
|
|
idx[0] = 4
|
|
idx[4] = 4
|
|
per_sample_weights = make_per_sample_weight(generate_per_sample_weight, idx)
|
|
yield SampleInput(make_input((S, S)), args=(idx,),
|
|
kwargs={'padding_idx': -1, 'offsets': offsets,
|
|
'mode': mode, 'per_sample_weights': per_sample_weights},)
|
|
|
|
idx = make_long_input((3, 3), low=0, high=S)
|
|
# Positive padding_idx
|
|
idx[0, 0] = 2
|
|
idx[1, 1] = 2
|
|
per_sample_weights = make_per_sample_weight(generate_per_sample_weight, idx)
|
|
yield SampleInput(make_input((S, S)), args=(idx,),
|
|
kwargs={'padding_idx': 2, 'mode': mode,
|
|
'per_sample_weights': per_sample_weights},)
|
|
|
|
idx = make_long_input((6, ), low=0, high=S)
|
|
weights = make_input((S, S))
|
|
offsets_ = torch.tensor([0, 3, 6], device=device, dtype=torch.long)
|
|
per_sample_weights = make_per_sample_weight(generate_per_sample_weight, idx)
|
|
yield SampleInput(weights, args=(idx,),
|
|
kwargs={'mode': mode, 'offsets': offsets_, 'include_last_offset': True},)
|
|
|
|
if not requires_grad:
|
|
# Following inputs return different gradient from the numerical gradient.
|
|
# This is expected and relevant tests are present in `test_nn.py`.
|
|
|
|
# Due to inplace renorming of weight, the numerical gradient doesn't match the
|
|
# analytical gradient.
|
|
idx = make_long_input((2, 2), low=0, high=S)
|
|
weights = make_input((S, S)) * 2
|
|
per_sample_weights = make_per_sample_weight(generate_per_sample_weight, idx)
|
|
yield SampleInput(weights, args=(idx,),
|
|
kwargs={'max_norm': 1., 'mode': mode,
|
|
'per_sample_weights': per_sample_weights},)
|
|
|
|
idx = make_long_input((6, ), low=0, high=S)
|
|
weights = make_input((S, S)) * 2
|
|
per_sample_weights = make_per_sample_weight(generate_per_sample_weight, idx)
|
|
yield SampleInput(weights, args=(idx,),
|
|
kwargs={'max_norm': 1., 'norm_type': 1.0,
|
|
'mode': mode, 'offsets': offsets,
|
|
'per_sample_weights': per_sample_weights},)
|
|
|
|
if mode != 'max':
|
|
# Scale the gradient based on the inverse frequency of a particular index.
|
|
# Note : smax mode does not support sparse weights
|
|
idx = make_long_input((2, 2), low=0, high=S)
|
|
idx[0, 0] = 1
|
|
idx[0, 1] = 1
|
|
weights = make_input((S, S))
|
|
per_sample_weights = make_per_sample_weight(generate_per_sample_weight, idx)
|
|
yield SampleInput(weights, args=(idx,),
|
|
kwargs={'scale_grad_by_freq': True, 'mode': mode,
|
|
'per_sample_weights': per_sample_weights},)
|
|
|
|
# gradcheck not implemented for sparse tensors.
|
|
# Note : max mode does not support sparse weights
|
|
idx = make_long_input((6, ), low=0, high=S)
|
|
weights = make_input((S, S))
|
|
per_sample_weights = make_per_sample_weight(generate_per_sample_weight, idx)
|
|
yield SampleInput(weights, args=(idx,),
|
|
kwargs={'sparse': True, 'offsets': offsets,
|
|
'mode': mode, 'per_sample_weights': per_sample_weights})
|
|
|
|
idx = make_long_input((6, ), low=0, high=S)
|
|
idx[0] = 1 # freq more than 1
|
|
idx[1] = 1 # freq more than 1
|
|
idx[3] = 0 # padding_idx
|
|
weights = make_input((S, S)) * 2
|
|
per_sample_weights = make_per_sample_weight(generate_per_sample_weight, idx)
|
|
yield SampleInput(weights, args=(idx,),
|
|
kwargs={'sparse': True, 'scale_grad_by_freq': True, 'padding_idx': 0,
|
|
'max_norm': 1., 'offsets': offsets,
|
|
'mode': mode, 'per_sample_weights': per_sample_weights})
|
|
|
|
|
|
def sample_inputs_embedding(op_info, device, dtype, requires_grad, **kwargs):
|
|
def make_input(shape):
|
|
return make_tensor(shape, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
def make_long_input(shape, *, low, high):
|
|
return make_tensor(shape, device=device, dtype=torch.long, low=low, high=high)
|
|
|
|
# 0-D index tensor
|
|
idx = make_long_input((), low=0, high=M)
|
|
yield SampleInput(make_input((M, S)), args=(idx,),)
|
|
|
|
# 1-D index tensor
|
|
idx = make_long_input((S,), low=0, high=M)
|
|
yield SampleInput(make_input((M, S)), args=(idx,),)
|
|
|
|
# 2-D index tensor
|
|
idx = make_long_input((S, S), low=0, high=M)
|
|
yield SampleInput(make_input((M, S)), args=(idx,),)
|
|
|
|
if not requires_grad:
|
|
# Following inputs return different gradient from the numerical gradient.
|
|
# This is expected and relevant tests are present in `test_nn.py`.
|
|
|
|
# The gradient vector at `padding_idx` is not updated.
|
|
idx = make_long_input((2, 2), low=0, high=S)
|
|
idx[0, 0] = 2
|
|
idx[1, 1] = 2
|
|
yield SampleInput(make_input((S, S)), args=(idx,), kwargs={'padding_idx': 2},)
|
|
|
|
idx = make_long_input((2, 2), low=0, high=S)
|
|
idx[0, 0] = 4
|
|
idx[1, 1] = 4
|
|
yield SampleInput(make_input((S, S)), args=(idx,), kwargs={'padding_idx': -1},)
|
|
|
|
# Due to inplace renorming of weight, the numerical gradient doesn't match the
|
|
# analytical gradient.
|
|
idx = make_long_input((2, 2), low=0, high=S)
|
|
weights = make_input((S, S)) * 2
|
|
yield SampleInput(weights, args=(idx,), kwargs={'max_norm': 1.},)
|
|
|
|
idx = make_long_input((2, 2), low=0, high=S)
|
|
weights = make_input((S, S)) * 2
|
|
yield SampleInput(weights, args=(idx,), kwargs={'max_norm': 1., 'norm_type': 1.0},)
|
|
|
|
# Scale the gradient based on the inverse frequency of a particular index.
|
|
idx = make_long_input((2, 2), low=0, high=S)
|
|
idx[0, 0] = 1
|
|
idx[0, 1] = 1
|
|
weights = make_input((S, S))
|
|
yield SampleInput(weights, args=(idx,), kwargs={'scale_grad_by_freq': True},)
|
|
|
|
# gradcheck not implemented for sparse tensors.
|
|
idx = make_long_input((2, 2), low=0, high=S)
|
|
weights = make_input((S, S))
|
|
yield SampleInput(weights, args=(idx,), kwargs={'sparse': True})
|
|
|
|
idx = make_long_input((3, 3), low=0, high=S)
|
|
idx[0, 0] = 1 # freq more than 1
|
|
idx[0, 1] = 1 # freq more than 1
|
|
idx[1, 0] = 0 # padding_idx
|
|
weights = make_input((S, S)) * 2
|
|
yield SampleInput(weights, args=(idx,),
|
|
kwargs={'sparse': True, 'scale_grad_by_freq': True,
|
|
'padding_idx': 0, 'max_norm': 1.})
|
|
|
|
|
|
def sample_inputs_one_hot(op_info, device, dtype, requires_grad, **kwargs):
|
|
def make_input(shape, *, low, high):
|
|
return make_tensor(shape, device=device, dtype=dtype, low=low, high=high, requires_grad=requires_grad)
|
|
|
|
shapes = ((), (S,), (L, M, S))
|
|
num_classess = (-1, 10)
|
|
|
|
return [
|
|
SampleInput(
|
|
make_input(
|
|
shape,
|
|
low=0,
|
|
high=10 if num_classes == -1 else num_classes // 2,
|
|
),
|
|
kwargs=dict(num_classes=num_classes),
|
|
)
|
|
for shape, num_classes in itertools.product(shapes, num_classess)
|
|
]
|
|
|
|
def sample_inputs_softplus(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_input = partial(make_tensor, (S,), device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
return [
|
|
SampleInput(make_input()),
|
|
SampleInput(make_input(), kwargs=dict(beta=3)),
|
|
SampleInput(make_input(low=1), kwargs=dict(threshold=1)),
|
|
]
|
|
|
|
def sample_inputs_tensorinv(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = make_fullrank_matrices_with_distinct_singular_values
|
|
|
|
def make_input():
|
|
return make_arg(12, 12, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# lhs / rhs shape can have any number of dimensions as long as their product equals 12
|
|
shapes = [
|
|
((2, 2, 3), (12, 1)),
|
|
((4, 3), (6, 1, 2)),
|
|
]
|
|
|
|
samples = []
|
|
for shape_lhs, shape_rhs in shapes:
|
|
inp = make_input().reshape(*shape_lhs, *shape_rhs).detach()
|
|
inp.requires_grad_(requires_grad)
|
|
samples.append(SampleInput(inp, kwargs=dict(ind=len(shape_lhs))))
|
|
|
|
return samples
|
|
|
|
def sample_inputs_tensorsolve(op_info, device, dtype, requires_grad, **kwargs):
|
|
a_shapes = [(2, 3, 6), (3, 4, 4, 3)]
|
|
# Zero-dim tensors are not supported in NumPy, so we skip them for now.
|
|
# NumPy is used in reference check tests.
|
|
# See https://github.com/numpy/numpy/pull/20482 for tracking NumPy bugfix.
|
|
# a_shapes += [(0, 0, 1, 2, 3, 0)]
|
|
dimss = [None, (0, 2)]
|
|
|
|
for a_shape, dims in itertools.product(a_shapes, dimss):
|
|
a = make_tensor(a_shape, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
b = make_tensor(a_shape[:2], dtype=dtype, device=device, requires_grad=requires_grad)
|
|
yield SampleInput(a, args=(b,), kwargs=dict(dims=dims))
|
|
|
|
def sample_inputs_loss(op_info, device, dtype, requires_grad, **kwargs):
|
|
rhs_requires_grad = kwargs.get('rhs_requires_grad', requires_grad)
|
|
_make_tensor = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# Although most losses also support the reduce and size_average combination instead of reduce, the former is
|
|
# deprecated since 0.4.1 and thus is not tested
|
|
shapes_and_kwargs = (
|
|
((), None),
|
|
((S,), dict(reduction="mean")),
|
|
((S,), dict(reduction="sum")),
|
|
((S,), dict(reduction="none")),
|
|
((S, S), None),
|
|
((S, S, S), None),
|
|
)
|
|
|
|
for shape, kwargs in shapes_and_kwargs:
|
|
yield SampleInput(_make_tensor(shape),
|
|
args=(_make_tensor(shape, requires_grad=rhs_requires_grad),),
|
|
kwargs=kwargs)
|
|
|
|
def sample_inputs_grid_sample(op_info, device, dtype, requires_grad, **kwargs):
|
|
_make_tensor = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
batch_size = 2
|
|
num_channels = 3
|
|
modes = ("bilinear", "nearest")
|
|
align_cornerss = (False, True)
|
|
padding_modes = ("zeros", "border", "reflection")
|
|
|
|
sample_inputs = []
|
|
for dim in (2, 3):
|
|
|
|
modes_ = (*modes, "bicubic") if dim == 2 else modes
|
|
|
|
for mode, padding_mode, align_corners in itertools.product(modes_, padding_modes, align_cornerss):
|
|
sample_inputs.append(
|
|
SampleInput(
|
|
_make_tensor((batch_size, num_channels, *[S] * dim)),
|
|
args=(_make_tensor((batch_size, *[S] * dim, dim)),),
|
|
kwargs=dict(
|
|
mode=mode,
|
|
padding_mode=padding_mode,
|
|
align_corners=align_corners,
|
|
)
|
|
)
|
|
)
|
|
|
|
return sample_inputs
|
|
|
|
def sample_inputs_cosine_embedding_loss(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
def make_target(shape):
|
|
shape = () if len(shape) == 1 else (shape[0], )
|
|
t = torch.randint(0, 2, shape, device=device, dtype=torch.long)
|
|
# Label with -1 or 1
|
|
t = t * 2 - 1
|
|
target = t.to(dtype=dtype).detach_().requires_grad_(requires_grad)
|
|
return target
|
|
|
|
shapes = ((S, S), (S,))
|
|
reductions = ('none', 'mean', 'sum')
|
|
for s, r in product(shapes, reductions):
|
|
yield SampleInput(
|
|
make_input(s),
|
|
args=(make_input(s), make_target(s)),
|
|
kwargs=dict(reduction=r, margin=random.uniform(-1, 1))
|
|
)
|
|
|
|
def sample_inputs_ctc_loss(op_info, device, dtype, requires_grad, **kwargs):
|
|
input_length = 50
|
|
batch = 16
|
|
num_char = 20
|
|
target_length = 30
|
|
|
|
def make_log_probs(s):
|
|
t = make_tensor(s, device=device, dtype=dtype)
|
|
log_probs = t.log_softmax(2).to(device=device, dtype=dtype).detach().requires_grad_(requires_grad=requires_grad)
|
|
return log_probs
|
|
|
|
reductions = ('none', 'mean', 'sum')
|
|
zero_inf = (True, False)
|
|
for r, z in product(reductions, zero_inf):
|
|
log_probs = make_log_probs((input_length, batch, num_char))
|
|
targets = torch.randint(1, num_char, (batch, target_length), dtype=torch.long, device=device)
|
|
input_lengths = torch.full((batch, ), input_length, dtype=torch.long, device=device)
|
|
target_lengths = torch.randint(10, target_length, (batch, ), dtype=torch.long, device=device)
|
|
|
|
yield SampleInput(log_probs, args=(targets, input_lengths, target_lengths,), kwargs=dict(reduction=r, zero_infinity=z))
|
|
|
|
def sample_inputs_nll_loss(op_info, device, dtype, requires_grad, **kwargs):
|
|
shape = (2, 3)
|
|
num_classes = shape[1]
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
# FIXME: Derivative wrt. weight not implemented
|
|
make_weight = partial(make_tensor, num_classes, device=device, dtype=dtype, requires_grad=False)
|
|
|
|
def make_target(shape, zeros=False):
|
|
s = (shape[0], *shape[2:]) if len(shape) > 1 else ()
|
|
if zeros:
|
|
return torch.zeros(s, device=device, dtype=torch.long)
|
|
else:
|
|
return make_tensor(s,
|
|
low=0,
|
|
high=shape[1] if len(shape) > 1 else shape[0],
|
|
device=device,
|
|
dtype=torch.long)
|
|
|
|
|
|
def gen_shape_kwargs():
|
|
# Batched, non-batched and 2d
|
|
shapes = (shape, (num_classes,), shape + (2, 2))
|
|
reductions = ('none', 'mean', 'sum')
|
|
for reduction, s in product(reductions, shapes):
|
|
yield make_input(s), make_target(s), dict(reduction=reduction)
|
|
yield make_input(s), make_target(s), dict(weight=make_weight(), reduction=reduction)
|
|
yield make_input(s), make_target(s), dict(weight=make_weight(low=0), reduction=reduction)
|
|
yield make_input(s), make_target(s), dict(weight=make_weight(high=0), reduction=reduction)
|
|
t = make_target(s)
|
|
ignore = num_classes // 2
|
|
# If "mean", nll returns NaN, so it's not differentiable at those points
|
|
if t.eq(ignore).all() and reduction == "mean":
|
|
t.fill_(0)
|
|
yield make_input(s), t, dict(ignore_index=num_classes // 2, reduction=reduction)
|
|
yield make_input(s), t, dict(ignore_index=num_classes // 2, reduction=reduction, weight=make_weight())
|
|
# Test ignoring all the targets
|
|
# If "mean", nll returns NaN, so it's not differentiable at those points
|
|
if reduction != "mean":
|
|
yield make_input(s), make_target(s, zeros=True), dict(ignore_index=0, reduction=reduction)
|
|
|
|
for input, target, kwargs in gen_shape_kwargs():
|
|
yield SampleInput(input, args=(target,), kwargs=kwargs)
|
|
|
|
def sample_inputs_binary_cross_entropy_with_logits(
|
|
op_info, device, dtype, requires_grad, **kwargs
|
|
):
|
|
make = partial(make_tensor, device=device, dtype=dtype)
|
|
make_prob = partial(make, low=0, high=1)
|
|
reductions = ("mean", "sum", "none")
|
|
|
|
def make_weight_shape_kwargs():
|
|
kwargs = []
|
|
for shape in ((1,), (1, S), (S), (S, S)):
|
|
kwargs.extend([((S, S), dict(reduction=reduction, weight=make(shape))) for reduction in reductions])
|
|
return kwargs
|
|
|
|
shapes_and_kwargs = [
|
|
*[(shape, None) for shape in ((), (1,), (S,), (S, S), (S, S, S))],
|
|
*[((S, S), dict(reduction=reduction)) for reduction in reductions],
|
|
*make_weight_shape_kwargs(),
|
|
*[((S, S), dict(reduction=reduction, pos_weight=make((S,), low=0))) for reduction in reductions],
|
|
*[((S, S), dict(reduction=reduction, weight=make((S, S)), pos_weight=make((S,), low=0))) for reduction in reductions],
|
|
]
|
|
|
|
for shape, kwargs in shapes_and_kwargs:
|
|
yield SampleInput(
|
|
make(shape, requires_grad=requires_grad),
|
|
args=(make_prob(shape, requires_grad=requires_grad),),
|
|
kwargs=kwargs,
|
|
)
|
|
|
|
def sample_inputs_argwhere(op_info, device, dtype, requires_grad, **kwargs):
|
|
yield SampleInput(torch.tensor([1, 0, 2, 0], dtype=dtype, device=device, requires_grad=requires_grad))
|
|
mask = torch.tensor([[0, 1, 0, 1, 0],
|
|
[1, 1, 1, 1, 0],
|
|
[0, 0, 0, 1, 0],
|
|
[1, 0, 1, 1, 0],
|
|
[1, 0, 0, 1, 0]], dtype=torch.bool, device=device)
|
|
t = make_tensor((S, S), dtype=dtype, device=device, requires_grad=requires_grad)
|
|
t[mask] = 0
|
|
yield SampleInput(t)
|
|
|
|
t = make_tensor((S, S), dtype=dtype, device=device, requires_grad=requires_grad, noncontiguous=True)
|
|
t[mask] = 0
|
|
yield SampleInput(t)
|
|
|
|
t = make_tensor((S, 0), dtype=dtype, device=device, requires_grad=requires_grad)
|
|
yield SampleInput(t)
|
|
|
|
yield SampleInput(torch.zeros((S,), dtype=dtype, device=device, requires_grad=requires_grad))
|
|
yield SampleInput(make_tensor((), dtype=dtype, device=device, requires_grad=requires_grad))
|
|
|
|
def _generate_sample_shape_reduction():
|
|
shapes = ((S,), (S, S), (S, S, S))
|
|
reductions = ('none', 'mean', 'sum')
|
|
for s, r in product(shapes, reductions):
|
|
yield s, r
|
|
|
|
def sample_inputs_gaussian_nll_loss(op_info, device, dtype, requires_grad, **kwargs):
|
|
_make_tensor = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
# Set low slightly above 0 so gradcheck doesn't accidentally dip below 0
|
|
make_var = partial(make_tensor, low=0.1, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
def gen_shape(shape):
|
|
yield shape
|
|
# Broadcast
|
|
yield (*shape[:-1], 1)
|
|
yield shape[:-1]
|
|
|
|
def gen_shape_kwargs():
|
|
for s, r in _generate_sample_shape_reduction():
|
|
for t_s, v_s in product(gen_shape(s), gen_shape(s)):
|
|
yield _make_tensor(s), _make_tensor(t_s), make_var(v_s), dict(reduction=r)
|
|
yield (
|
|
_make_tensor(s), _make_tensor(t_s), make_var(v_s),
|
|
dict(full=True, reduction=r)
|
|
)
|
|
yield (
|
|
_make_tensor(s), _make_tensor(t_s), make_var(v_s),
|
|
dict(eps=random.uniform(1e-6, 1e-3), reduction=r)
|
|
)
|
|
yield (
|
|
_make_tensor(s), _make_tensor(t_s), make_var(v_s),
|
|
dict(full=True, eps=random.uniform(1e-6, 1e-3), reduction=r)
|
|
)
|
|
|
|
for input, target, var, kwargs in gen_shape_kwargs():
|
|
yield SampleInput(input, args=(target, var, ), kwargs=kwargs)
|
|
|
|
def _generate_sample_inputs_nn_loss(op_info, device, dtype, requires_grad, **kwargs):
|
|
_make_tensor = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
for s, r in _generate_sample_shape_reduction():
|
|
yield _make_tensor(s), _make_tensor(s), dict(reduction=r)
|
|
|
|
def sample_inputs_hinge_embedding_loss(op_info, device, dtype, requires_grad, **kwargs):
|
|
for input, target, d in _generate_sample_inputs_nn_loss(op_info, device, dtype, requires_grad, **kwargs):
|
|
d['margin'] = random.uniform(-9, 9)
|
|
yield SampleInput(input, args=(target, ), kwargs=d)
|
|
|
|
def sample_inputs_huber_loss(op_info, device, dtype, requires_grad, **kwargs):
|
|
for input, target, d in _generate_sample_inputs_nn_loss(op_info, device, dtype, requires_grad, **kwargs):
|
|
d['delta'] = random.uniform(1e-3, 9)
|
|
yield SampleInput(input, args=(target, ), kwargs=d)
|
|
|
|
def sample_inputs_poisson_nll_loss(op_info, device, dtype, requires_grad, **kwargs):
|
|
_make_tensor = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
def gen_shape_kwargs():
|
|
for s, r in _generate_sample_shape_reduction():
|
|
for li in (True, False):
|
|
for f in (True, False):
|
|
i1 = _make_tensor(s)
|
|
i2 = _make_tensor(s)
|
|
# For Poisson NLL Loss,
|
|
# target is assumed to be from
|
|
# Poisson Distribution which
|
|
# always has positive samples
|
|
t1 = _make_tensor(s, low=0)
|
|
t2 = _make_tensor(s, low=0)
|
|
|
|
with torch.no_grad():
|
|
if not li:
|
|
i1.abs_()
|
|
i2.abs_()
|
|
t1.abs_()
|
|
t2.abs_()
|
|
|
|
yield (
|
|
i1, t1,
|
|
dict(log_input=li, full=f, reduction=r)
|
|
)
|
|
yield (
|
|
i2, t2,
|
|
dict(log_input=li, full=f,
|
|
eps=random.uniform(1e-8, 1e-3),
|
|
reduction=r)
|
|
)
|
|
|
|
for input, target, kwargs in gen_shape_kwargs():
|
|
yield SampleInput(input, args=(target, ), kwargs=kwargs)
|
|
|
|
def sample_inputs_triplet_margin_loss(op_info, device, dtype, requires_grad, with_distance=False, **kwargs):
|
|
make = partial(make_tensor, (S, M), device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
kwargss = (
|
|
*[dict(margin=margin) for margin in (1e-6, 1.0, 10.0)],
|
|
dict(swap=True),
|
|
*[dict(reduction=reduction) for reduction in ("mean", "sum", "none")],
|
|
)
|
|
|
|
for kwargs in kwargss:
|
|
input = make()
|
|
args = (make(), make())
|
|
if with_distance:
|
|
kwargs["distance_function"] = torch.nn.PairwiseDistance()
|
|
yield SampleInput(input, args=args, kwargs=kwargs)
|
|
|
|
def sample_inputs_pairwise_distance(op_info, device, dtype, requires_grad, **kwargs):
|
|
make = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
shape = (3,)
|
|
batched_shape = (2, *shape)
|
|
shapes_and_kwargs = [
|
|
(shape, None),
|
|
(batched_shape, None),
|
|
(shape, dict(keepdim=True)),
|
|
(batched_shape, dict(keepdim=True)),
|
|
(shape, dict(p=5.0)),
|
|
(shape, dict(p=-1.0)),
|
|
(shape, dict(eps=1.0)),
|
|
]
|
|
|
|
return [
|
|
SampleInput(make(shape), args=(make(shape),), kwargs=kwargs) for shape, kwargs in shapes_and_kwargs
|
|
]
|
|
|
|
def sample_inputs_pixel_shuffle(op_info, device, dtype, requires_grad, **kwargs):
|
|
return [
|
|
SampleInput(
|
|
make_tensor((1, 9, 2, 2), device=device, dtype=dtype, requires_grad=requires_grad),
|
|
kwargs=dict(upscale_factor=upscale_factor),
|
|
)
|
|
for upscale_factor in (1, 3)
|
|
]
|
|
|
|
def sample_inputs_pixel_unshuffle(op_info, device, dtype, requires_grad, **kwargs):
|
|
return [
|
|
SampleInput(
|
|
make_tensor((1, 1, 6, 6), device=device, dtype=dtype, requires_grad=requires_grad),
|
|
kwargs=dict(downscale_factor=downscale_factor),
|
|
)
|
|
for downscale_factor in (1, 3)
|
|
]
|
|
|
|
def sample_inputs_binary_cross_entropy(op_info, device, dtype, requires_grad, logits=False, **kwargs):
|
|
make = partial(make_tensor, device=device, dtype=dtype)
|
|
make_prob = partial(make, low=0, high=1)
|
|
|
|
reductions = ("mean", "sum", "none")
|
|
|
|
shapes_and_kwargs = [
|
|
*[(shape, None) for shape in ((), (1,), (S,), (S, S), (S, S, S))],
|
|
*[((S, S), dict(reduction=reduction)) for reduction in reductions],
|
|
*[((S, S), dict(reduction=reduction, weight=make((S, S)))) for reduction in reductions],
|
|
]
|
|
|
|
if logits:
|
|
shapes_and_kwargs.extend(
|
|
[((S, S), dict(reduction=reduction, pos_weight=make((S,), low=0))) for reduction in reductions]
|
|
)
|
|
|
|
for shape, kwargs in shapes_and_kwargs:
|
|
yield SampleInput(
|
|
(make if logits else make_prob)(shape, requires_grad=requires_grad),
|
|
args=(make_prob(shape, requires_grad=requires_grad),),
|
|
kwargs=kwargs,
|
|
)
|
|
|
|
def sample_inputs_allclose(op_info, device, dtype, requires_grad, **kwargs):
|
|
samples = []
|
|
sample_shapes = [(), (S), (S, S, S)]
|
|
atols = [1e-2, 1e-16]
|
|
rtols = [1e-1, 0.5]
|
|
eps = 1e-8
|
|
for s, rtol, atol in product(sample_shapes, rtols, atols):
|
|
# close sample
|
|
t = make_tensor(s, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
close = (t + atol).detach().requires_grad_(requires_grad)
|
|
close_sample = SampleInput(t, args=(close,), kwargs=dict(rtol=rtol, atol=atol))
|
|
samples.append(close_sample)
|
|
|
|
# random sample
|
|
a = make_tensor(s, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
b = make_tensor(s, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
r_sample = SampleInput(a, args=(b,), kwargs=dict(rtol=rtol, atol=atol))
|
|
samples.append(r_sample)
|
|
|
|
return samples
|
|
|
|
def sample_inputs_l1_loss(op_info, device, dtype, requires_grad, **kwargs):
|
|
yield from sample_inputs_loss(op_info, device, dtype, requires_grad, **kwargs)
|
|
|
|
# In addition to the regular test cases, we add two for mixed floating point and complex inputs
|
|
if dtype.is_complex:
|
|
make = partial(make_tensor, (), device=device, requires_grad=requires_grad)
|
|
yield SampleInput(make(dtype=dtype), args=(make(dtype=torch.double),))
|
|
yield SampleInput(make(dtype=torch.double), args=(make(dtype=dtype),))
|
|
|
|
def sample_inputs_smooth_l1_loss(op_info, device, dtype, requires_grad, **kwargs):
|
|
yield from sample_inputs_loss(op_info, device, dtype, requires_grad, **kwargs)
|
|
|
|
make = partial(make_tensor, (S, S), device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# This test case always triggers the smooth condition, since absolute difference of input and target
|
|
# is smaller than beta
|
|
yield SampleInput(make(low=0, high=2), args=(make(low=-2, high=0),), kwargs=dict(beta=5))
|
|
yield SampleInput(make(), args=(make(),), kwargs=dict(beta=0))
|
|
|
|
def sample_inputs_kl_div(op_info, device, dtype, requires_grad, **kwargs):
|
|
make = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
shapes_and_reduction = [
|
|
((2,), "mean"),
|
|
((2, 3), "mean"),
|
|
((2, 3, 4), "mean"),
|
|
((2,), "none"),
|
|
((2,), "batchmean"),
|
|
((2,), "sum"),
|
|
]
|
|
|
|
sample_inputs = []
|
|
for (shape, reduction), log_target in itertools.product(shapes_and_reduction, (True, False)):
|
|
# input should be log-probability, i.e. lie in (-inf, 0]
|
|
input = make(shape, low=None, high=0)
|
|
# target should be a probability by default, i.e. lie in [0, 1], and a log-probability if log_target is set,
|
|
# i.e. lie in (-inf, 0]
|
|
target = make(shape, low=None, high=0) if log_target else make(shape, low=0, high=1)
|
|
sample_inputs.append(
|
|
SampleInput(input, args=(target,), kwargs=dict(reduction=reduction, log_target=log_target))
|
|
)
|
|
return sample_inputs
|
|
|
|
def sample_inputs_pdist(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
yield from (SampleInput(make_input((n, m))) for n, m in itertools.product((1, S), repeat=2))
|
|
yield from (SampleInput(make_input((S, S)), kwargs=dict(p=p)) for p in (0.0, 1.0, 2.0, 10.0, float("inf")))
|
|
|
|
def reference_pdist(input, p=2):
|
|
pdist = scipy.spatial.distance.pdist
|
|
if p == 0:
|
|
output = pdist(input, "hamming") * input.shape[1]
|
|
elif p == float("inf"):
|
|
output = pdist(input, lambda x, y: np.abs(x - y).max())
|
|
else:
|
|
output = pdist(input, "minkowski", p=p)
|
|
return output.astype(input.dtype)
|
|
|
|
def sample_inputs_diagflat(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
return [
|
|
SampleInput(make_input(())),
|
|
SampleInput(make_input((2,))),
|
|
SampleInput(make_input((2, 2))),
|
|
SampleInput(make_input((2,)), kwargs=dict(offset=1)),
|
|
SampleInput(make_input((2,)), kwargs=dict(offset=-1)),
|
|
]
|
|
|
|
def sample_inputs_max_unpool(op_info, device, dtype, requires_grad, **kwargs):
|
|
unpool_name_to_pool_method_dict = {
|
|
'nn.functional.max_unpool1d': torch.nn.functional.max_pool1d,
|
|
'nn.functional.max_unpool2d': torch.nn.functional.max_pool2d,
|
|
'nn.functional.max_unpool3d': torch.nn.functional.max_pool3d
|
|
}
|
|
|
|
unpool_name_to_dim = {
|
|
'nn.functional.max_unpool1d': 1,
|
|
'nn.functional.max_unpool2d': 2,
|
|
'nn.functional.max_unpool3d': 3
|
|
}
|
|
|
|
unpool_to_pool_name_dict = dict((
|
|
(k, f'nn.functional.{v.__name__}') for k, v in unpool_name_to_pool_method_dict.items()
|
|
))
|
|
|
|
pool_dim = unpool_name_to_dim[op_info.name]
|
|
pool_method = unpool_name_to_pool_method_dict[op_info.name]
|
|
|
|
pool_op_info = copy.copy(op_info)
|
|
pool_op_info.name = unpool_to_pool_name_dict[op_info.name]
|
|
|
|
for sample in sample_inputs_max_pool(pool_op_info, device, dtype, requires_grad, **kwargs):
|
|
# shapes (C, ...) do not work as of now,
|
|
# see https://github.com/pytorch/pytorch/issues/68337
|
|
# TODO: remove once the issue is resolved
|
|
if sample.input.dim() != pool_dim + 2:
|
|
continue
|
|
|
|
# No dilation > 1 for max_unpool,
|
|
# see https://github.com/pytorch/pytorch/issues/68420
|
|
if sample.kwargs['dilation'] != 1:
|
|
continue
|
|
|
|
# Can't unpool without indices
|
|
if sample.kwargs['return_indices']:
|
|
pool, indices = pool_method(sample.input, **sample.kwargs)
|
|
# arg has to be a leaf
|
|
arg = pool.detach().requires_grad_(requires_grad)
|
|
sample_kwargs = {
|
|
'kernel_size': sample.kwargs['kernel_size'],
|
|
'stride': sample.kwargs['stride'],
|
|
'padding': sample.kwargs['padding'],
|
|
# output_size could be None but we specify it explicitly
|
|
# to compensate for the information lose in pool due
|
|
# to the floor/ceil operation used to compute the shapes
|
|
'output_size': sample.input.size()
|
|
}
|
|
|
|
yield SampleInput(arg, args=(indices,), kwargs=sample_kwargs)
|
|
|
|
def sample_inputs_max_unpool_grad(op_info, device, dtype, requires_grad, **kwargs):
|
|
for sample in sample_inputs_max_unpool(op_info, device, dtype, requires_grad, **kwargs):
|
|
indices = sample.args[0]
|
|
# The samples for max_unpool are generated with max_pool.
|
|
# It could be that a single element from the max_pool's
|
|
# input is mapped to several locations in its output.
|
|
# This situation leads to failed gradchecks because
|
|
# the finite difference algorithm perturbes the elements
|
|
# of the output one by one, and not in classes of
|
|
# equivalences determined by whether two elements
|
|
# in the output are coming from the same location in the
|
|
# input (simply put, they have the same corresponding index).
|
|
# So, there are two ways to resolve this issue:
|
|
# 1. Extract a pertubation for one element and apply it all
|
|
# the elements from the same equivalence class, or
|
|
# 2. Make sure that the equivalence classes are all singletons,
|
|
# i.e. the index tensor has to be comprised of only unique
|
|
# indices.
|
|
# Here we go with the solution 2, the easiest of all.
|
|
if indices.unique().numel() == indices.numel():
|
|
yield sample
|
|
|
|
foreach_unary_op_db: List[OpInfo] = [
|
|
ForeachFuncInfo('exp'),
|
|
ForeachFuncInfo('acos'),
|
|
ForeachFuncInfo('asin'),
|
|
ForeachFuncInfo('atan'),
|
|
ForeachFuncInfo('cos'),
|
|
ForeachFuncInfo('cosh'),
|
|
ForeachFuncInfo('log'),
|
|
ForeachFuncInfo('log10'),
|
|
ForeachFuncInfo('log2'),
|
|
ForeachFuncInfo('tan'),
|
|
ForeachFuncInfo('tanh'),
|
|
ForeachFuncInfo('sin'),
|
|
ForeachFuncInfo('sinh'),
|
|
|
|
ForeachFuncInfo(
|
|
'neg',
|
|
dtypes=all_types_and_complex(),
|
|
dtypesIfCUDA=all_types_and_complex(),
|
|
sample_inputs_func=sample_inputs_foreach,
|
|
),
|
|
|
|
ForeachFuncInfo(
|
|
'sqrt',
|
|
dtypes=floating_and_complex_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.half),
|
|
),
|
|
|
|
ForeachFuncInfo(
|
|
'ceil',
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
),
|
|
|
|
ForeachFuncInfo(
|
|
'erf',
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
),
|
|
|
|
ForeachFuncInfo(
|
|
'erfc',
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
),
|
|
|
|
ForeachFuncInfo(
|
|
'expm1',
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
),
|
|
|
|
ForeachFuncInfo(
|
|
'floor',
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
),
|
|
|
|
ForeachFuncInfo(
|
|
'log1p',
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half),
|
|
),
|
|
|
|
ForeachFuncInfo(
|
|
'round',
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
),
|
|
|
|
ForeachFuncInfo(
|
|
'frac',
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
),
|
|
|
|
ForeachFuncInfo(
|
|
'reciprocal',
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half),
|
|
),
|
|
|
|
ForeachFuncInfo(
|
|
'sigmoid',
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half),
|
|
),
|
|
|
|
ForeachFuncInfo(
|
|
'trunc',
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
),
|
|
|
|
ForeachFuncInfo(
|
|
'abs',
|
|
dtypes=all_types_and_complex_and(torch.bfloat16, torch.half),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bfloat16, torch.half, torch.bool),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
),
|
|
]
|
|
|
|
foreach_binary_op_db: List[OpInfo] = [
|
|
ForeachFuncInfo(
|
|
"add",
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
supports_alpha_param=True,
|
|
),
|
|
ForeachFuncInfo(
|
|
"sub",
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
supports_alpha_param=True,
|
|
),
|
|
ForeachFuncInfo(
|
|
"mul",
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
),
|
|
ForeachFuncInfo(
|
|
"div",
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
),
|
|
]
|
|
|
|
foreach_pointwise_op_db: List[ForeachFuncInfo] = [
|
|
ForeachFuncInfo(
|
|
"addcmul",
|
|
dtypes=all_types_and_complex(),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.half, torch.bfloat16),
|
|
),
|
|
ForeachFuncInfo(
|
|
"addcdiv",
|
|
dtypes=all_types_and_complex(),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.half, torch.bfloat16),
|
|
),
|
|
]
|
|
|
|
foreach_minmax_op_db: List[ForeachFuncInfo] = [
|
|
ForeachFuncInfo(
|
|
"maximum",
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
dtypesIfCUDA=all_types_and(torch.float16, torch.bool),
|
|
),
|
|
ForeachFuncInfo(
|
|
"minimum",
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
dtypesIfCUDA=all_types_and(torch.float16, torch.bool),
|
|
),
|
|
]
|
|
|
|
foreach_reduce_op_db: List[ForeachFuncInfo] = [
|
|
ForeachFuncInfo(
|
|
"norm",
|
|
dtypes=floating_and_complex_types_and(torch.float16, torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16, torch.bfloat16),
|
|
),
|
|
]
|
|
|
|
def reference_sign(x):
|
|
if x.dtype == np.bool_:
|
|
# `np.sign` doesn't support `bool`.
|
|
# >>> np.sign(True)
|
|
# ufunc 'sign' did not contain a loop
|
|
# with signature matching types dtype('bool') -> dtype('bool')
|
|
return np.sign(x, dtype=np.uint8).astype(np.bool_)
|
|
return np.sign(x)
|
|
|
|
|
|
def reference_sgn(x):
|
|
# NumPy doesn't have an equivalent to `torch.sgn` when the dtype is complex.
|
|
# For complex inputs, `np.sign` returns sign(x.real) + 0j if x.real != 0 else sign(x.imag) + 0j.
|
|
# while `torch.sgn` returns, 0 if abs(input) == 0 else input/abs(input)
|
|
if x.dtype not in [np.complex64, np.complex128]:
|
|
return reference_sign(x)
|
|
|
|
out = (x / np.abs(x))
|
|
if out.ndim == 0:
|
|
# Handle x == 0 case
|
|
if (x == 0):
|
|
# Can't assign to np.complex object
|
|
# So make a new one.
|
|
return np.array(complex(0, 0), dtype=x.dtype)
|
|
return out
|
|
|
|
# Handle x == 0 case
|
|
mask = (x == 0)
|
|
out[mask] = complex(0, 0)
|
|
return out
|
|
|
|
|
|
def reference_sigmoid(x):
|
|
# 'scipy.special.expit' not supported for the input types
|
|
if x.dtype in [np.complex64, np.complex128]:
|
|
return (1 / (1 + np.exp(-x)))
|
|
return scipy.special.expit(x)
|
|
|
|
|
|
def reference_logsigmoid(x):
|
|
return np.where(
|
|
x < 0,
|
|
x - np.log1p(np.exp(x)),
|
|
-np.log1p(np.exp(-x)))
|
|
|
|
|
|
def reference_hardsigmoid(x):
|
|
intermediate = x / 6 + 0.5
|
|
y = np.clip(intermediate, 0, None)
|
|
return np.where(y > 1, 1, y).astype(x.dtype)
|
|
|
|
|
|
def reference_lgamma(x):
|
|
# scipy.special.gammaln returns `-inf` when input is `-inf`.
|
|
# While Pytorch, C and C++, all return `inf` when input is `-inf`.
|
|
# Reference:
|
|
# https://en.cppreference.com/w/cpp/numeric/math/lgamma
|
|
# https://en.cppreference.com/w/c/numeric/math/lgamma
|
|
|
|
# To handle the above discrepancy,
|
|
# we replace -inf with inf so values
|
|
# that were originally -inf map to inf as expected
|
|
if x.dtype.kind == 'f':
|
|
x = np.where(x == float('-inf'), np.array(float('inf'), dtype=x.dtype), x)
|
|
|
|
out = scipy.special.gammaln(x)
|
|
|
|
if x.dtype == np.float16:
|
|
# `scipy.special.gammaln` returns output of float32 when input is float16,
|
|
# while `torch.lgamma` preserves `float16`. But due to smaller range of float16,
|
|
# Pytorch version outputs `inf` while SciPy returns finite values.
|
|
out = out.astype(np.float16)
|
|
|
|
return out
|
|
|
|
def reference_polygamma(x, n):
|
|
# WEIRD `scipy.special.polygamma` behavior
|
|
# >>> scipy.special.polygamma(0, np.array(501, dtype=np.float32)).dtype
|
|
# dtype('float64')
|
|
# >>> scipy.special.polygamma(0, np.array([501], dtype=np.float32)).dtype
|
|
# dtype('float32')
|
|
#
|
|
# Thus we cast output to the default torch dtype or preserve double
|
|
result_dtype = torch_to_numpy_dtype_dict[torch.get_default_dtype()]
|
|
if x.dtype == np.double:
|
|
result_dtype = np.double
|
|
return scipy.special.polygamma(n, x).astype(result_dtype)
|
|
|
|
|
|
def reference_mvlgamma(x, d):
|
|
if x.dtype == np.float16:
|
|
return scipy.special.multigammaln(x, d).astype(np.float16)
|
|
|
|
return scipy.special.multigammaln(x, d)
|
|
|
|
def reference_softplus(input, beta=1, threshold=20):
|
|
non_linear = input * beta <= threshold
|
|
output = input.copy()
|
|
output[non_linear] = np.log(1 + np.exp(beta * input[non_linear])) / beta
|
|
return output
|
|
|
|
def reference_gelu(X, *, approximate='none'):
|
|
def _gelu_ref(X):
|
|
return X * stats.norm.cdf(X)
|
|
|
|
def _tanh_gelu_ref(X):
|
|
M_SQRT_2_PI = math.sqrt(2 / math.pi)
|
|
Z = M_SQRT_2_PI * (X + 0.044715 * np.power(X, 3.0))
|
|
return 0.5 * X * (1.0 + np.tanh(Z))
|
|
|
|
if approximate == 'tanh':
|
|
return _tanh_gelu_ref(X)
|
|
else:
|
|
return _gelu_ref(X)
|
|
|
|
|
|
def reference_one_hot(a: np.ndarray, num_classes: int = -1) -> np.ndarray:
|
|
if num_classes == -1:
|
|
num_classes = int(np.amax(a) + 1)
|
|
|
|
idcs = a.reshape(-1) + np.arange(0, a.size, dtype=np.int64) * num_classes
|
|
one_hot = np.zeros((a.size, num_classes), dtype=a.dtype)
|
|
np.put(one_hot, idcs, 1)
|
|
return one_hot.reshape(*a.shape, -1)
|
|
|
|
|
|
def reference_mse_loss(input, target, reduction="mean"):
|
|
se = (input - target) ** 2
|
|
if reduction == "mean":
|
|
return np.mean(se)
|
|
elif reduction == "sum":
|
|
return np.sum(se)
|
|
else: # reduction == "none"
|
|
return se
|
|
|
|
|
|
def wrapper_set_seed(op, *args, **kwargs):
|
|
"""Wrapper to set seed manually for some functions like dropout
|
|
See: https://github.com/pytorch/pytorch/pull/62315#issuecomment-896143189 for more details.
|
|
"""
|
|
with freeze_rng_state():
|
|
torch.manual_seed(42)
|
|
return op(*args, **kwargs)
|
|
|
|
|
|
def reference_layer_norm(inp: np.ndarray, normalized_shape: Tuple[int], weight=None, bias=None, eps=1e-5):
|
|
feature_size = np.prod(normalized_shape)
|
|
inp_view = inp.reshape(-1, feature_size) # type: ignore[call-overload]
|
|
mean = inp_view.mean(axis=-1, keepdims=True)
|
|
var = inp_view.var(axis=-1, ddof=0, keepdims=True)
|
|
Y = (inp_view - mean) / np.sqrt(var + eps)
|
|
if weight is None and bias is not None:
|
|
Y = Y + bias.reshape(-1)
|
|
elif weight is not None and bias is None:
|
|
Y = Y * weight.reshape(-1)
|
|
elif weight is not None and bias is not None:
|
|
Y = Y * weight.reshape(-1) + bias.reshape(-1)
|
|
return Y.reshape(*inp.shape)
|
|
|
|
def reference_group_norm(inp: np.ndarray, num_groups: int, weight=None, bias=None, eps=1e-5):
|
|
inp_view = inp
|
|
if np.prod(inp.shape) != 0:
|
|
inp_view = inp.reshape((inp.shape[0], num_groups, -1))
|
|
mean = inp_view.mean(axis=-1, keepdims=True)
|
|
var = inp_view.var(axis=-1, ddof=0, keepdims=True)
|
|
Y = (inp_view - mean) / np.sqrt(var + eps)
|
|
Y = Y.reshape(inp.shape)
|
|
if weight is not None:
|
|
# weight is a vector of length equal to the channel
|
|
if len(Y.shape) > 2:
|
|
weight = np.tile(np.expand_dims(weight, 1), [1] + list(inp.shape[2:]))
|
|
Y = Y * weight
|
|
if bias is not None:
|
|
# bias is a vector of length equal to the channel
|
|
if len(Y.shape) > 2:
|
|
bias = np.tile(np.expand_dims(bias, 1), [1] + list(inp.shape[2:]))
|
|
Y = Y + bias
|
|
return Y
|
|
|
|
|
|
# using a custom reference function since numpy only has a string side arg (instead of right and side) and doesn't
|
|
# have an out_int32 arg. Additionally, numpy doesn't support searchsorted with ND arrays, so this splits those into
|
|
# stacked 1D cases
|
|
def reference_searchsorted(sorted_sequence, boundary, out_int32=False, right=False, side='left', sorter=None):
|
|
side = 'right' if (right or side == 'right') else 'left'
|
|
if len(sorted_sequence.shape) == 1 :
|
|
ret = np.searchsorted(sorted_sequence, boundary, side=side, sorter=sorter)
|
|
return ret.astype(np.int32) if out_int32 else ret
|
|
elif sorted_sequence.shape[0] == 0:
|
|
if sorter is not None:
|
|
sorter = sorter.flatten()
|
|
ret = np.searchsorted(sorted_sequence.flatten(), boundary.flatten(), side=side, sorter=sorter)
|
|
ret = ret.astype(np.int32) if out_int32 else ret
|
|
return ret.reshape(boundary.shape)
|
|
else:
|
|
# numpy searchsorted only supports 1D inputs so we split up ND inputs
|
|
orig_shape = boundary.shape
|
|
num_splits = np.prod(sorted_sequence.shape[:-1])
|
|
splits = range(0, num_splits)
|
|
sorted_sequence, boundary = sorted_sequence.reshape(num_splits, -1), boundary.reshape(num_splits, -1)
|
|
if sorter is not None:
|
|
sorter = sorter.reshape(num_splits, -1)
|
|
|
|
split_sequence = [sorted_sequence[i] for i in splits]
|
|
split_boundary = [boundary[i] for i in splits]
|
|
split_sorter = [sorter[i] if (sorter is not None) else None for i in splits]
|
|
|
|
split_ret = [np.searchsorted(s_seq, b, side=side, sorter=s_sort)
|
|
for (s_seq, b, s_sort) in zip(split_sequence, split_boundary, split_sorter)]
|
|
split_ret = [i.astype(np.int32) for i in split_ret] if out_int32 else split_ret
|
|
return np.stack(split_ret).reshape(orig_shape)
|
|
|
|
|
|
def gradcheck_wrapper_hermitian_input(op, input, *args, **kwargs):
|
|
"""Gradcheck wrapper for functions that take Hermitian matrices as input.
|
|
|
|
They require a modified function because the finite-difference algorithm
|
|
for calculating derivatives does not preserve the Hermitian property of the input.
|
|
"""
|
|
return op(input + input.mH, *args, **kwargs)
|
|
|
|
|
|
def gradcheck_wrapper_triangular_input(op, *args, upper=False, idx=0, **kwargs):
|
|
"""Gradcheck wrapper for functions that take lower or upper triangular matrices as input.
|
|
|
|
They require a modified function because the finite-difference algorithm
|
|
for calculating derivatives does not preserve the triangular property of the input.
|
|
`idx` is used to specific which `args[idx]` is to be triangularized.
|
|
"""
|
|
triangular_arg = args[idx].triu() if upper else args[idx].tril()
|
|
return op(*args[:idx], triangular_arg, *args[idx + 1:], upper, **kwargs)
|
|
|
|
|
|
def gradcheck_wrapper_triangular_input_real_positive_diagonal(op, *args, upper=False, idx=0, **kwargs):
|
|
"""Gradcheck wrapper for functions that take lower/upper triangular matrices
|
|
with real and positive diagonals, for example, cholesky-like operations.
|
|
"""
|
|
arg = args[idx]
|
|
arg_diag = arg.diagonal(0, -2, -1)
|
|
arg_diag_embed = torch.diag_embed(arg_diag)
|
|
id_diag_tensor = torch.ones_like(arg_diag)
|
|
id_tensor = torch.diag_embed(id_diag_tensor)
|
|
# new_arg = arg - diag(arg) + I
|
|
new_arg = arg - arg_diag_embed + id_tensor
|
|
return gradcheck_wrapper_triangular_input(
|
|
op, *args[:idx], new_arg, *args[idx + 1:],
|
|
upper=upper, idx=idx, **kwargs
|
|
)
|
|
|
|
|
|
def gradcheck_wrapper_masked_operation(op, input, *args, **kwargs):
|
|
"""Gradcheck wrapper for masked operations.
|
|
|
|
When mask is specified, replaces masked-out elements with zeros.
|
|
|
|
Use for operations that produce non-finite masked-out elements,
|
|
for instance, for minimum and maximum reductions.
|
|
"""
|
|
output = op(input, *args, **kwargs)
|
|
mask = kwargs.get('mask')
|
|
if mask is not None:
|
|
output_mask = torch._masked._output_mask(op, input, *args, **kwargs)
|
|
output = torch.where(output_mask, output, output.new_zeros([]))
|
|
return output
|
|
|
|
|
|
def reference_reduction_numpy(f, supports_keepdims=True):
|
|
"""Wraps a NumPy reduction operator.
|
|
|
|
The wrapper function will forward dim, keepdim, mask, and identity
|
|
kwargs to the wrapped function as the NumPy equivalent axis,
|
|
keepdims, where, and initiak kwargs, respectively.
|
|
|
|
Args:
|
|
f: NumPy reduction operator to wrap
|
|
supports_keepdims (bool, optional): Whether the NumPy operator accepts
|
|
keepdims parameter. If it does not, the wrapper will manually unsqueeze
|
|
the reduced dimensions if it was called with keepdim=True. Defaults to True.
|
|
|
|
Returns:
|
|
Wrapped function
|
|
|
|
"""
|
|
@wraps(f)
|
|
def wrapper(x: np.ndarray, *args, **kwargs):
|
|
# Copy keys into a set
|
|
keys = set(kwargs.keys())
|
|
|
|
dim = kwargs.pop('dim', None)
|
|
keepdim = kwargs.pop('keepdim', False)
|
|
|
|
if 'dim' in keys:
|
|
dim = tuple(dim) if isinstance(dim, Sequence) else dim
|
|
|
|
# NumPy reductions don't accept dim=0 for scalar inputs
|
|
# so we convert it to None if and only if dim is equivalent
|
|
if x.ndim == 0 and dim in {0, -1, (0,), (-1,)}:
|
|
kwargs['axis'] = None
|
|
else:
|
|
kwargs['axis'] = dim
|
|
|
|
if 'keepdim' in keys and supports_keepdims:
|
|
kwargs['keepdims'] = keepdim
|
|
|
|
if 'mask' in keys:
|
|
mask = kwargs.pop('mask')
|
|
if mask is not None:
|
|
assert mask.layout == torch.strided
|
|
kwargs['where'] = mask.cpu().numpy()
|
|
|
|
if 'identity' in keys:
|
|
identity = kwargs.pop('identity')
|
|
if identity is not None:
|
|
if identity.dtype is torch.bfloat16:
|
|
identity = identity.cpu().to(torch.float32)
|
|
else:
|
|
identity = identity.cpu()
|
|
kwargs['initial'] = identity.numpy()
|
|
|
|
if 'unbiased' in keys:
|
|
unbiased = kwargs.pop('unbiased')
|
|
if unbiased is not None:
|
|
kwargs['ddof'] = int(unbiased)
|
|
|
|
result = f(x, *args, **kwargs)
|
|
|
|
# Unsqueeze reduced dimensions if NumPy does not support keepdims
|
|
if keepdim and not supports_keepdims and x.ndim > 0:
|
|
dim = list(range(x.ndim)) if dim is None else dim
|
|
result = np.expand_dims(result, dim)
|
|
|
|
return result
|
|
|
|
return wrapper
|
|
|
|
def loss_reference_reduction_wrapper(fn):
|
|
def wrapper(input, target, *, size_average=None, reduce=None, reduction="mean", **other_kwargs):
|
|
if size_average is not None or reduce is not None:
|
|
raise RuntimeError(
|
|
"The keyword arguments 'size_average' and 'reduce' are deprecated and not supported by this wrapper"
|
|
)
|
|
output = fn(input, target, **other_kwargs)
|
|
if reduction == "mean":
|
|
return np.mean(output)
|
|
elif reduction == "sum":
|
|
return np.sum(output)
|
|
else: # reduction == "none"
|
|
return output
|
|
|
|
return wrapper
|
|
|
|
@loss_reference_reduction_wrapper
|
|
def reference_smooth_l1_loss(input, target, beta=1.0):
|
|
diff = input - target
|
|
abs_diff = np.abs(diff)
|
|
above_threshold = abs_diff >= beta
|
|
|
|
loss = np.empty_like(input)
|
|
loss[above_threshold] = abs_diff[above_threshold] - 0.5 * beta
|
|
loss[~above_threshold] = diff[~above_threshold] ** 2 / (2 * beta)
|
|
|
|
return loss
|
|
|
|
def reference_std_var(f):
|
|
"""Forwards unbiased/correction kwargs as NumPy's equivalent ddof"""
|
|
g = reference_reduction_numpy(f)
|
|
|
|
@wraps(g)
|
|
def wrapper(x: np.ndarray, *args, **kwargs):
|
|
assert not ('unbiased' in kwargs and 'correction' in kwargs)
|
|
|
|
if 'unbiased' in kwargs:
|
|
kwargs['ddof'] = int(kwargs.pop('unbiased'))
|
|
elif 'correction' in kwargs:
|
|
kwargs['ddof'] = kwargs.pop('correction')
|
|
|
|
return g(x, *args, **kwargs)
|
|
|
|
return wrapper
|
|
|
|
def generate_std_var_kwargs(t: torch.Tensor, **kwargs):
|
|
"""Generates unbiased/correction kwargs for std/var operators"""
|
|
yield ((), {'unbiased': True})
|
|
yield ((), {'unbiased': False})
|
|
|
|
# Currently, calling std with correction is only enabled when
|
|
# both dim and keepdim are provided.
|
|
if 'dim' in kwargs and 'keepdim' in kwargs:
|
|
yield ((), {'correction': 0})
|
|
yield ((), {'correction': 1})
|
|
|
|
numel = torch.tensor(t.shape)[kwargs.get('dim')].prod()
|
|
yield ((), {'correction': numel // 2})
|
|
|
|
# Operator database (sorted alphabetically)
|
|
op_db: List[OpInfo] = [
|
|
UnaryUfuncInfo('abs',
|
|
aliases=('absolute', ),
|
|
ref=np.abs,
|
|
dtypes=all_types_and_complex_and(torch.half, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
skips=(
|
|
# Inplace abs doesn't support complex inputs
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients',
|
|
'test_inplace_grad', dtypes=(torch.cdouble,)),
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients',
|
|
'test_inplace_gradgrad', dtypes=(torch.cdouble,)),
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients',
|
|
'test_inplace_forward_mode_AD', dtypes=(torch.cdouble,)),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
device_type='cpu', dtypes=[torch.cfloat]),
|
|
# Reference: https://github.com/pytorch/pytorch/issues/49224
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_small',
|
|
dtypes=[torch.int8], active_if=TEST_WITH_ASAN),
|
|
# TODO: Fix test_out_arg_all_dtypes as torch.empty_like(expected_output) where expected_output=op(input)
|
|
# We can break the logic of the loop over all possible types but it is OK.
|
|
# https://github.com/pytorch/pytorch/blob/master/test/test_unary_ufuncs.py#L440-L449
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_out_arg_all_dtypes',
|
|
dtypes=[torch.cfloat, torch.cdouble]),
|
|
# The complex formula might be wrong
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_forward_mode_AD',
|
|
dtypes=complex_types()),
|
|
# Forward-over-reverse gradgrad might be wrong for complex (see above):
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients', 'test_fn_fwgrad_bwgrad',
|
|
dtypes=complex_types()),
|
|
),
|
|
supports_fwgrad_bwgrad=True,
|
|
assert_autodiffed=True,
|
|
supports_sparse_csr=True,
|
|
supports_forward_ad=True),
|
|
# NOTE: CPU complex acos produces incorrect outputs (https://github.com/pytorch/pytorch/issues/42952)
|
|
UnaryUfuncInfo('acos',
|
|
aliases=('arccos', ),
|
|
ref=np.arccos,
|
|
domain=(-1, 1),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
decorators=(precisionOverride({torch.float16: 1e-2,
|
|
torch.bfloat16: 1e-1,
|
|
torch.complex64: 1e-2}),),
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
device_type='cuda', dtypes=[torch.cdouble], active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cuda', dtypes=[torch.cdouble], active_if=IS_WINDOWS),
|
|
# Failing with wrong imaginary sign on at least some Windows jobs
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_small',
|
|
device_type='cuda', dtypes=[torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
# Failing with wrong imaginary sign on at least some Windows jobs
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
device_type='cuda', dtypes=[torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_fn_grad',
|
|
dtypes=[torch.cdouble], active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_method_grad',
|
|
dtypes=[torch.cdouble], active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_inplace_grad',
|
|
dtypes=[torch.cdouble], active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_forward_mode_AD',
|
|
dtypes=[torch.cdouble], active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_inplace_forward_mode_AD',
|
|
dtypes=[torch.cdouble], active_if=IS_WINDOWS),
|
|
)),
|
|
# NOTE: the derivative for inplace acosh is not implemented
|
|
UnaryUfuncInfo('acosh',
|
|
aliases=('arccosh', ),
|
|
ref=np.arccosh,
|
|
domain=(1, None),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
# "rsqrt_cuda" not implemented for 'BFloat16'
|
|
backward_dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
decorators=(precisionOverride({torch.bfloat16: 5e-2}),),
|
|
supports_inplace_autograd=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
device_type='cuda', dtypes=[torch.cdouble], active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cuda', dtypes=[torch.cdouble], active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cuda', dtypes=[torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
device_type='cuda', dtypes=[torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
# Failing with wrong imaginary sign on at least some Windows jobs
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_small',
|
|
device_type='cuda', dtypes=[torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
# Reference: https://github.com/pytorch/pytorch/issues/50692
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_fn_grad',
|
|
device_type='cuda', dtypes=[torch.cdouble], active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_method_grad',
|
|
device_type='cuda', dtypes=[torch.cdouble], active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_forward_mode_AD',
|
|
device_type='cuda', dtypes=[torch.cdouble], active_if=IS_WINDOWS),
|
|
),
|
|
# acosh is not defined at x < 1 (real) or |z| < 1 (complex)
|
|
reference_numerics_filter=NumericsFilter(
|
|
condition=lambda x: (torch.abs(x) < 1 if x.is_complex() else x < 1),
|
|
safe_val=2)),
|
|
BinaryUfuncInfo('add',
|
|
# NumPy has no builtin reference for the alpha kwarg, but it is easy enough to emulate
|
|
ref=lambda input, other, *, alpha=1: np.add(input, other) if alpha == 1 \
|
|
else np.add(input, np.multiply(alpha, other)),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
assert_autodiffed=True,
|
|
sample_inputs_func=sample_inputs_add_sub,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_forward_ad=True,
|
|
supports_two_python_scalars=True,
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"),
|
|
'TestCommon',
|
|
'test_reference_testing',
|
|
dtypes=(torch.complex128,)),
|
|
DecorateInfo(unittest.skip("Skipped!"),
|
|
'TestBinaryUfuncs',
|
|
'test_reference_numerics_extremal_values',
|
|
dtypes=(torch.complex64, torch.complex128)),
|
|
)),
|
|
BinaryUfuncInfo('mul',
|
|
aliases=('multiply',),
|
|
dtypes=all_types_and_complex_and(torch.chalf, torch.float16, torch.bfloat16, torch.bool),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_two_python_scalars=True),
|
|
BinaryUfuncInfo('sub',
|
|
# NumPy has no builtin reference for the alpha kwarg, but it is easy enough to emulate
|
|
ref=lambda input, other, *, alpha=1: np.subtract(input, np.multiply(alpha, other)),
|
|
aliases=('subtract',),
|
|
dtypes=all_types_and_complex_and(torch.bfloat16, torch.float16),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_add_sub,
|
|
supports_two_python_scalars=True,
|
|
decorators=(
|
|
DecorateInfo(
|
|
toleranceOverride({torch.float16: tol(atol=1e-2, rtol=0)}),
|
|
'TestBinaryUfuncs', 'test_reference_numerics'),
|
|
),
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"),
|
|
'TestBinaryUfuncs',
|
|
'test_reference_numerics',
|
|
dtypes=(torch.uint8,)),
|
|
DecorateInfo(unittest.skip("Skipped!"),
|
|
'TestBinaryUfuncs',
|
|
'test_reference_numerics_small_values',
|
|
dtypes=(torch.uint8,)),
|
|
)),
|
|
OpInfo('addmm',
|
|
# This addmm OpInfo is for when alpha and beta are not both equal to 1.
|
|
# alpha=beta=1 is tested in the following opinfo, because that special case will
|
|
# trigger addmm being decomposed by a jit pass.
|
|
dtypes=all_types_and_complex_and(torch.bfloat16),
|
|
dtypesIfROCM=floating_and_complex_types_and(torch.float16, torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16, *[torch.bfloat16] if CUDA11OrLater else []),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
sample_inputs_func=sample_inputs_addmm),
|
|
OpInfo('addmm',
|
|
# When alpha=beta=1 as compile-time constants, JIT will decompose addmm into mm and add.
|
|
variant_test_name='decomposed',
|
|
dtypes=all_types_and_complex_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16,
|
|
*[torch.bfloat16] if(CUDA11OrLater or TEST_WITH_ROCM) else []),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
autodiff_nonfusible_nodes=['aten::add', 'aten::mm'],
|
|
sample_inputs_func=partial(sample_inputs_addmm, alpha=1, beta=1),
|
|
skips=(
|
|
# https://github.com/pytorch/pytorch/issues/71784
|
|
DecorateInfo(unittest.skip('Skipped!'), 'TestNNCOpInfo', 'test_nnc_correctness',
|
|
device_type='cpu', dtypes=(torch.float16,)),
|
|
DecorateInfo(unittest.skip('Skipped!'), 'TestCudaFuserOpInfo', 'test_nvfuser_correctness', dtypes=(torch.float16,)),
|
|
)),
|
|
OpInfo('addmv',
|
|
dtypes=all_types_and_complex_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.complex64, torch.complex128,
|
|
*[torch.bfloat16] if (CUDA11OrLater or TEST_WITH_ROCM) else []),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_addmv),
|
|
OpInfo('addbmm',
|
|
ref=lambda M, batch1, batch2, beta=1, alpha=1: np.add(np.multiply(np.asarray(beta, dtype=M.dtype), M),
|
|
np.multiply(np.asarray(alpha, dtype=batch1.dtype),
|
|
np.sum(np.matmul(batch1, batch2), axis=0))),
|
|
dtypes=all_types_and_complex_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16,
|
|
*[torch.bfloat16] if (CUDA11OrLater or TEST_WITH_ROCM) else []),
|
|
backward_dtypesIfCUDA=floating_and_complex_types_and(torch.float16,
|
|
*[torch.bfloat16] if (SM53OrLater or TEST_WITH_ROCM) else []),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
decorators=[
|
|
DecorateInfo(
|
|
toleranceOverride({torch.float32: tol(atol=1.3e-05, rtol=1.3e-05),
|
|
torch.complex64: tol(atol=1e-05, rtol=1.2e-03)}),
|
|
'TestCommon', 'test_reference_testing')],
|
|
skips=(
|
|
# FIXME: bfloat16 backward support likely depends on CUDA11+
|
|
# and SM53+
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_dtypes', active_if=IS_WINDOWS),
|
|
# addbmm does not correctly warn when resizing out= inputs
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warning'),
|
|
# https://github.com/pytorch/pytorch/issues/55907
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_variant_consistency_eager'),
|
|
),
|
|
sample_inputs_func=sample_inputs_addbmm),
|
|
OpInfo('baddbmm',
|
|
dtypes=all_types_and_complex_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.complex64, torch.complex128,
|
|
*[torch.bfloat16] if CUDA11OrLater or TEST_WITH_ROCM else []),
|
|
backward_dtypesIfCUDA=floating_types_and(torch.float16,
|
|
*[torch.bfloat16] if SM53OrLater or TEST_WITH_ROCM else [],
|
|
torch.complex64, torch.complex128),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
decorators=[
|
|
DecorateInfo(
|
|
toleranceOverride({torch.complex64: tol(atol=1e-05, rtol=1.2e-03)}),
|
|
'TestCommon', 'test_variant_consistency_eager', device_type='cuda'),
|
|
DecorateInfo(
|
|
toleranceOverride({torch.complex64: tol(atol=1e-05, rtol=1.2e-03)}),
|
|
'TestMathBits', 'test_conj_view', device_type='cuda')],
|
|
sample_inputs_func=sample_inputs_baddbmm),
|
|
OpInfo('dot',
|
|
dtypes=all_types_and_complex_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16,
|
|
*[torch.bfloat16] if (CUDA11OrLater or TEST_WITH_ROCM) else []),
|
|
assert_autodiffed=True,
|
|
sample_inputs_func=sample_inputs_dot_vdot,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
),
|
|
OpInfo('vdot',
|
|
dtypes=all_types_and_complex_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16,
|
|
*[torch.bfloat16] if (CUDA11OrLater or TEST_WITH_ROCM) else []),
|
|
sample_inputs_func=sample_inputs_dot_vdot,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
),
|
|
OpInfo('bmm',
|
|
dtypes=all_types_and_complex_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16,
|
|
*[torch.bfloat16] if (CUDA11OrLater or TEST_WITH_ROCM)else []),
|
|
backward_dtypesIfCUDA=floating_and_complex_types_and(torch.float16, *[torch.bfloat16]
|
|
if (SM53OrLater or TEST_WITH_ROCM) else []),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
# FIXME: bfloat16 backward support likely depends on CUDA11+
|
|
# and SM53+
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_dtypes', active_if=IS_WINDOWS),
|
|
),
|
|
sample_inputs_func=sample_inputs_bmm),
|
|
OpInfo('mv',
|
|
dtypes=all_types_and_complex_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16,
|
|
*[torch.bfloat16] if (CUDA11OrLater or TEST_WITH_ROCM) else []),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_mv),
|
|
OpInfo('addr',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
backward_dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
backward_dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.float16, *[torch.bfloat16]
|
|
if (CUDA11OrLater or TEST_WITH_ROCM) else []),
|
|
# Reference: https://github.com/pytorch/pytorch/issues/50747
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/issues/50747
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_variant_consistency_eager',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16)),
|
|
),
|
|
sample_inputs_func=sample_inputs_addr,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL),
|
|
OpInfo('addcmul',
|
|
dtypes=all_types_and_complex_and(torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.float16, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
# TODO: update sample inputs with for_inplace_variant kwarg to support this test
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_variant_consistency_eager'),
|
|
# 76047
|
|
DecorateInfo(unittest.expectedFailure, 'TestNNCOpInfo', 'test_nnc_correctness',
|
|
dtypes=(torch.int8, torch.int16, torch.int32, torch.int64)),
|
|
),
|
|
sample_inputs_func=sample_inputs_addcmul_addcdiv),
|
|
OpInfo('addcdiv',
|
|
dtypes=floating_and_complex_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
# TODO: update sample inputs with for_inplace_variant kwarg to support this test
|
|
DecorateInfo(unittest.expectedFailure,
|
|
'TestCommon',
|
|
'test_variant_consistency_eager'),
|
|
),
|
|
sample_inputs_func=sample_inputs_addcmul_addcdiv),
|
|
UnaryUfuncInfo('asin',
|
|
aliases=('arcsin', ),
|
|
ref=np.arcsin,
|
|
domain=(-1, 1),
|
|
supports_sparse=True,
|
|
supports_sparse_csr=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
decorators=[
|
|
DecorateInfo(
|
|
toleranceOverride({torch.float16: tol(atol=1e-05, rtol=1e-03)}),
|
|
'TestUnaryUfuncs', device_type='cuda'),
|
|
precisionOverride({torch.bfloat16: 1e-2}),
|
|
],
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cuda', dtypes=[torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
device_type='cuda', dtypes=[torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped! sparse backward not supported"),
|
|
'TestSparseUnaryUfuncs', 'test_sparse_fn_grad'),
|
|
)),
|
|
# NOTE: derivative for inplace asinh is not implemented
|
|
UnaryUfuncInfo('asinh',
|
|
aliases=('arcsinh', ),
|
|
ref=np.arcsinh,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
decorators=(precisionOverride({torch.bfloat16: 5e-2}),),
|
|
supports_inplace_autograd=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_sparse=True,
|
|
supports_sparse_csr=True,
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_small',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cuda', dtypes=[torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
device_type='cuda', dtypes=[torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped! sparse backward not supported"),
|
|
'TestSparseUnaryUfuncs', 'test_sparse_fn_grad'),
|
|
)),
|
|
UnaryUfuncInfo('atan',
|
|
aliases=('arctan', ),
|
|
ref=np.arctan,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_sparse=True,
|
|
supports_sparse_csr=True,
|
|
decorators=(precisionOverride({torch.bfloat16: 1e-2}),),
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_small',
|
|
active_if=TEST_WITH_ROCM, device_type='cuda'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
active_if=TEST_WITH_ROCM, device_type='cuda'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_small',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cuda', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
device_type='cuda', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped! sparse backward not supported"),
|
|
'TestSparseUnaryUfuncs', 'test_sparse_fn_grad'),
|
|
)),
|
|
BinaryUfuncInfo('atan2',
|
|
aliases=('arctan2',),
|
|
dtypes=all_types_and(torch.bool),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
promotes_int_to_float=True,
|
|
supports_rhs_python_scalar=False,
|
|
skips=(
|
|
# Incorrectly attempts to use a scalar for the second argument
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_jit_alias_remapping'),
|
|
)),
|
|
UnaryUfuncInfo('atanh',
|
|
aliases=('arctanh', ),
|
|
ref=np.arctanh,
|
|
domain=(-1, 1),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
decorators=(precisionOverride({torch.bfloat16: 1e-2}),),
|
|
supports_inplace_autograd=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_sparse=True,
|
|
supports_sparse_csr=True,
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_small',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cuda', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
device_type='cuda', dtypes=[torch.cfloat],
|
|
active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped! sparse backward not supported"),
|
|
'TestSparseUnaryUfuncs', 'test_sparse_fn_grad'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
active_if=TEST_WITH_ROCM, device_type='cuda'),
|
|
)),
|
|
OpInfo('allclose',
|
|
dtypes=floating_and_complex_types_and(torch.float16, torch.bfloat16),
|
|
ref=np.allclose,
|
|
supports_autograd=False,
|
|
supports_forward_ad=False,
|
|
sample_inputs_func=sample_inputs_allclose,
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestNNCOpInfo', 'test_nnc_correctness'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCudaFuserOpInfo', 'test_nvfuser_correctness'),
|
|
),
|
|
supports_out=False),
|
|
OpInfo('broadcast_to',
|
|
ref=np.broadcast_to,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_broadcast_to),
|
|
OpInfo('broadcast_tensors',
|
|
ref=np.broadcast_arrays,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
# https://github.com/pytorch/pytorch/issues/64997
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
# JIT does not support variadic tensors.
|
|
# RuntimeError: input->type()->kind() == TypeKind::OptionalType
|
|
# INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":252,
|
|
# please report a bug to PyTorch.
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit', dtypes=[torch.float32]),
|
|
),
|
|
sample_inputs_func=sample_inputs_broadcast_tensors),
|
|
OpInfo('block_diag',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
# https://github.com/pytorch/pytorch/issues/64997
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
# JIT does not support variadic tensors.
|
|
# RuntimeError: input->type()->kind() == TypeKind::OptionalType
|
|
# INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":252,
|
|
# please report a bug to PyTorch.
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit', dtypes=[torch.float32]),
|
|
# Problem; should be fixed
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_operator'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'),
|
|
),
|
|
sample_inputs_func=sample_inputs_block_diag),
|
|
BinaryUfuncInfo('bitwise_and',
|
|
dtypes=integral_types_and(torch.bool),
|
|
supports_autograd=False,
|
|
skips=(
|
|
# RuntimeError: "bitwise_and_cuda" not implemented for 'Half'
|
|
DecorateInfo(unittest.expectedFailure, 'TestBinaryUfuncs',
|
|
'test_type_promotion', device_type='cuda'),
|
|
)),
|
|
UnaryUfuncInfo('bitwise_not',
|
|
ref=np.bitwise_not,
|
|
dtypes=integral_types_and(torch.bool),
|
|
supports_autograd=False),
|
|
BinaryUfuncInfo('bitwise_left_shift',
|
|
op=torch.bitwise_left_shift,
|
|
dtypes=all_types(),
|
|
dtypesIfCUDA=all_types_and(torch.float16, torch.bfloat16),
|
|
supports_autograd=False,
|
|
supports_one_python_scalar=True,
|
|
rhs_make_tensor_kwargs=dict(low=0),
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', 'test_type_promotion'),
|
|
)),
|
|
BinaryUfuncInfo('bitwise_right_shift',
|
|
op=torch.bitwise_right_shift,
|
|
dtypes=all_types(),
|
|
dtypesIfCUDA=all_types_and(torch.float16, torch.bfloat16),
|
|
supports_autograd=False,
|
|
supports_one_python_scalar=True,
|
|
rhs_make_tensor_kwargs=dict(low=0),
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', 'test_type_promotion'),
|
|
)),
|
|
OpInfo('combinations',
|
|
op=torch.combinations,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_combinations,
|
|
skips=(
|
|
# Not composite compliant: performing in-place operation masked_scatter_.default
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
)),
|
|
OpInfo('cartesian_prod',
|
|
op=torch.cartesian_prod,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_cartesian_prod,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_conj_view'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
# RuntimeError: input->type()->kind() == TypeKind::OptionalType
|
|
# INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":270
|
|
DecorateInfo(unittest.expectedFailure,
|
|
'TestJit', 'test_variant_consistency_jit', dtypes=(torch.float32,)),
|
|
)),
|
|
OpInfo('cdist',
|
|
dtypes=floating_types(),
|
|
supports_out=False,
|
|
supports_gradgrad=False,
|
|
assert_autodiffed=False,
|
|
sample_inputs_func=sample_inputs_cdist),
|
|
UnaryUfuncInfo('ceil',
|
|
ref=np.ceil,
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_sparse=True,
|
|
supports_sparse_csr=True,
|
|
assert_autodiffed=True),
|
|
OpInfo('cholesky',
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_linalg_cholesky,
|
|
gradcheck_wrapper=gradcheck_wrapper_hermitian_input,
|
|
decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack],),
|
|
OpInfo('cholesky_inverse',
|
|
dtypes=floating_and_complex_types(),
|
|
backward_dtypes=floating_and_complex_types(),
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_forward_ad=True,
|
|
check_batched_gradgrad=True,
|
|
sample_inputs_func=sample_inputs_linalg_cholesky_inverse,
|
|
gradcheck_wrapper=gradcheck_wrapper_triangular_input_real_positive_diagonal,
|
|
decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack],
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'),
|
|
# Strides are not the same! Original strides were ((4, 2, 1),) and strides are now ((4, 1, 2),)
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'),)),
|
|
OpInfo('cholesky_solve',
|
|
op=torch.cholesky_solve,
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_cholesky_solve,
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
gradcheck_wrapper=lambda *args, **kwargs: gradcheck_wrapper_triangular_input(*args, idx=1, **kwargs),
|
|
decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack]),
|
|
OpInfo('chunk',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
sample_inputs_func=sample_inputs_chunk,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_out=False),
|
|
OpInfo('clone',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
sample_inputs_func=sample_inputs_clone,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_out=False),
|
|
OpInfo('contiguous',
|
|
op=lambda x, *args, **kwargs: x.contiguous(*args, **kwargs),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
sample_inputs_func=sample_inputs_contiguous,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
autodiff_fusible_nodes=['aten::contiguous'],
|
|
assert_jit_shape_analysis=True,
|
|
supports_out=False,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
)),
|
|
OpInfo('sum_to_size',
|
|
op=lambda x, *args, **kwargs: x.sum_to_size(*args, **kwargs),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_sum_to_size,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_out=False,
|
|
skips=(
|
|
# lambda impl
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit', dtypes=(torch.float,)),),),
|
|
OpInfo('symeig',
|
|
dtypes=floating_and_complex_types(),
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
sample_inputs_func=sample_inputs_symeig,
|
|
gradcheck_wrapper=gradcheck_wrapper_hermitian_input,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
),
|
|
decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack, with_tf32_off]),
|
|
# NOTE: clamp has seperate opinfos for scalar min/max (unary op) vs. tensors
|
|
OpInfo('clamp',
|
|
aliases=('clip',),
|
|
dtypes=all_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_clamp),
|
|
UnaryUfuncInfo('clamp',
|
|
variant_test_name='scalar',
|
|
aliases=('clip', ),
|
|
decorators=(precisionOverride({torch.bfloat16: 7e-2, torch.float16: 1e-2}),),
|
|
ref=np.clip,
|
|
dtypes=all_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/issues/54841
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.bfloat16]),
|
|
),
|
|
sample_kwargs=sample_kwargs_clamp_scalar,
|
|
sample_inputs_func=sample_inputs_clamp_scalar),
|
|
UnaryUfuncInfo('positive',
|
|
ref=np.positive,
|
|
dtypes=all_types_and_complex_and(torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
),
|
|
UnaryUfuncInfo('conj',
|
|
ref=np.conj,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16,
|
|
torch.half, torch.chalf),
|
|
supports_sparse=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_out=False),
|
|
UnaryUfuncInfo('conj_physical',
|
|
ref=np.conj,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16,
|
|
torch.half, torch.chalf),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_sparse=True,
|
|
supports_sparse_csr=True,
|
|
skips=(
|
|
# RuntimeError: inputSet && outputSet
|
|
# INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":118,
|
|
# please report a bug to PyTorch.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit', dtypes=(torch.float32, )),
|
|
DecorateInfo(unittest.skip("Skipped! conj_physical_ not implemented for sparse"),
|
|
'TestSparseUnaryUfuncs', 'test_inplace'),
|
|
# RuntimeError: "nonzero_count_cpu" not implemented for 'ComplexHalf'
|
|
DecorateInfo(unittest.expectedFailure, "TestSparseCSR", "test_sparse_csr_consistency",
|
|
dtypes=(torch.complex32,)),
|
|
# RuntimeError: "nonzero_count_cpu" not implemented for 'ComplexHalf'
|
|
DecorateInfo(unittest.expectedFailure, "TestSparseCSR", "test_sparse_csr_unary_inplace",
|
|
dtypes=(torch.complex32,)),
|
|
# RuntimeError: "nonzero_count_cpu" not implemented for 'ComplexHalf'
|
|
DecorateInfo(unittest.expectedFailure, "TestSparseCSR", "test_sparse_csr_unary_out",
|
|
dtypes=(torch.complex32,)),
|
|
# RuntimeError: "add_out_op2_sparse_csr" not implemented for 'ComplexHalf'
|
|
DecorateInfo(unittest.expectedFailure, "TestSparseCSR",
|
|
"test_zero_to_zero_correspondence_unary",
|
|
dtypes=(torch.complex32,)),
|
|
)),
|
|
OpInfo('resolve_conj',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_view_as_real,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_out=False,
|
|
),
|
|
OpInfo('resolve_neg',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_view_as_real,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_out=False,
|
|
),
|
|
OpInfo('view_as_real',
|
|
dtypes=complex_types(),
|
|
supports_forward_ad=True,
|
|
supports_out=False,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_view_as_real,
|
|
test_conjugated_samples=False,
|
|
),
|
|
OpInfo('view_as_complex',
|
|
dtypes=floating_types_and(torch.half),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
test_neg_view=False,
|
|
sample_inputs_func=sample_inputs_view_as_complex,
|
|
skips=(
|
|
# RuntimeError: Tensor must have a last dimension with stride 1
|
|
DecorateInfo(unittest.expectedFailure, "TestCommon", "test_noncontiguous_samples"),
|
|
# RuntimeError: "eq_cpu" not implemented for 'ComplexHalf'
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestNNCOpInfo', 'test_nnc_correctness', dtypes=(torch.half,)),
|
|
# RuntimeError: "eq_cpu" not implemented for 'ComplexHalf'
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCudaFuserOpInfo', 'test_nvfuser_correctness', dtypes=(torch.half,)),
|
|
)),
|
|
BinaryUfuncInfo('complex',
|
|
dtypes=floating_types_and(torch.half),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_rhs_python_scalar=False,
|
|
skips=(
|
|
# Test doesn't account for complex's type promotion semantics
|
|
DecorateInfo(unittest.expectedFailure, 'TestBinaryUfuncs', 'test_type_promotion'),
|
|
)),
|
|
BinaryUfuncInfo('copysign',
|
|
dtypes=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
promotes_int_to_float=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True),
|
|
OpInfo('corrcoef',
|
|
dtypes=all_types_and_complex(),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.half,
|
|
*[torch.bfloat16] if (CUDA11OrLater or TEST_WITH_ROCM) else []),
|
|
sample_inputs_func=sample_inputs_corrcoef,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_out=False),
|
|
UnaryUfuncInfo('cos',
|
|
ref=np.cos,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
handles_large_floats=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
decorators=(precisionOverride({torch.bfloat16: 1e-2}),),
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
dtypes=(torch.cfloat, torch.cdouble,), device_type='cpu', active_if=IS_WINDOWS),
|
|
# This fails on CUDA but passes on ROCm
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
dtypes=(torch.cdouble,), device_type='cuda'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=[torch.cfloat, torch.cdouble], active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu',
|
|
dtypes=[torch.cfloat, torch.cdouble], active_if=IS_MACOS),
|
|
)),
|
|
UnaryUfuncInfo('cosh',
|
|
ref=np_unary_ufunc_integer_promotion_wrapper(np.cosh),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/issues/48641
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
device_type='cpu', dtypes=[torch.int8]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
dtypes=[torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=[torch.cfloat, torch.cdouble], active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
dtypes=[torch.cfloat, torch.cdouble], active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu',
|
|
dtypes=[torch.cfloat, torch.cdouble], active_if=IS_MACOS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
device_type='cpu',
|
|
dtypes=[torch.cfloat, torch.cdouble], active_if=IS_MACOS),
|
|
)),
|
|
OpInfo('cov',
|
|
dtypes=all_types_and_complex_and(torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.half,
|
|
*[torch.bfloat16] if (CUDA11OrLater or TEST_WITH_ROCM) else []),
|
|
backward_dtypesIfCUDA=all_types_and_complex_and(torch.half, *[torch.bfloat16]
|
|
if (CUDA11OrLater or TEST_WITH_ROCM) else []),
|
|
sample_inputs_func=sample_inputs_cov,
|
|
error_inputs_func=error_inputs_cov,
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
# Float did not match double
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients', 'test_fn_grad'),
|
|
# Jacobian mismatch
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients', 'test_fn_gradgrad'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients', 'test_forward_mode_AD'),
|
|
DecorateInfo(unittest.skip("Barely fails"), 'TestGradients', 'test_fn_fwgrad_bwgrad'),
|
|
# JIT test not working for tensor kwargs (https://github.com/pytorch/pytorch/issues/58507)
|
|
# RuntimeError:
|
|
# undefined value tensor:
|
|
# File "<string>", line 3
|
|
# def the_method(i0):
|
|
# return torch.cov(i0, correction=0, fweights=None, aweights=tensor([0.0518, 0.4681], dtype=torch.float32, requires_grad=True)) # noqa: B950
|
|
# ~~~~~~ <--- HERE
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('cross',
|
|
dtypes=all_types_and_complex_and(torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.half),
|
|
sample_inputs_func=sample_inputs_cross,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_out=True,
|
|
supports_forward_ad=True),
|
|
OpInfo('linalg.cross',
|
|
ref=lambda x, y, dim=-1: np.cross(x, y, axis=dim),
|
|
op=torch.linalg.cross,
|
|
dtypes=all_types_and_complex_and(torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.half),
|
|
aten_name='linalg_cross',
|
|
sample_inputs_func=sample_inputs_cross,
|
|
supports_out=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_forward_ad=True),
|
|
OpInfo('cumsum',
|
|
dtypes=all_types_and_complex(),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.half, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
# cumsum does not handle correctly out= dtypes
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'),
|
|
),
|
|
sample_inputs_func=sample_inputs_cumulative_ops),
|
|
OpInfo('cumprod',
|
|
dtypes=all_types_and_complex(),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.float16, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
# cumprod does not handle correctly out= dtypes
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
),
|
|
# gradgradcheck fails in fast_mode=True: #56275
|
|
sample_inputs_func=sample_inputs_cumprod,
|
|
gradcheck_fast_mode=False),
|
|
OpInfo('cummax',
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=partial(sample_inputs_cumulative_ops, supports_dtype_kwargs=False),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL),
|
|
OpInfo('cummin',
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=partial(sample_inputs_cumulative_ops, supports_dtype_kwargs=False),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL),
|
|
UnaryUfuncInfo('deg2rad',
|
|
ref=np.radians,
|
|
decorators=(precisionOverride({torch.bfloat16: 7e-1,
|
|
torch.float16: 7e-1}),),
|
|
dtypes=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/pull/51283#issuecomment-770614273
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
dtypes=[torch.bfloat16]),
|
|
)),
|
|
OpInfo('diff',
|
|
op=torch.diff,
|
|
# np.diff has np._NoValue as default values for prepend and append, compare_with_reference breaks if prepend/append
|
|
# are set as None when converting to numpy
|
|
ref=lambda input, n=1, dim=-1, prepend=np._NoValue, append=np._NoValue: (
|
|
np.diff(input, n, dim, np._NoValue if prepend is None else prepend, np._NoValue if append is None else append)
|
|
),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_diff),
|
|
BinaryUfuncInfo('div',
|
|
aliases=('divide',),
|
|
variant_test_name='no_rounding_mode',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
promotes_int_to_float=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_two_python_scalars=True,
|
|
assert_autodiffed=True,
|
|
rhs_make_tensor_kwargs=dict(exclude_zero=True),),
|
|
BinaryUfuncInfo('div',
|
|
aliases=('divide',),
|
|
variant_test_name='trunc_rounding',
|
|
dtypes=all_types_and(torch.half, torch.bfloat16),
|
|
sample_inputs_func=partial(sample_inputs_elementwise_binary, sample_kwargs=dict(rounding_mode="trunc")),
|
|
supports_forward_ad=True,
|
|
promotes_int_to_float=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_two_python_scalars=True,
|
|
assert_autodiffed=True,
|
|
rhs_make_tensor_kwargs=dict(exclude_zero=True),
|
|
skips=(
|
|
# RuntimeError: MALFORMED INPUT: Unhandled node kind (in computeValue): aten::div
|
|
DecorateInfo(unittest.expectedFailure, 'TestNNCOpInfo', 'test_working'),
|
|
)),
|
|
BinaryUfuncInfo('div',
|
|
aliases=('divide',),
|
|
variant_test_name='floor_rounding',
|
|
dtypes=all_types_and(torch.half, torch.bfloat16),
|
|
sample_inputs_func=partial(sample_inputs_elementwise_binary, sample_kwargs=dict(rounding_mode="floor")),
|
|
supports_forward_ad=True,
|
|
promotes_int_to_float=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_two_python_scalars=True,
|
|
assert_autodiffed=True,
|
|
rhs_make_tensor_kwargs=dict(exclude_zero=True),
|
|
skips=(
|
|
# RuntimeError: MALFORMED INPUT: Unhandled node kind (in computeValue): aten::div
|
|
DecorateInfo(unittest.expectedFailure, 'TestNNCOpInfo', 'test_working'),
|
|
)),
|
|
BinaryUfuncInfo('true_divide',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
promotes_int_to_float=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_two_python_scalars=True,
|
|
rhs_make_tensor_kwargs=dict(exclude_zero=True)),
|
|
UnaryUfuncInfo('exp',
|
|
ref=np_unary_ufunc_integer_promotion_wrapper(np.exp),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/pull/50093#pullrequestreview-561791547
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=[torch.bfloat16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
dtypes=[torch.bfloat16, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_small',
|
|
dtypes=[torch.bfloat16]),
|
|
# Reference: https://github.com/pytorch/pytorch/issues/48010
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True),
|
|
OpInfo('expand',
|
|
op=lambda self, shape: self.expand(shape),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_expand,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
assert_jit_shape_analysis=True,
|
|
supports_out=False,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
)),
|
|
OpInfo('expand_as',
|
|
op=lambda self, other: self.expand_as(other),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_expand_as,
|
|
supports_out=False,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),),
|
|
),
|
|
OpInfo('diag',
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_diag,
|
|
error_inputs_func=error_inputs_diag),
|
|
OpInfo('diag_embed',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_diagonal_diag_embed),
|
|
OpInfo('diagonal',
|
|
# They are not strictly aliases as they have diverging defaults, but we can see them as aliases for testing purposes
|
|
# If we add tests that test the function against the alias, make linalg.diagonal into its own OpInfo
|
|
aliases=('linalg.diagonal',),
|
|
aten_backward_name='diagonal_backward',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_diagonal_diag_embed),
|
|
OpInfo('diagonal_scatter',
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16, torch.float16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_diagonal_scatter),
|
|
BinaryUfuncInfo('eq',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
always_returns_bool=True,
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_comparison_ops),
|
|
BinaryUfuncInfo('fmax',
|
|
op=torch.fmax,
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_rhs_python_scalar=False,
|
|
skips=(
|
|
# RuntimeError: "max_elementwise_cuda" not implemented for 'ComplexFloat'
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', 'test_type_promotion'),
|
|
)),
|
|
BinaryUfuncInfo('fmin',
|
|
op=torch.fmin,
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_rhs_python_scalar=False,
|
|
skips=(
|
|
# RuntimeError: "min_elementwise_cuda" not implemented for 'ComplexFloat'
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', 'test_type_promotion'),
|
|
)),
|
|
BinaryUfuncInfo('fmod',
|
|
ref=np.fmod,
|
|
dtypes=all_types_and(torch.float16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
assert_autodiffed=None,
|
|
rhs_make_tensor_kwargs={'exclude_zero': True},
|
|
decorators=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs',
|
|
'test_reference_numerics_small_values',
|
|
dtypes=(torch.uint8,)),
|
|
)),
|
|
BinaryUfuncInfo('remainder',
|
|
ref=np.remainder,
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.float16, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
assert_autodiffed=None,
|
|
supports_one_python_scalar=True,
|
|
rhs_make_tensor_kwargs={'exclude_zero': True},
|
|
decorators=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs',
|
|
'test_contig_vs_every_other',
|
|
dtypes=(torch.bfloat16,)),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs',
|
|
'test_non_contig',
|
|
dtypes=(torch.bfloat16,)),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs',
|
|
'test_reference_numerics',
|
|
dtypes=(torch.bfloat16,)),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs',
|
|
'test_reference_numerics_small_values',
|
|
dtypes=(torch.uint8,)),
|
|
# Fails on XLA
|
|
# False is not true : Tensors failed to compare as equal!
|
|
# Attempted to compare equality of tensors with different dtypes
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestOpInfo', device_type='xla', dtypes=(torch.long,)),
|
|
)),
|
|
UnaryUfuncInfo('frac',
|
|
ref=lambda x: np.modf(x)[0],
|
|
dtypes=floating_types_and(torch.bfloat16, torch.float16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=(torch.bfloat16, torch.float16, torch.float32, torch.float64)),
|
|
# 76047
|
|
DecorateInfo(unittest.expectedFailure, 'TestNNCOpInfo', 'test_nnc_correctness',
|
|
dtypes=(torch.float32, torch.float64)),
|
|
)),
|
|
SpectralFuncInfo('fft.fft',
|
|
aten_name='fft_fft',
|
|
ref=np.fft.fft,
|
|
ndimensional=SpectralFuncType.OneD,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
),
|
|
SpectralFuncInfo('fft.fft2',
|
|
aten_name='fft_fft2',
|
|
ref=np.fft.fft2,
|
|
ndimensional=SpectralFuncType.TwoD,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
decorators=[precisionOverride(
|
|
{torch.float: 1e-4, torch.cfloat: 1e-4})],
|
|
),
|
|
SpectralFuncInfo('fft.fftn',
|
|
aten_name='fft_fftn',
|
|
ref=np.fft.fftn,
|
|
ndimensional=SpectralFuncType.ND,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
decorators=[precisionOverride(
|
|
{torch.float: 1e-4, torch.cfloat: 1e-4})],
|
|
),
|
|
SpectralFuncInfo('fft.hfft',
|
|
aten_name='fft_hfft',
|
|
ref=np.fft.hfft,
|
|
ndimensional=SpectralFuncType.OneD,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
check_batched_gradgrad=False),
|
|
SpectralFuncInfo('fft.hfft2',
|
|
aten_name='fft_hfft2',
|
|
ref=scipy.fft.hfft2 if has_scipy_fft else None,
|
|
ndimensional=SpectralFuncType.TwoD,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
check_batched_gradgrad=False,
|
|
decorators=[
|
|
DecorateInfo(
|
|
precisionOverride({torch.float: 2e-4, torch.cfloat: 2e-4}),
|
|
'TestFFT', 'test_reference_nd')],
|
|
),
|
|
SpectralFuncInfo('fft.hfftn',
|
|
aten_name='fft_hfftn',
|
|
ref=scipy.fft.hfftn if has_scipy_fft else None,
|
|
ndimensional=SpectralFuncType.ND,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
check_batched_gradgrad=False,
|
|
decorators=[
|
|
DecorateInfo(
|
|
precisionOverride({torch.float: 2e-4, torch.cfloat: 2e-4}),
|
|
'TestFFT', 'test_reference_nd')],
|
|
),
|
|
SpectralFuncInfo('fft.rfft',
|
|
aten_name='fft_rfft',
|
|
ref=np.fft.rfft,
|
|
ndimensional=SpectralFuncType.OneD,
|
|
dtypes=all_types_and(torch.bool),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
check_batched_grad=False,
|
|
skips=(
|
|
),
|
|
check_batched_gradgrad=False),
|
|
SpectralFuncInfo('fft.rfft2',
|
|
aten_name='fft_rfft2',
|
|
ref=np.fft.rfft2,
|
|
ndimensional=SpectralFuncType.TwoD,
|
|
dtypes=all_types_and(torch.bool),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
decorators=[
|
|
precisionOverride({torch.float: 1e-4}),
|
|
],),
|
|
SpectralFuncInfo('fft.rfftn',
|
|
aten_name='fft_rfftn',
|
|
ref=np.fft.rfftn,
|
|
ndimensional=SpectralFuncType.ND,
|
|
dtypes=all_types_and(torch.bool),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
decorators=[
|
|
precisionOverride({torch.float: 1e-4}),
|
|
],),
|
|
SpectralFuncInfo('fft.ifft',
|
|
aten_name='fft_ifft',
|
|
ref=np.fft.ifft,
|
|
ndimensional=SpectralFuncType.OneD,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
dtypes=all_types_and_complex_and(torch.bool)),
|
|
SpectralFuncInfo('fft.ifft2',
|
|
aten_name='fft_ifft2',
|
|
ref=np.fft.ifft2,
|
|
ndimensional=SpectralFuncType.TwoD,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
decorators=[
|
|
DecorateInfo(
|
|
precisionOverride({torch.float: 1e-4, torch.cfloat: 1e-4}),
|
|
'TestFFT', 'test_reference_nd')],
|
|
),
|
|
SpectralFuncInfo('fft.ifftn',
|
|
aten_name='fft_ifftn',
|
|
ref=np.fft.ifftn,
|
|
ndimensional=SpectralFuncType.ND,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
decorators=[
|
|
DecorateInfo(
|
|
precisionOverride({torch.float: 1e-4, torch.cfloat: 1e-4}),
|
|
'TestFFT', 'test_reference_nd')],
|
|
),
|
|
SpectralFuncInfo('fft.ihfft',
|
|
aten_name='fft_ihfft',
|
|
ref=np.fft.ihfft,
|
|
ndimensional=SpectralFuncType.OneD,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
dtypes=all_types_and(torch.bool),
|
|
skips=(
|
|
),
|
|
check_batched_grad=False),
|
|
SpectralFuncInfo('fft.ihfft2',
|
|
aten_name='fft_ihfft2',
|
|
ref=scipy.fft.ihfftn if has_scipy_fft else None,
|
|
ndimensional=SpectralFuncType.TwoD,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
dtypes=all_types_and(torch.bool),
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
decorators=(
|
|
# The values for attribute 'shape' do not match: torch.Size([5, 6, 5]) != torch.Size([5, 6, 6]).
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warning'),
|
|
DecorateInfo(precisionOverride({torch.float: 2e-4}), 'TestFFT', 'test_reference_nd'),
|
|
# Mismatched elements!
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warnings'))),
|
|
SpectralFuncInfo('fft.ihfftn',
|
|
aten_name='fft_ihfftn',
|
|
ref=scipy.fft.ihfftn if has_scipy_fft else None,
|
|
ndimensional=SpectralFuncType.ND,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
dtypes=all_types_and(torch.bool),
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
decorators=[
|
|
# The values for attribute 'shape' do not match: torch.Size([5, 6, 5]) != torch.Size([5, 6, 6]).
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warning'),
|
|
# Mismatched elements!
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'),
|
|
DecorateInfo(
|
|
precisionOverride({torch.float: 2e-4}),
|
|
'TestFFT', 'test_reference_nd')],
|
|
),
|
|
SpectralFuncInfo('fft.irfft',
|
|
aten_name='fft_irfft',
|
|
ref=np.fft.irfft,
|
|
ndimensional=SpectralFuncType.OneD,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
check_batched_gradgrad=False),
|
|
SpectralFuncInfo('fft.irfft2',
|
|
aten_name='fft_irfft2',
|
|
ref=np.fft.irfft2,
|
|
ndimensional=SpectralFuncType.TwoD,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
check_batched_gradgrad=False,
|
|
decorators=[
|
|
DecorateInfo(
|
|
precisionOverride({torch.float: 1e-4, torch.cfloat: 1e-4}),
|
|
'TestFFT', 'test_reference_nd')],
|
|
),
|
|
SpectralFuncInfo('fft.irfftn',
|
|
aten_name='fft_irfftn',
|
|
ref=np.fft.irfftn,
|
|
ndimensional=SpectralFuncType.ND,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
check_batched_gradgrad=False,
|
|
decorators=[
|
|
DecorateInfo(
|
|
precisionOverride({torch.float: 1e-4, torch.cfloat: 1e-4}),
|
|
'TestFFT', 'test_reference_nd')],
|
|
),
|
|
OpInfo('fft.fftshift',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half),
|
|
sample_inputs_func=sample_inputs_fftshift,
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
),
|
|
OpInfo('fft.ifftshift',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half),
|
|
sample_inputs_func=sample_inputs_fftshift,
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
),
|
|
OpInfo('stft',
|
|
decorators=[
|
|
skipCPUIfNoFFT,
|
|
DecorateInfo(unittest.skip("Skipped! stft does not match the native function"),
|
|
'TestJit', 'test_variant_consistency_jit'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'),
|
|
],
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_stft,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
check_batched_forward_grad=False,
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
supports_out=False,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
),
|
|
OpInfo('istft',
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_istft,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
check_batched_forward_grad=False,
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
supports_out=False,
|
|
decorators=(
|
|
DecorateInfo(unittest.skip("Skipped! istft does not match the native function"),
|
|
'TestJit', 'test_variant_consistency_jit'),
|
|
),
|
|
skips=(
|
|
skipCPUIfNoFFT,
|
|
# gradcheck fails on ROCm (gh-68429)
|
|
# grad is computed improperly (probably for weights tensor)
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients', 'test_fn_grad'),
|
|
)),
|
|
UnaryUfuncInfo('floor',
|
|
ref=np.floor,
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_sparse=True,
|
|
supports_sparse_csr=True,
|
|
assert_autodiffed=True),
|
|
OpInfo('flip',
|
|
op=torch.flip,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_flip,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_out=False),
|
|
OpInfo('fliplr',
|
|
op=torch.fliplr,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_fliplr_flipud,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_out=False),
|
|
OpInfo('flipud',
|
|
op=torch.flipud,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_fliplr_flipud,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_out=False),
|
|
OpInfo('sparse.sampled_addmm',
|
|
dtypes=floating_and_complex_types(),
|
|
supports_autograd=True,
|
|
sample_inputs_func=sample_inputs_sparse_sampled_addmm,
|
|
decorators=[
|
|
onlyCUDA,
|
|
skipCUDAIf(_get_torch_cuda_version() < (11, 3), "cusparseSDDMM was added in 11.2.1"), ],
|
|
skips=(
|
|
# NotImplementedError: Tensors of type SparseCsrTensorImpl do not have is_contiguous
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_noncontiguous_samples'),
|
|
# RuntimeError: Sparse CSR tensors do not have strides.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out'),
|
|
# RuntimeError: sampled_addmm: Expected result to have sparse csr layout, but got Strided
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out_warning'),
|
|
# RuntimeError: Sparse CSR tensors do not have strides
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_variant_consistency_eager'),
|
|
# RuntimeError: Sparse CSR tensors do not have strides
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCompositeCompliance', 'test_operator'),
|
|
# RuntimeError: Sparse CSR tensors do not have strides
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCompositeCompliance', 'test_backward'),
|
|
# RuntimeError: Sparse CSR tensors do not have strides
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_conj_view'),
|
|
# RuntimeError: Sparse CSR tensors do not have strides
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_neg_conj_view'),
|
|
# RuntimeError: Sparse CSR tensors do not have strides
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_neg_view'),
|
|
# RuntimeError: Sparse CSR tensors do not have strides
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
# RuntimeError: unsupported memory format option Preserve
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
# GradcheckError: gradcheck expects all tensor inputs are dense when check_sparse_nnz is set to False
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_fn_fwgrad_bwgrad'),
|
|
# GradcheckError: gradcheck expects all tensor inputs are dense when check_sparse_nnz is set to False
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_fn_grad'),
|
|
# GradcheckError: gradcheck expects all tensor inputs are dense when check_sparse_nnz is set to False
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_fn_gradgrad'),
|
|
# GradcheckError: gradcheck expects all tensor inputs are dense when check_sparse_nnz is set to False
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_forward_mode_AD'),
|
|
)),
|
|
UnaryUfuncInfo('i0',
|
|
ref=np_unary_ufunc_integer_promotion_wrapper(
|
|
scipy.special.i0) if TEST_SCIPY else _NOTHING,
|
|
aliases=('special.i0',),
|
|
decorators=(precisionOverride({torch.bfloat16: 3e-1,
|
|
torch.float16: 5e-1}),),
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
backward_dtypes=floating_types(),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_i0_i1,
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
dtypes=(torch.int8,)),
|
|
)),
|
|
UnaryUfuncInfo('special.i0e',
|
|
aten_name='special_i0e',
|
|
ref=scipy.special.i0e if TEST_SCIPY else _NOTHING,
|
|
decorators=(precisionOverride({torch.bfloat16: 3e-1,
|
|
torch.float16: 3e-1}),),
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
backward_dtypes=floating_types(),
|
|
sample_inputs_func=sample_inputs_i0_i1,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True),
|
|
UnaryUfuncInfo('special.i1',
|
|
aten_name='special_i1',
|
|
ref=np_unary_ufunc_integer_promotion_wrapper(scipy.special.i1) if TEST_SCIPY else _NOTHING,
|
|
dtypes=all_types_and(torch.bool),
|
|
dtypesIfCUDA=all_types_and(torch.bool),
|
|
sample_inputs_func=sample_inputs_i0_i1,
|
|
decorators=(
|
|
DecorateInfo(toleranceOverride({
|
|
torch.float32: tol(atol=1e-4, rtol=0),
|
|
torch.bool: tol(atol=1e-4, rtol=0)})),
|
|
),
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Incorrect result!"),
|
|
'TestUnaryUfuncs',
|
|
'test_reference_numerics_large',
|
|
dtypes=(torch.int8,)),
|
|
),
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_forward_ad=True),
|
|
UnaryUfuncInfo('special.i1e',
|
|
aten_name='special_i1e',
|
|
ref=scipy.special.i1e if TEST_SCIPY else _NOTHING,
|
|
dtypes=all_types_and(torch.bool),
|
|
dtypesIfCUDA=all_types_and(torch.bool),
|
|
sample_inputs_func=sample_inputs_i0_i1,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True),
|
|
UnaryUfuncInfo('special.ndtr',
|
|
aten_name='special_ndtr',
|
|
decorators=(precisionOverride({torch.bfloat16: 5e-3,
|
|
torch.float16: 5e-4}),),
|
|
ref=scipy.special.ndtr if TEST_SCIPY else _NOTHING,
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.bfloat16, torch.float16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
# Dispatch stub: unsupported device typemeta
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients', 'test_fn_fwgrad_bwgrad', device_type='meta'),
|
|
)),
|
|
BinaryUfuncInfo('floor_divide',
|
|
dtypes=all_types_and(torch.half, torch.bfloat16),
|
|
supports_autograd=False,
|
|
rhs_make_tensor_kwargs=dict(exclude_zero=True),
|
|
supports_two_python_scalars=True,
|
|
skips=(
|
|
# AssertionError: Results of original model and exported/imported version of model differed
|
|
DecorateInfo(unittest.skip('Skipped!'), 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
UnaryUfuncInfo('frexp',
|
|
op=torch.frexp,
|
|
ref=np.frexp,
|
|
dtypes=floating_types_and(torch.half, torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half),
|
|
# skip testing torch.frexp as it is not supported by ROCm platform yet
|
|
decorators=[],
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
# skips below tests as torch.frexp returns tuple-like (mantissa, exponent) as outputs,
|
|
# while theses tests currently requires output to a single tensor.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_batch_vs_slicing'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_contig_vs_every_other'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_contig_vs_transposed'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_non_contig_expand'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_variant_consistency'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_out_arg_all_dtypes'),
|
|
|
|
# skips test_reference_numerics due to error in Windows CI.
|
|
# The np.frexp returns exponent as np.intc dtype on Windows platform,
|
|
# and np.intc does not have the correspond torch dtype
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_small',
|
|
active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
active_if=IS_WINDOWS),
|
|
)),
|
|
BinaryUfuncInfo('ge',
|
|
aliases=('greater_equal',),
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16, torch.float16),
|
|
always_returns_bool=True,
|
|
supports_autograd=False,),
|
|
OpInfo('geqrf',
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_linalg_qr_geqrf,
|
|
decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack],
|
|
supports_autograd=False,
|
|
skips=(
|
|
# FIXME: geqrf can't forward with complex inputs that require grad
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_dtypes'),
|
|
# Strides are not the same!
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'),
|
|
)),
|
|
BinaryUfuncInfo('gt',
|
|
aliases=('greater',),
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16, torch.float16),
|
|
always_returns_bool=True,
|
|
supports_autograd=False,),
|
|
UnaryUfuncInfo('imag',
|
|
ref=np.imag,
|
|
dtypes=complex_types(),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
# See https://github.com/pytorch/pytorch/issues/66357
|
|
# RuntimeError: view_as_real doesn't work on unresolved conjugated tensors.
|
|
check_batched_forward_grad=False,
|
|
skips=(
|
|
# Skip since real and imag don't have out variants.
|
|
DecorateInfo(unittest.expectedFailure, 'TestUnaryUfuncs', 'test_out_arg_all_dtypes'),
|
|
)),
|
|
OpInfo('gradient',
|
|
dtypes=floating_and_complex_types_and(torch.int8, torch.int16,
|
|
torch.int32, torch.int64,
|
|
torch.bfloat16, torch.half),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
# following tests give a runtime error with undefined value tensor
|
|
# see discussion : https://github.com/pytorch/pytorch/issues/56660
|
|
# RuntimeError:
|
|
# Arguments for call are not valid.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit', dtypes=(torch.float32, torch.complex64)), # noqa: B950
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestNNCOpInfo', 'test_nnc_correctness'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCudaFuserOpInfo', 'test_nvfuser_correctness'),
|
|
),
|
|
supports_inplace_autograd=False,
|
|
sample_inputs_func=sample_inputs_gradient,
|
|
error_inputs_func=error_inputs_gradient),
|
|
OpInfo('inverse',
|
|
op=torch.inverse,
|
|
dtypes=floating_and_complex_types(),
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
sample_inputs_func=sample_inputs_linalg_invertible,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCPUIfNoLapack],
|
|
skips=(
|
|
# Strides are not the same!
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'),
|
|
)),
|
|
OpInfo('isin',
|
|
dtypes=all_types(),
|
|
dtypesIfCUDA=all_types_and(torch.half),
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_isin),
|
|
OpInfo('kthvalue',
|
|
dtypes=all_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.float16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_kthvalue,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
),
|
|
error_inputs_func=error_inputs_kthvalue),
|
|
BinaryUfuncInfo('le',
|
|
aliases=('less_equal',),
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16, torch.float16),
|
|
always_returns_bool=True,
|
|
supports_autograd=False,),
|
|
OpInfo('linalg.det',
|
|
op=torch.linalg.det,
|
|
aliases=('det',),
|
|
dtypes=floating_and_complex_types(),
|
|
backward_dtypes=floating_and_complex_types(),
|
|
aten_name='linalg_det',
|
|
sample_inputs_func=sample_inputs_linalg_det,
|
|
decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack,
|
|
DecorateInfo(toleranceOverride({torch.complex64: tol(atol=1e-3, rtol=1e-3)}))],
|
|
check_batched_gradgrad=False,
|
|
supports_inplace_autograd=False),
|
|
OpInfo('linalg.det',
|
|
op=torch.linalg.det,
|
|
variant_test_name='singular',
|
|
aliases=('det',),
|
|
dtypes=double_types(),
|
|
backward_dtypes=double_types(),
|
|
aten_name='linalg_det',
|
|
sample_inputs_func=sample_inputs_linalg_det_singular,
|
|
decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack,
|
|
DecorateInfo(toleranceOverride({torch.complex64: tol(atol=1e-3, rtol=1e-3)}))],
|
|
check_batched_gradgrad=False,
|
|
supports_inplace_autograd=False,
|
|
skips=(
|
|
# These tests started breaking after touching the SVD.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_fn_grad', device_type='cpu',
|
|
dtypes=(torch.complex128,), active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_fn_gradgrad'),
|
|
# dtypes are tested in the suite above, no need to repeat it for singular
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_dtypes'),
|
|
)),
|
|
OpInfo('linalg.cholesky',
|
|
aten_name='linalg_cholesky',
|
|
dtypes=floating_and_complex_types(),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_linalg_cholesky,
|
|
gradcheck_wrapper=gradcheck_wrapper_hermitian_input,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'),
|
|
# Strides are not the same!
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'),
|
|
),
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCPUIfNoLapack],),
|
|
OpInfo('linalg.cholesky_ex',
|
|
aten_name='linalg_cholesky_ex',
|
|
dtypes=floating_and_complex_types(),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_linalg_cholesky,
|
|
gradcheck_wrapper=gradcheck_wrapper_hermitian_input,
|
|
skips=(
|
|
# AssertionError: Scalars are not equal!
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'),
|
|
),
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCPUIfNoLapack],
|
|
),
|
|
OpInfo('linalg.cond',
|
|
aten_name='linalg_cond',
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_linalg_cond,
|
|
check_batched_gradgrad=False,
|
|
check_batched_forward_grad=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCPUIfNoLapack, with_tf32_off],),
|
|
OpInfo('linalg.eig',
|
|
aten_name='linalg_eig',
|
|
op=torch.linalg.eig,
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_linalg_eig,
|
|
check_batched_forward_grad=False,
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
# AssertionError: Scalars are not equal!
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out', device_type='cpu'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'),
|
|
# Forward-over-reverse gradgrad might be incorrect
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients', 'test_fn_fwgrad_bwgrad'),
|
|
),
|
|
decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack, with_tf32_off],
|
|
),
|
|
OpInfo('linalg.eigvals',
|
|
aten_name='linalg_eigvals',
|
|
op=torch.linalg.eigvals,
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_linalg_invertible,
|
|
check_batched_forward_grad=False,
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack],
|
|
skips=(
|
|
# Pre-existing condition; Needs to be fixed
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_operator'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'),
|
|
)),
|
|
OpInfo('linalg.eigh',
|
|
aten_name='linalg_eigh',
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_linalg_eigh,
|
|
gradcheck_wrapper=gradcheck_wrapper_hermitian_input,
|
|
check_batched_forward_grad=False,
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack, with_tf32_off],
|
|
skips=(
|
|
# Forward-over-reverse gradgrad might be incorrect
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients', 'test_fn_fwgrad_bwgrad',
|
|
dtypes=complex_types()),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'),
|
|
)),
|
|
OpInfo('linalg.eigvalsh',
|
|
aten_name='linalg_eigvalsh',
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_linalg_eigh,
|
|
gradcheck_wrapper=gradcheck_wrapper_hermitian_input,
|
|
check_batched_forward_grad=False,
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack],
|
|
skips=(
|
|
# Pre-existing condition; Needs to be fixed
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_operator'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'),
|
|
)),
|
|
OpInfo('linalg.householder_product',
|
|
aten_name='linalg_householder_product',
|
|
op=torch.linalg.householder_product,
|
|
aliases=('orgqr', ),
|
|
dtypes=floating_and_complex_types(),
|
|
# TODO: backward uses in-place operations that vmap doesn't like
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
check_batched_forward_grad=False,
|
|
sample_inputs_func=sample_inputs_householder_product,
|
|
decorators=[
|
|
skipCUDAIfNoCusolver, skipCPUIfNoLapack,
|
|
DecorateInfo(toleranceOverride({torch.complex64: tol(atol=1e-3, rtol=1e-3)})),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'),
|
|
]),
|
|
OpInfo('linalg.ldl_factor',
|
|
aten_name='linalg_ldl_factor',
|
|
dtypes=floating_and_complex_types(),
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_linalg_ldl_factor,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCPUIfNoLapack, skipCUDAIfRocm],
|
|
),
|
|
OpInfo('linalg.ldl_factor_ex',
|
|
aten_name='linalg_ldl_factor_ex',
|
|
dtypes=floating_and_complex_types(),
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_linalg_ldl_factor,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCPUIfNoLapack, skipCUDAIfRocm],
|
|
),
|
|
OpInfo('linalg.ldl_solve',
|
|
aten_name='linalg_ldl_solve',
|
|
dtypes=floating_and_complex_types(),
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_linalg_ldl_solve,
|
|
decorators=[
|
|
skipCUDAIf(_get_torch_cuda_version() < (11, 4), "not available before CUDA 11.3.1"),
|
|
skipCUDAIfNoCusolver, skipCUDAIfRocm, skipCPUIfNoLapack],
|
|
),
|
|
OpInfo('linalg.lstsq',
|
|
aten_name='linalg_lstsq',
|
|
dtypes=floating_and_complex_types(),
|
|
supports_out=True,
|
|
sample_inputs_func=sample_inputs_linalg_lstsq,
|
|
error_inputs_func=error_inputs_lstsq,
|
|
decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack],
|
|
skips=(
|
|
# we skip gradient checks for this suite as they are tested in
|
|
# variant_test_name='grad_oriented'
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients'),
|
|
# At this time ROCm uses magma instead of rocSolver, and the test passes
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward', active_if=(not TEST_WITH_ROCM)),
|
|
# The values for attribute 'shape' do not match
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out'),
|
|
)),
|
|
OpInfo('linalg.lstsq',
|
|
aten_name='linalg_lstsq',
|
|
variant_test_name='grad_oriented',
|
|
# gradchecks for forward AD fails with multi-Tensor outputs
|
|
op=lambda a, b, driver: torch.linalg.lstsq(a, b, driver=driver)[0],
|
|
supports_out=False,
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_linalg_lstsq,
|
|
error_inputs_func=error_inputs_lstsq,
|
|
supports_autograd=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack],
|
|
skips=(
|
|
# tests do not work with passing lambda for op
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestOperatorSignatures', 'test_get_torch_func_signature_exhaustive'),
|
|
# At this time ROCm uses magma instead of rocSolver, and the test passes
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward', active_if=(not TEST_WITH_ROCM)),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad',
|
|
active_if=(not TEST_WITH_ROCM)),
|
|
)),
|
|
OpInfo('linalg.matrix_power',
|
|
aliases=('matrix_power',),
|
|
aten_name='linalg_matrix_power',
|
|
dtypes=floating_and_complex_types(),
|
|
supports_inplace_autograd=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
check_batched_grad=False,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCPUIfNoLapack, with_tf32_off],
|
|
sample_inputs_func=sample_inputs_linalg_matrix_power,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
skips=(
|
|
# Strides are not the same!
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'),
|
|
)),
|
|
OpInfo('linalg.multi_dot',
|
|
# Need this lambda because gradcheck does not work with TensorList inputs
|
|
aten_name='linalg_multi_dot',
|
|
dtypes=all_types_and_complex_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.half,
|
|
*[torch.bfloat16] if (CUDA11OrLater or TEST_WITH_ROCM) else []),
|
|
supports_inplace_autograd=False,
|
|
# Batched grad checks fail for empty input tensors (see https://github.com/pytorch/pytorch/issues/53407)
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
# https://github.com/pytorch/pytorch/issues/66357
|
|
check_batched_forward_grad=False,
|
|
sample_inputs_func=sample_inputs_linalg_multi_dot,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
skips=(
|
|
# https://github.com/pytorch/pytorch/issues/67470
|
|
DecorateInfo(unittest.skip("67470!"), 'TestCommon', 'test_noncontiguous_samples'),
|
|
# Fails on XLA.
|
|
# AssertionError: False is not true : Tensors failed to compare as equal!
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestOpInfo', device_type='xla', dtypes=(torch.long,)),
|
|
# https://github.com/pytorch/pytorch/issues/71774
|
|
DecorateInfo(unittest.skip('Skipped!'), 'TestNNCOpInfo', 'test_nnc_correctness',
|
|
device_type='cpu', dtypes=(torch.long,)),
|
|
)),
|
|
# NB: linalg.norm has two variants so that different skips can be used for different sample inputs
|
|
OpInfo('linalg.norm',
|
|
op=torch.linalg.norm,
|
|
dtypes=floating_and_complex_types_and(torch.float16, torch.bfloat16),
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCPUIfNoLapack],
|
|
sample_inputs_func=sample_inputs_linalg_norm,
|
|
supports_forward_ad=True,
|
|
# torch.autograd.gradcheck.GradcheckError: While computing batched gradients, got:
|
|
# Could not allocate memory to change Tensor SizesAndStrides!
|
|
check_batched_forward_grad=False,
|
|
supports_fwgrad_bwgrad=True,
|
|
aten_name='linalg_norm',
|
|
skips=(
|
|
# Pre-existing condition; Needs to be fixed
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_operator'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
# Expected RuntimeError when calling with input.device=cpu and out.device=cuda
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients', 'test_fn_fwgrad_bwgrad',
|
|
dtypes=[torch.complex128]),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'),
|
|
)),
|
|
OpInfo('linalg.norm',
|
|
op=torch.linalg.norm,
|
|
variant_test_name='subgradients_at_zero',
|
|
dtypes=floating_and_complex_types_and(torch.float16, torch.bfloat16),
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCPUIfNoLapack],
|
|
sample_inputs_func=partial(sample_inputs_linalg_norm, variant='subgradient_at_zero'),
|
|
aten_name='linalg_norm',
|
|
supports_forward_ad=True,
|
|
# torch.autograd.gradcheck.GradcheckError: While computing batched gradients, got:
|
|
# Could not allocate memory to change Tensor SizesAndStrides!
|
|
check_batched_forward_grad=False,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
# Copied from above
|
|
# Pre-existing condition; Needs to be fixed
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_operator'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'),
|
|
# Expected RuntimeError when calling with input.device=cpu and out.device=cuda
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'),
|
|
|
|
# [NEW] Skips specifically for sample inputs at zero
|
|
# norm's vjp/jvp are not well-conditioned near zero
|
|
DecorateInfo(unittest.expectedFailure, "TestGradients", 'test_fn_gradgrad'),
|
|
DecorateInfo(unittest.expectedFailure, "TestGradients", 'test_fn_fwgrad_bwgrad')
|
|
)),
|
|
OpInfo('linalg.matrix_norm',
|
|
aten_name='linalg_matrix_norm',
|
|
dtypes=floating_and_complex_types(),
|
|
check_batched_gradgrad=False,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCPUIfNoLapack, with_tf32_off],
|
|
sample_inputs_func=sample_inputs_linalg_matrix_norm,
|
|
skips=(
|
|
# Pre-existing condition; Needs to be fixed
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_operator'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
# Expected RuntimeError when calling with input.device=cpu and out.device=cuda
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'),
|
|
)),
|
|
OpInfo('linalg.qr',
|
|
aten_name='linalg_qr',
|
|
op=torch.linalg.qr,
|
|
dtypes=floating_and_complex_types(),
|
|
# batched gradients do not work for empty inputs
|
|
# https://github.com/pytorch/pytorch/issues/50743#issuecomment-767376085
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'),
|
|
),
|
|
# See https://github.com/pytorch/pytorch/issues/66357
|
|
check_batched_forward_grad=False,
|
|
sample_inputs_func=sample_inputs_linalg_qr_geqrf,
|
|
decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack]),
|
|
OpInfo('linalg.slogdet',
|
|
aten_name='linalg_slogdet',
|
|
op=torch.linalg.slogdet,
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_linalg_slogdet,
|
|
decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack],),
|
|
OpInfo('linalg.vector_norm',
|
|
op=torch.linalg.vector_norm,
|
|
dtypes=floating_and_complex_types_and(torch.float16, torch.bfloat16),
|
|
decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack],
|
|
sample_inputs_func=sample_inputs_linalg_vector_norm,
|
|
aten_name='linalg_vector_norm',
|
|
supports_forward_ad=True,
|
|
# torch.autograd.gradcheck.GradcheckError: While computing batched gradients
|
|
# got: Could not allocate memory to change Tensor SizesAndStrides!
|
|
check_batched_forward_grad=False,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients', 'test_fn_fwgrad_bwgrad',
|
|
dtypes=[torch.complex128]),
|
|
)),
|
|
UnaryUfuncInfo('log',
|
|
ref=np.log,
|
|
domain=(0, None),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
decorators=(precisionOverride({torch.bfloat16: 5e-2}),),
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
),
|
|
# log(z)->-inf for |z|->0
|
|
reference_numerics_filter=NumericsFilter(condition=lambda x: torch.abs(x) < 0.1, safe_val=1)),
|
|
UnaryUfuncInfo('log10',
|
|
ref=np.log10,
|
|
domain=(0, None),
|
|
decorators=(precisionOverride({torch.bfloat16: 5e-2}),),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
),
|
|
# log10(z)->-inf for |z|->0
|
|
reference_numerics_filter=NumericsFilter(condition=lambda x: torch.abs(x) < 0.1, safe_val=1)),
|
|
UnaryUfuncInfo('log1p',
|
|
ref=np.log1p,
|
|
aliases=('special.log1p',),
|
|
domain=(-1, None),
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
decorators=(precisionOverride({torch.bfloat16: 1e-1}),),
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped! sparse backward not supported"),
|
|
'TestSparseUnaryUfuncs', 'test_sparse_fn_grad'),
|
|
),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_sparse=True,
|
|
supports_sparse_csr=True,
|
|
assert_autodiffed=True),
|
|
UnaryUfuncInfo('log2',
|
|
ref=np.log2,
|
|
domain=(0, None),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
decorators=(precisionOverride({torch.bfloat16: 1e-1}),),
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=[torch.cfloat, torch.cdouble]),
|
|
),
|
|
# log2(z)->-inf for |z|->0
|
|
reference_numerics_filter=NumericsFilter(condition=lambda x: torch.abs(x) < 0.1, safe_val=1)),
|
|
BinaryUfuncInfo('ldexp',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_inplace_autograd=False,
|
|
promotes_int_to_float=True,
|
|
supports_out=True,
|
|
supports_rhs_python_scalar=False,
|
|
skips=(
|
|
# RuntimeError: mul(): functions with out=... arguments don't support
|
|
# automatic differentiation, but one of the arguments requires grad
|
|
# https://github.com/pytorch/pytorch/issues/68966
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_variant_consistency_eager'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_conj_view'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_conj_view'),
|
|
),
|
|
decorators=[
|
|
DecorateInfo(
|
|
toleranceOverride({
|
|
torch.complex64: tol(atol=1e-05, rtol=1e-05)
|
|
}),
|
|
'TestCommon', device_type='cpu',
|
|
),
|
|
], ),
|
|
OpInfo('logaddexp',
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.bfloat16),
|
|
dtypesIfROCM=floating_types_and(torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=lambda op_info, device, dtype, requires_grad=False, **kwargs:
|
|
(SampleInput(make_tensor((S, S), dtype=dtype, device=device, requires_grad=requires_grad),
|
|
args=(make_tensor((S, S), dtype=dtype, device=device, requires_grad=requires_grad),)),)),
|
|
OpInfo('logaddexp2',
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.bfloat16),
|
|
dtypesIfROCM=floating_types_and(torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=lambda op_info, device, dtype, requires_grad=False, **kwargs:
|
|
(SampleInput(make_tensor((S, S), dtype=dtype, device=device, requires_grad=requires_grad),
|
|
args=(make_tensor((S, S), dtype=dtype, device=device, requires_grad=requires_grad),)),)),
|
|
UnaryUfuncInfo('logical_not',
|
|
ref=np.logical_not,
|
|
decorators=(precisionOverride({torch.bfloat16: 7e-1,
|
|
torch.float16: 5e-1}),),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_autograd=False,
|
|
skips=(
|
|
# The function variant always returns BoolTensor
|
|
# while the inplace variant preserves the input dtype.
|
|
# >>> t = torch.randn(3)
|
|
# >>> torch.logical_not(t)
|
|
# tensor([False, False, False])
|
|
# >>> torch.logical_not(t).dtype
|
|
# torch.bool
|
|
# >>> t.logical_not_().dtype
|
|
# torch.float32
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_variant_consistency',
|
|
dtypes=all_types_and_complex_and(torch.half, torch.bfloat16)),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_variant_consistency_eager',
|
|
dtypes=all_types_and_complex_and(torch.half, torch.bfloat16)),
|
|
)),
|
|
BinaryUfuncInfo('lt',
|
|
aliases=('less',),
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16, torch.float16),
|
|
always_returns_bool=True,
|
|
supports_autograd=False,),
|
|
OpInfo('linalg.lu_factor',
|
|
aten_name='linalg_lu_factor',
|
|
op=torch.linalg.lu_factor,
|
|
dtypes=floating_and_complex_types(),
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_linalg_lu_factor,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCPUIfNoLapack]),
|
|
OpInfo('linalg.lu_factor_ex',
|
|
aten_name='linalg_lu_factor_ex',
|
|
op=torch.linalg.lu_factor_ex,
|
|
dtypes=floating_and_complex_types(),
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_linalg_lu_factor,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCPUIfNoLapack]),
|
|
OpInfo('lu',
|
|
op=torch.lu,
|
|
dtypes=floating_and_complex_types(),
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=False, # need: lu_unpack
|
|
# https://github.com/pytorch/pytorch/issues/66357
|
|
check_batched_forward_grad=False,
|
|
sample_inputs_func=sample_inputs_lu,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCPUIfNoLapack],
|
|
skips=(
|
|
# we skip jit tests because `lu` is a torch function
|
|
# RuntimeError:
|
|
# 'Tensor (inferred)' object has no attribute or method 'lu'.:
|
|
# File "<string>", line 3
|
|
# def the_method(i0):
|
|
# return i0.lu(True, True)
|
|
# ~~~~~ <--- HERE
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
# RuntimeError not raised: Expected RuntimeError when calling with input.device=cpu and out.device=cuda
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'),
|
|
# UserWarning not triggered : Resized a non-empty tensor but did not warn about it.
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warning'),
|
|
)),
|
|
OpInfo('lu_solve',
|
|
op=torch.lu_solve,
|
|
dtypes=floating_and_complex_types(),
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=False, # need: lu_unpack
|
|
# See https://github.com/pytorch/pytorch/issues/66357
|
|
check_batched_forward_grad=False,
|
|
sample_inputs_func=sample_inputs_lu_solve,
|
|
decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack],
|
|
skips=(
|
|
# RuntimeError: lu_unpack: LU_pivots is expected to be a contiguous tensor of torch.int32 dtype
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_noncontiguous_samples'), # noqa: B950
|
|
)),
|
|
OpInfo('lu_unpack',
|
|
op=torch.lu_unpack,
|
|
dtypes=floating_and_complex_types(),
|
|
supports_inplace_autograd=False,
|
|
# we use in-place operations which cannot be avoided.
|
|
# This causes vmap failures, hence we skip batched gradient checks
|
|
check_batched_grad=False,
|
|
supports_out=True,
|
|
sample_inputs_func=sample_inputs_lu_unpack,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCPUIfNoLapack],
|
|
skips=(
|
|
# LU_pivots is expected to be a contiguous tensor
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_noncontiguous_samples'), # noqa: B950
|
|
# cuda gradchecks are slow
|
|
# see discussion https://github.com/pytorch/pytorch/pull/47761#issuecomment-747316775
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_fn_gradgrad', device_type='cuda'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
)),
|
|
OpInfo('masked_fill',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_masked_fill,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
check_batched_forward_grad=False,
|
|
supports_out=False),
|
|
OpInfo('masked_scatter',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_masked_scatter,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
# https://github.com/pytorch/pytorch/issues/66357
|
|
check_batched_forward_grad=False,
|
|
supports_out=False),
|
|
OpInfo('masked_select',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_masked_select,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
),
|
|
error_inputs_func=error_inputs_masked_select),
|
|
OpInfo('matrix_exp',
|
|
dtypes=floating_and_complex_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16,
|
|
*[torch.bfloat16] if (CUDA11OrLater or TEST_WITH_ROCM) else []),
|
|
aliases=('linalg.matrix_exp',),
|
|
sample_inputs_func=sample_inputs_matrix_exp,
|
|
# Needs to construct a 2nx2n matrix by copy_ ing into it
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
# https://github.com/pytorch/pytorch/issues/66357
|
|
check_batched_forward_grad=False,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
),
|
|
supports_out=False,
|
|
),
|
|
OpInfo('matmul',
|
|
aliases=('linalg.matmul',),
|
|
dtypes=all_types_and_complex_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16,
|
|
*[torch.bfloat16] if ((SM53OrLater and CUDA11OrLater)
|
|
or TEST_WITH_ROCM) else []),
|
|
backward_dtypesIfCUDA=floating_and_complex_types_and(torch.float16,
|
|
*[torch.bfloat16] if ((SM60OrLater and CUDA11OrLater)
|
|
or TEST_WITH_ROCM) else []),
|
|
assert_autodiffed=True,
|
|
assert_jit_shape_analysis=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
check_batched_forward_grad=False,
|
|
sample_inputs_func=sample_inputs_matmul,
|
|
decorators=[
|
|
# ROCm intermittently fails the test with standard atol/rtol
|
|
DecorateInfo(toleranceOverride({torch.float32: tol(atol=1e-4, rtol=0)}),
|
|
'TestCommon', 'test_noncontiguous_samples',
|
|
active_if=TEST_WITH_ROCM), ],
|
|
skips=(
|
|
# Strides are not the same!
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'),
|
|
# https://github.com/pytorch/pytorch/issues/67470
|
|
DecorateInfo(unittest.skip("67470!"),
|
|
'TestCommon', 'test_noncontiguous_samples',
|
|
device_type='cpu', dtypes=(torch.long,)),
|
|
# AssertionError: False is not true : Tensors failed to compare as equal!
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestOpInfo',
|
|
device_type='xla', dtypes=(torch.long,)),
|
|
# https://github.com/pytorch/pytorch/issues/71774
|
|
DecorateInfo(unittest.skip('Skipped!'), 'TestNNCOpInfo', 'test_nnc_correctness',
|
|
device_type='cpu', dtypes=(torch.long,)),
|
|
)),
|
|
OpInfo('max',
|
|
variant_test_name='reduction_with_dim',
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
sample_inputs_func=sample_inputs_max_min_reduction_with_dim,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
),
|
|
supports_forward_ad=True),
|
|
OpInfo('max',
|
|
variant_test_name='reduction_no_dim',
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_max_min_reduction_no_dim),
|
|
OpInfo('median',
|
|
dtypes=all_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.float16),
|
|
# TODO: some signatures of median do support out
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
),
|
|
sample_inputs_func=partial(sample_inputs_reduction, supports_multiple_dims=False)),
|
|
OpInfo('nanmedian',
|
|
dtypes=all_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.float16),
|
|
# TODO: some signatures of nanmedian do support out
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
),
|
|
sample_inputs_func=partial(sample_inputs_reduction, supports_multiple_dims=False)),
|
|
OpInfo('var_mean',
|
|
dtypes=floating_and_complex_types_and(torch.half, torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.half, torch.bfloat16),
|
|
sample_inputs_func=partial(sample_inputs_reduction, supports_multiple_dims=False),
|
|
backward_dtypes=floating_types_and(torch.half, torch.bfloat16),
|
|
backward_dtypesIfCUDA=floating_types_and(torch.half),
|
|
# TODO: some signatures of var_mean do support out
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=False, # Need: var_mean
|
|
skips=(
|
|
# var_mean does not support automatic differentiation for outputs with complex dtype
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_dtypes'),
|
|
# https://github.com/pytorch/pytorch/issues/67539
|
|
DecorateInfo(unittest.skip("67539"), 'TestCommon', 'test_noncontiguous_samples',
|
|
active_if=TEST_WITH_ASAN, device_type='cpu'),
|
|
# TODO: FIXME: complex inputs requiring grad error in forward
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_dtypes'),
|
|
# TODO: review with var_mean tests in test_autograd.py
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_fn_grad'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_fn_gradgrad'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCompositeCompliance', 'test_backward'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_forward_mode_AD'),
|
|
# Division by zero, may be related to above?
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_fn_fwgrad_bwgrad'))),
|
|
OpInfo('std_mean',
|
|
dtypes=floating_and_complex_types_and(torch.half, torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.half, torch.bfloat16),
|
|
sample_inputs_func=partial(sample_inputs_reduction, supports_multiple_dims=False),
|
|
backward_dtypes=floating_types_and(torch.half, torch.bfloat16),
|
|
backward_dtypesIfCUDA=floating_types_and(torch.half),
|
|
# TODO: some signatures of std_mean do support out
|
|
supports_out=False,
|
|
supports_forward_ad=True, # Supports only certain variants?
|
|
supports_fwgrad_bwgrad=False, # Need: std_mean
|
|
skips=(
|
|
DecorateInfo(unittest.skip("ASAN: division by zero!"), active_if=TEST_WITH_ASAN),
|
|
# std_mean does not support forward when complex inputs require grad
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_dtypes'),
|
|
# https://github.com/pytorch/pytorch/issues/67539
|
|
DecorateInfo(unittest.skip("67539"), 'TestCommon', 'test_noncontiguous_samples',
|
|
active_if=TEST_WITH_ASAN, device_type='cpu'),
|
|
# TODO: fix along with var_mean autograd tests
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_fn_grad'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_fn_gradgrad'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCompositeCompliance', 'test_backward'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_forward_mode_AD'),
|
|
# Division by zero, may be related to above?
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_fn_fwgrad_bwgrad'))),
|
|
OpInfo('meshgrid',
|
|
variant_test_name='variadic_tensors',
|
|
ref=np.meshgrid,
|
|
dtypes=all_types_and_complex_and(torch.bfloat16, torch.bool, torch.float16),
|
|
sample_inputs_func=partial(sample_inputs_meshgrid, variant='variadic'),
|
|
skips=[
|
|
# JIT does not support variadic tensors.
|
|
# RuntimeError: input->type()->kind() == TypeKind::OptionalType
|
|
# INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":252,
|
|
# please report a bug to PyTorch.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
# meshgrid is defined in torch.functional to take a
|
|
# variadic list of tensors. Variadic parameters are not
|
|
# compatible with the normalize operator tests.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
# Skip operator schema test because this is a functional and not an operator
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestOperatorSignatures', 'test_get_torch_func_signature_exhaustive'),
|
|
],
|
|
supports_out=False,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_forward_ad=True),
|
|
OpInfo('meshgrid',
|
|
variant_test_name='list_of_tensors',
|
|
# Unlike the variant above, we do not use np.meshgrid as a
|
|
# ref since it does not officially support list of numpy
|
|
# arrays.
|
|
dtypes=all_types_and_complex_and(torch.bfloat16, torch.bool, torch.float16),
|
|
sample_inputs_func=partial(sample_inputs_meshgrid, variant='list'),
|
|
skips=[
|
|
# meshgrid is defined in torch.functional to take a
|
|
# variadic list of tensors. Variadic parameters are not
|
|
# compatible with the normalize operator tests.
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
],
|
|
assert_autodiffed=True,
|
|
supports_out=False,
|
|
autodiff_nonfusible_nodes=[],
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_forward_ad=True),
|
|
OpInfo('min',
|
|
variant_test_name='reduction_with_dim',
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
sample_inputs_func=sample_inputs_max_min_reduction_with_dim,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
),
|
|
supports_forward_ad=True),
|
|
OpInfo('min',
|
|
variant_test_name='reduction_no_dim',
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_max_min_reduction_no_dim),
|
|
OpInfo('quantile',
|
|
dtypes=floating_types(),
|
|
sample_inputs_func=sample_inputs_reduction_quantile,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'),
|
|
),
|
|
# See https://github.com/pytorch/pytorch/issues/66357
|
|
# Relies on copy_ to broadcast, but the forward AD path calls broadcast_to which
|
|
# does not have a batching rule in core
|
|
check_batched_forward_grad=False),
|
|
OpInfo('nanquantile',
|
|
dtypes=floating_types(),
|
|
sample_inputs_func=sample_inputs_reduction_quantile,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
),
|
|
# See https://github.com/pytorch/pytorch/issues/66357
|
|
# Relies on copy_ to broadcast, but the forward AD path calls broadcast_to which
|
|
# does not have a batching rule in core
|
|
check_batched_forward_grad=False),
|
|
BinaryUfuncInfo(
|
|
'max',
|
|
aliases=('maximum',),
|
|
variant_test_name='binary',
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
assert_autodiffed=True,
|
|
ref=np.maximum,
|
|
supports_rhs_python_scalar=False,
|
|
skips=(
|
|
# Incorrectly attempts to use a scalar for the second argument
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_jit_alias_remapping'),
|
|
# TODO: FIXME: RuntimeError: "max_elementwise_cuda" not implemented for 'ComplexFloat'
|
|
DecorateInfo(unittest.expectedFailure, 'TestBinaryUfuncs', 'test_type_promotion', device_type='cuda'),
|
|
)),
|
|
BinaryUfuncInfo(
|
|
'maximum',
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
ref=np.maximum,
|
|
supports_rhs_python_scalar=False,
|
|
skips=(
|
|
# TODO: FIXME: RuntimeError: "max_elementwise_cuda" not implemented for 'ComplexFloat'
|
|
DecorateInfo(unittest.expectedFailure, 'TestBinaryUfuncs', 'test_type_promotion', device_type='cuda'),
|
|
)),
|
|
BinaryUfuncInfo(
|
|
'min',
|
|
aliases=('minimum',),
|
|
variant_test_name='binary',
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
assert_autodiffed=True,
|
|
ref=np.minimum,
|
|
supports_rhs_python_scalar=False,
|
|
skips=(
|
|
# Incorrectly attempts to use a scalar for the second argument
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_jit_alias_remapping'),
|
|
# TODO: FIXME: RuntimeError: "min_elementwise_cuda" not implemented for 'ComplexFloat'
|
|
DecorateInfo(unittest.expectedFailure,
|
|
'TestBinaryUfuncs',
|
|
'test_type_promotion',
|
|
device_type='cuda'),
|
|
)),
|
|
BinaryUfuncInfo(
|
|
'minimum',
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
ref=np.minimum,
|
|
supports_rhs_python_scalar=False,
|
|
skips=(
|
|
# TODO: FIXME: RuntimeError: "min_elementwise_cuda" not implemented for 'ComplexFloat'
|
|
DecorateInfo(unittest.expectedFailure,
|
|
'TestBinaryUfuncs',
|
|
'test_type_promotion',
|
|
device_type='cuda'),
|
|
),
|
|
),
|
|
BinaryUfuncInfo('logical_and',
|
|
ref=np.logical_and,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_autograd=False,
|
|
always_returns_bool=True,
|
|
supports_rhs_python_scalar=False),
|
|
BinaryUfuncInfo('logical_or',
|
|
ref=np.logical_or,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_autograd=False,
|
|
always_returns_bool=True,
|
|
supports_rhs_python_scalar=False),
|
|
BinaryUfuncInfo('logical_xor',
|
|
ref=np.logical_xor,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_autograd=False,
|
|
always_returns_bool=True,
|
|
supports_rhs_python_scalar=False),
|
|
BinaryUfuncInfo('bitwise_or',
|
|
ref=np.bitwise_or,
|
|
dtypes=integral_types_and(torch.bool),
|
|
supports_autograd=False,
|
|
skips=(
|
|
# TODO: FIXME: RuntimeError: "bitwise_or_cuda" not implemented for 'Half'
|
|
DecorateInfo(unittest.expectedFailure,
|
|
'TestBinaryUfuncs',
|
|
'test_type_promotion',
|
|
device_type='cuda'),
|
|
)),
|
|
BinaryUfuncInfo('bitwise_xor',
|
|
ref=np.bitwise_xor,
|
|
dtypes=integral_types_and(torch.bool),
|
|
supports_autograd=False,
|
|
skips=(
|
|
# TODO: FIXME: RuntimeError: "bitwise_xor_cuda" not implemented for 'Half'
|
|
DecorateInfo(unittest.expectedFailure,
|
|
'TestBinaryUfuncs',
|
|
'test_type_promotion',
|
|
device_type='cuda'),
|
|
)),
|
|
BinaryUfuncInfo('heaviside',
|
|
ref=lambda a, b: (
|
|
# necessary because np.heaviside incorrectly returns float64 when passed args of dtype int64
|
|
np.int64(np.heaviside(a, b)) if a.dtype == np.int64 and b.dtype == np.int64 else np.heaviside(a, b)
|
|
),
|
|
dtypes=all_types_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_autograd=False,
|
|
supports_rhs_python_scalar=False,
|
|
skips=(
|
|
# RuntimeError: heaviside is not yet implemented for tensors with different dtypes.
|
|
DecorateInfo(unittest.expectedFailure,
|
|
'TestBinaryUfuncs',
|
|
'test_type_promotion'),
|
|
# PyTorch's heaviside does not appear to propagate NaNs
|
|
DecorateInfo(unittest.skip("Skipped!"),
|
|
'TestBinaryUfuncs',
|
|
'test_reference_numerics_extremal_values'),
|
|
)),
|
|
BinaryUfuncInfo('lcm',
|
|
ref=np.lcm,
|
|
dtypes=integral_types_and(),
|
|
supports_autograd=False,
|
|
supports_rhs_python_scalar=False),
|
|
BinaryUfuncInfo('gcd',
|
|
ref=np.gcd,
|
|
dtypes=integral_types_and(),
|
|
supports_autograd=False,
|
|
supports_rhs_python_scalar=False,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure,
|
|
'TestBinaryUfuncs',
|
|
'test_reference_numerics_small_values',
|
|
dtypes=(torch.int8,)),)),
|
|
BinaryUfuncInfo('isclose',
|
|
ref=np.isclose,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_isclose,
|
|
supports_autograd=False,
|
|
supports_out=False,
|
|
supports_rhs_python_scalar=False,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure,
|
|
'TestCommon',
|
|
'test_reference_testing', dtypes=(torch.complex128,)),
|
|
# RuntimeError: Short did not match Int
|
|
DecorateInfo(unittest.expectedFailure,
|
|
'TestBinaryUfuncs',
|
|
'test_type_promotion'),
|
|
DecorateInfo(unittest.skip("Skipped!"),
|
|
'TestBinaryUfuncs',
|
|
'test_reference_numerics_extremal_values'),
|
|
# Problem due to internal inplace operations
|
|
DecorateInfo(unittest.expectedFailure,
|
|
'TestCompositeCompliance',
|
|
'test_operator'),
|
|
)),
|
|
# `softmax` supports different dtypes based on whether `dtype` argument,
|
|
# is passed or not. Hence two OpInfo entries, one with dtype and other without.
|
|
# https://github.com/pytorch/pytorch/issues/68752
|
|
OpInfo('softmax',
|
|
aliases=('special.softmax', 'nn.functional.softmax',),
|
|
aten_name='softmax',
|
|
aten_backward_name='_softmax_backward_data',
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_softmax_variant,
|
|
assert_jit_shape_analysis=True,
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
supports_out=True),
|
|
OpInfo('softmax',
|
|
aliases=('special.softmax', 'nn.functional.softmax',),
|
|
variant_test_name="with_dtype",
|
|
aten_name='softmax',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=partial(sample_inputs_softmax_variant, with_dtype=True),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
supports_out=True),
|
|
# `softmin` supports different dtypes based on whether `dtype` argument,
|
|
# is passed or not. Hence two OpInfo entries, one with dtype and other without.
|
|
# https://github.com/pytorch/pytorch/issues/68752
|
|
OpInfo('nn.functional.softmin',
|
|
aten_name='softmin',
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_softmax_variant,
|
|
assert_jit_shape_analysis=False,
|
|
assert_autodiffed=False,
|
|
supports_forward_ad=True,
|
|
supports_out=False),
|
|
OpInfo('nn.functional.softmin',
|
|
variant_test_name="with_dtype",
|
|
aten_name='softmin',
|
|
dtypes=all_types_and_complex_and(torch.float16, torch.bfloat16),
|
|
sample_inputs_func=partial(sample_inputs_softmax_variant, with_dtype=True),
|
|
assert_autodiffed=False,
|
|
supports_forward_ad=True,
|
|
supports_out=False),
|
|
OpInfo(
|
|
"nn.functional.cross_entropy",
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_cross_entropy,
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
decorators=(
|
|
DecorateInfo(
|
|
toleranceOverride({torch.float32: tol(atol=1e-5, rtol=1e-3)}),
|
|
"TestJit",
|
|
"test_variant_consistency_jit",
|
|
device_type="cpu",
|
|
),
|
|
),
|
|
skips=(
|
|
# AssertionError: False is not true : Scalars failed to compare as equal! 0 != 1536
|
|
# test_ops.TestJitCUDA.test_variant_consistency_jit_nn_functional_cross_entropy_cuda_float32 leaked
|
|
# 1536 bytes CUDA memory on device 0
|
|
DecorateInfo(
|
|
unittest.expectedFailure,
|
|
"TestJit",
|
|
"test_variant_consistency_jit",
|
|
device_type="cuda",
|
|
),
|
|
)
|
|
),
|
|
OpInfo('nn.functional.normalize',
|
|
dtypes=floating_and_complex_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_normalize,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients', 'test_fn_fwgrad_bwgrad',
|
|
dtypes=[torch.complex128]),
|
|
)),
|
|
OpInfo('aminmax',
|
|
ref=lambda x, dim=None, keepdim=False: (np.amin(x, axis=dim, keepdims=keepdim), np.amax(x, axis=dim, keepdims=keepdim)),
|
|
dtypes=all_types_and(torch.bool),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.float16, torch.bfloat16),
|
|
decorators=(onlyNativeDeviceTypes,),
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_aminmax,
|
|
error_inputs_func=error_inputs_aminmax_amax_amin,
|
|
skips=(
|
|
# AssertionError: Resizing an out= argument with no elements threw a resize warning!
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out', device_type='cpu'),
|
|
)),
|
|
OpInfo('as_strided',
|
|
op=lambda x, size, stride, storage_offset=0:
|
|
torch.as_strided(x, size, stride, storage_offset=storage_offset),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
# vmap does not support inplace views
|
|
check_inplace_batched_forward_grad=False,
|
|
sample_inputs_func=sample_inputs_as_strided,
|
|
skips=(
|
|
# AssertionError: False is not true : Tensors failed to compare as equal!
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_noncontiguous_samples'),
|
|
# AssertionError: False is not true : Scalars failed to compare as equal!
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_variant_consistency_eager'),)),
|
|
OpInfo('nn.functional.cosine_similarity',
|
|
aten_name="cosine_similarity",
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_cosine_similarity),
|
|
OpInfo('nn.functional.adaptive_avg_pool1d',
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
sample_inputs_func=sample_inputs_adaptive_avg_pool1d),
|
|
OpInfo('nn.functional.adaptive_avg_pool2d',
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
decorators=(
|
|
# RuntimeError:
|
|
# adaptive_avg_pool2d(Tensor input, int[2] output_size) -> (Tensor):
|
|
# Expected a value of type 'List[int]' for argument 'output_size' but
|
|
# instead found type 'Tuple[NoneType, int]'. :
|
|
# File "<string>", line 3
|
|
# def the_method(i0):
|
|
# return torch.nn.functional.adaptive_avg_pool2d(i0, (None, 7))
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
sample_inputs_func=sample_inputs_adaptive_avg_pool2d),
|
|
OpInfo('nn.functional.adaptive_avg_pool3d',
|
|
dtypes=floating_types_and(torch.half),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
decorators=(
|
|
# RuntimeError:
|
|
# adaptive_avg_pool3d(Tensor input, int[3] output_size) -> (Tensor):
|
|
# Expected a value of type 'List[int]' for argument 'output_size' but
|
|
# instead found type 'Tuple[NoneType, NoneType, NoneType]'. :
|
|
# File "<string>", line 3
|
|
#
|
|
# def the_method(i0):
|
|
# return torch.nn.functional.adaptive_avg_pool3d(i0, (None, None, None))
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
|
|
#
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
sample_inputs_func=sample_inputs_adaptive_avg_pool3d),
|
|
OpInfo('nn.functional.adaptive_max_pool1d',
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
# got: Batching rule not implemented for aten::flatten.using_ints
|
|
check_batched_forward_grad=False,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
sample_inputs_func=sample_inputs_adaptive_max_pool1d),
|
|
OpInfo('nn.functional.adaptive_max_pool2d',
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
decorators=(
|
|
# RuntimeError:
|
|
# adaptive_max_pool2d(Tensor input, int[2] output_size) -> (Tensor):
|
|
# Expected a value of type 'List[int]' for argument 'output_size' but
|
|
# instead found type 'Tuple[NoneType, int]'. :
|
|
# File "<string>", line 3
|
|
# def the_method(i0):
|
|
# return torch.nn.functional.adaptive_max_pool2d(i0, (None, 7))
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
# got: Batching rule not implemented for aten::flatten.using_ints
|
|
check_batched_forward_grad=False,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
sample_inputs_func=sample_inputs_adaptive_max_pool2d),
|
|
OpInfo('nn.functional.adaptive_max_pool3d',
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
decorators=(
|
|
# RuntimeError:
|
|
# adaptive_max_pool3d(Tensor input, int[3] output_size) -> (Tensor):
|
|
# Expected a value of type 'List[int]' for argument 'output_size' but
|
|
# instead found type 'Tuple[NoneType, NoneType, NoneType]'. :
|
|
# File "<string>", line 3
|
|
#
|
|
# def the_method(i0):
|
|
# return torch.nn.functional.adaptive_max_pool3d(i0, (None, None, None))
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
|
|
#
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
# got: Batching rule not implemented for aten::flatten.using_ints
|
|
check_batched_forward_grad=False,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
sample_inputs_func=sample_inputs_adaptive_max_pool3d),
|
|
OpInfo('nn.functional.avg_pool1d',
|
|
aten_name='avg_pool1d',
|
|
supports_autograd=True,
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
dtypes=floating_types_and(torch.int64, torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
sample_inputs_func=sample_inputs_avgpool1d),
|
|
OpInfo('nn.functional.avg_pool3d',
|
|
aten_name='avg_pool3d',
|
|
supports_autograd=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
dtypes=floating_types_and(torch.int64),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
sample_inputs_func=sample_inputs_avgpool3d,
|
|
skips=(
|
|
# AssertionError: Tensor-likes are not close!
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out', device_type='cpu'),
|
|
)),
|
|
OpInfo(
|
|
"nn.functional.binary_cross_entropy_with_logits",
|
|
aten_name="binary_cross_entropy_with_logits",
|
|
supports_autograd=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_out=False,
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
sample_inputs_func=sample_inputs_binary_cross_entropy_with_logits,
|
|
skips=(
|
|
DecorateInfo(
|
|
unittest.skip("Skipped!"),
|
|
'TestJit',
|
|
'test_variant_consistency_jit',
|
|
dtypes=(torch.float32,)
|
|
),
|
|
DecorateInfo(
|
|
unittest.expectedFailure,
|
|
'TestCompositeCompliance',
|
|
'test_forward_ad',
|
|
dtypes=(torch.float32,)
|
|
),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', "test_fn_gradgrad", dtypes=(torch.float64,)),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', "test_fn_fwgrad_bwgrad", dtypes=(torch.float64,)),
|
|
),
|
|
),
|
|
OpInfo('nn.functional.relu',
|
|
aten_name="relu",
|
|
supports_autograd=True,
|
|
dtypes=all_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_nn_activation_relu,
|
|
supports_out=False,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_forward_ad=True),
|
|
OpInfo('nn.functional.conv_transpose1d',
|
|
aten_name='conv_transpose1d',
|
|
aliases=('conv_transpose1d',),
|
|
dtypes=floating_types_and(torch.int64),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, *[torch.bfloat16] if (CUDA11OrLater or TEST_WITH_ROCM) else []),
|
|
sample_inputs_func=sample_inputs_conv_transpose1d,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
decorators=[
|
|
DecorateInfo(
|
|
toleranceOverride({torch.float32: tol(atol=1e-04, rtol=1.3e-06), }),
|
|
'TestCommon', 'test_variant_consistency_eager', device_type='cuda')],
|
|
skips=(
|
|
# RuntimeError: !lhs.isAliasOf(rhs)INTERNAL ASSERT FAILED at
|
|
# "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":104, please report a bug to PyTorch.
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
),
|
|
supports_out=False,),
|
|
OpInfo('nn.functional.conv_transpose2d',
|
|
aten_name='conv_transpose2d',
|
|
aliases=('conv_transpose2d',),
|
|
dtypes=floating_types_and(torch.int64),
|
|
dtypesIfCUDA=floating_types_and(torch.float16,
|
|
*[torch.bfloat16] if (CUDA11OrLater or TEST_WITH_ROCM) else []),
|
|
sample_inputs_func=sample_inputs_conv_transpose2d,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
decorators=[
|
|
DecorateInfo(
|
|
toleranceOverride({torch.float32: tol(atol=1e-04, rtol=1.3e-06), }),
|
|
'TestCommon', 'test_variant_consistency_eager', device_type='cuda')],
|
|
skips=(
|
|
# RuntimeError: !lhs.isAliasOf(rhs)INTERNAL ASSERT FAILED at
|
|
# "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":104, please report a bug to PyTorch.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
),
|
|
supports_out=False,),
|
|
OpInfo('nn.functional.conv_transpose3d',
|
|
aten_name='conv_transpose3d',
|
|
aliases=('conv_transpose3d',),
|
|
dtypes=floating_types_and(torch.int64),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, *[torch.bfloat16] if (CUDA11OrLater or TEST_WITH_ROCM) else []),
|
|
sample_inputs_func=sample_inputs_conv_transpose3d,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
decorators=[
|
|
DecorateInfo(
|
|
toleranceOverride({torch.float32: tol(atol=1e-04, rtol=1.3e-06), }),
|
|
'TestCommon', 'test_variant_consistency_eager', device_type='cuda'),
|
|
DecorateInfo(
|
|
toleranceOverride({torch.float32: tol(atol=1e-04, rtol=1.3e-06), }),
|
|
'TestCommon', 'test_noncontiguous_samples', device_type='cuda')],
|
|
skips=(
|
|
# RuntimeError: !lhs.isAliasOf(rhs)INTERNAL ASSERT FAILED at
|
|
# "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":104, please report a bug to PyTorch.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
DecorateInfo(unittest.skip("Skipped! 75029"), 'TestCudaFuserOpInfo', 'test_nvfuser_correctness'),
|
|
DecorateInfo(unittest.skip("Skipped! RuntimeError: bias tensor has to be contiguous"), 'TestGradients',
|
|
'test_forward_mode_AD', device_type='cuda', active_if=TEST_WITH_ROCM),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad', device_type='cuda',
|
|
active_if=(not TEST_CUDNN)),
|
|
),
|
|
supports_out=False,),
|
|
OpInfo('nn.functional.conv1d',
|
|
aliases=('conv1d',),
|
|
aten_name='conv1d',
|
|
dtypes=floating_and_complex_types_and(torch.int64, torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16,
|
|
*[torch.bfloat16] if (CUDA11OrLater or TEST_WITH_ROCM) else []),
|
|
sample_inputs_func=sample_inputs_conv1d,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
skips=(
|
|
# RuntimeError: !lhs.isAliasOf(rhs)INTERNAL ASSERT FAILED at
|
|
# "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":103, please report a bug to PyTorch.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
# Ref: https://github.com/pytorch/pytorch/issues/75309
|
|
# AssertionError: None mismatch: torch.complex128 is not None
|
|
DecorateInfo(unittest.expectedFailure, 'TestDtypeCustomRules',
|
|
'test_custom_rules', dtypes=(torch.complex64, torch.complex128)),
|
|
# Ref: https://github.com/pytorch/pytorch/issues/75309
|
|
# RuntimeError: UNSUPPORTED DTYPE: complex
|
|
DecorateInfo(unittest.expectedFailure, 'TestNNCOpInfo',
|
|
'test_nnc_correctness', dtypes=(torch.complex64, torch.complex128)),
|
|
),
|
|
supports_expanded_weight=True,
|
|
supports_out=False,),
|
|
OpInfo('nn.functional.conv2d',
|
|
aliases=('conv2d',),
|
|
aten_name='conv2d',
|
|
dtypes=floating_and_complex_types_and(torch.int64, torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16,
|
|
*[torch.bfloat16] if (CUDA11OrLater or TEST_WITH_ROCM) else []),
|
|
sample_inputs_func=partial(sample_inputs_conv2d),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
# RuntimeError: !lhs.isAliasOf(rhs)INTERNAL ASSERT FAILED at
|
|
# "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":103, please report a bug to PyTorch.
|
|
DecorateInfo(unittest.skip("Works on some configs!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
# Ref: https://github.com/pytorch/pytorch/issues/75309
|
|
# AssertionError: None mismatch: torch.complex128 is not None
|
|
DecorateInfo(unittest.expectedFailure, 'TestDtypeCustomRules',
|
|
'test_custom_rules', dtypes=(torch.complex64, torch.complex128)),
|
|
# RuntimeError: UNSUPPORTED DTYPE: complex
|
|
DecorateInfo(unittest.expectedFailure, 'TestNNCOpInfo',
|
|
'test_nnc_correctness', dtypes=(torch.complex64, torch.complex128)),
|
|
),
|
|
supports_expanded_weight=True,
|
|
supports_out=False,),
|
|
OpInfo('nn.functional.group_norm',
|
|
aten_name='group_norm',
|
|
aliases=('group_norm',),
|
|
ref=reference_group_norm,
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
decorators=[
|
|
# RuntimeError: Cannot insert a Tensor that requires grad as a constant.
|
|
# Consider making it a parameter or input, or detaching the gradient
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit', dtypes=(torch.float32,))
|
|
],
|
|
sample_inputs_func=sample_inputs_group_norm,
|
|
supports_expanded_weight=True,),
|
|
OpInfo('nn.functional.instance_norm',
|
|
# no ref because instance_norm will often have numerical instability (large numbers or nan)
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
decorators=[
|
|
# RuntimeError: Cannot insert a Tensor that requires grad as a constant.
|
|
# Consider making it a parameter or input, or detaching the gradient
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit', dtypes=(torch.float32,)),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad',
|
|
active_if=TEST_WITH_ROCM)
|
|
],
|
|
sample_inputs_func=sample_inputs_instance_norm,
|
|
supports_expanded_weight=True,),
|
|
OpInfo('nn.functional.layer_norm',
|
|
aten_name='layer_norm',
|
|
aten_backward_name='layer_norm_backward',
|
|
aliases=('layer_norm',),
|
|
ref=reference_layer_norm,
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
decorators=[
|
|
DecorateInfo(
|
|
toleranceOverride({torch.float32: tol(atol=1e-05, rtol=1e-03)}),
|
|
'TestCommon', 'test_reference_testing'
|
|
)
|
|
],
|
|
sample_inputs_func=sample_inputs_layer_norm,
|
|
supports_expanded_weight=True,),
|
|
OpInfo('nn.functional.local_response_norm',
|
|
dtypes=floating_types_and(torch.int64, torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
decorators=[
|
|
# RuntimeError: falseINTERNAL ASSERT FAILED at
|
|
# "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185, please report a bug to PyTorch.
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit', dtypes=(torch.float32,)),
|
|
DecorateInfo(toleranceOverride({torch.float16: tol(atol=1e-02, rtol=1e-02)}),
|
|
'TestCudaFuserOpInfo', 'test_nvfuser_correctness'),
|
|
],
|
|
sample_inputs_func=sample_inputs_local_response_norm,),
|
|
OpInfo('nn.functional.pad',
|
|
variant_test_name='constant',
|
|
aten_name='constant_pad_nd',
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half),
|
|
sample_inputs_func=partial(sample_inputs_nn_pad, mode='constant'),
|
|
supports_out=False),
|
|
OpInfo('nn.functional.pad',
|
|
variant_test_name='reflect',
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
dtypes=floating_and_complex_types(),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.half),
|
|
sample_inputs_func=partial(sample_inputs_nn_pad, mode='reflect'),
|
|
skips=(
|
|
# Doesn't have a corresponding aten operator.
|
|
# RuntimeError: falseINTERNAL ASSERT FAILED at
|
|
# "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185, please report a bug to PyTorch.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit', dtypes=(torch.float32,)),
|
|
),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
supports_out=False),
|
|
OpInfo('nn.functional.pad',
|
|
variant_test_name='replicate',
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
dtypes=floating_and_complex_types(),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.half),
|
|
sample_inputs_func=partial(sample_inputs_nn_pad, mode='replicate'),
|
|
skips=(
|
|
# Doesn't have a corresponding aten operator.
|
|
# RuntimeError: falseINTERNAL ASSERT FAILED at
|
|
# "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185, please report a bug to PyTorch.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit', dtypes=(torch.float32,)),
|
|
),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
supports_out=False),
|
|
OpInfo('nn.functional.pad',
|
|
variant_test_name='circular',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half),
|
|
sample_inputs_func=partial(sample_inputs_nn_pad, mode='circular'),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
check_batched_grad=False,
|
|
# https://github.com/pytorch/pytorch/issues/66357
|
|
check_batched_forward_grad=False,
|
|
skips=(
|
|
# Doesn't have a corresponding aten operator.
|
|
# RuntimeError: falseINTERNAL ASSERT FAILED at
|
|
# "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185, please report a bug to PyTorch.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit', dtypes=(torch.float32,)),
|
|
),
|
|
supports_out=False),
|
|
OpInfo('nn.functional.hardswish',
|
|
aten_name="hardswish",
|
|
aten_backward_name='hardswish_backward',
|
|
supports_autograd=True,
|
|
assert_autodiffed=True,
|
|
sample_inputs_func=sample_inputs_hardswish,
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
supports_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=False, # Need: hardswish_backward
|
|
supports_out=False,
|
|
autodiff_nonfusible_nodes=["aten::hardswish"]),
|
|
OpInfo('nn.functional.unfold',
|
|
aten_name='im2col',
|
|
aten_backward_name='im2col_backward',
|
|
dtypes=floating_and_complex_types_and(torch.half, torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.half),
|
|
sample_inputs_func=sample_inputs_nn_unfold,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_out=False,
|
|
skips=(
|
|
# NOTE: this failure may not reproduce consistently on different systems
|
|
# false INTERNAL ASSERT FAILED at "...torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185
|
|
DecorateInfo(unittest.skip("Internal assert failed!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('nn.functional.interpolate',
|
|
aten_name="interpolate",
|
|
variant_test_name='nearest',
|
|
supports_autograd=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_forward_ad=True,
|
|
dtypes=floating_types_and(torch.uint8),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.uint8),
|
|
sample_inputs_func=partial(sample_inputs_interpolate, 'nearest'),
|
|
skips=(
|
|
# RuntimeError: false
|
|
# INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185,
|
|
# please report a bug to PyTorch.
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
),
|
|
supports_out=False),
|
|
OpInfo('nn.functional.interpolate',
|
|
aten_name="interpolate",
|
|
variant_test_name='linear',
|
|
supports_autograd=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_forward_ad=True,
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.half),
|
|
sample_inputs_func=partial(sample_inputs_interpolate, 'linear'),
|
|
skips=(
|
|
# RuntimeError: false
|
|
# INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185,
|
|
# please report a bug to PyTorch.
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
),
|
|
supports_out=False),
|
|
OpInfo('nn.functional.interpolate',
|
|
aten_name="interpolate",
|
|
variant_test_name='bilinear',
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_autograd=True,
|
|
supports_forward_ad=True,
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.half),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
sample_inputs_func=partial(sample_inputs_interpolate, 'bilinear'),
|
|
skips=(
|
|
# RuntimeError: false
|
|
# INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185,
|
|
# please report a bug to PyTorch.
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
),
|
|
supports_out=False),
|
|
OpInfo('nn.functional.interpolate',
|
|
aten_name="interpolate",
|
|
variant_test_name='bicubic',
|
|
supports_autograd=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.half),
|
|
sample_inputs_func=partial(sample_inputs_interpolate, 'bicubic'),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
skips=(
|
|
# RuntimeError: false
|
|
# INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185,
|
|
# please report a bug to PyTorch.
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
),
|
|
supports_out=False),
|
|
OpInfo('nn.functional.interpolate',
|
|
aten_name="interpolate",
|
|
variant_test_name='trilinear',
|
|
supports_autograd=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.half),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
sample_inputs_func=partial(sample_inputs_interpolate, 'trilinear'),
|
|
skips=(
|
|
# RuntimeError: false
|
|
# INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185,
|
|
# please report a bug to PyTorch.
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
),
|
|
supports_out=False),
|
|
OpInfo('nn.functional.interpolate',
|
|
aten_name="interpolate",
|
|
variant_test_name='area',
|
|
supports_autograd=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
sample_inputs_func=partial(sample_inputs_interpolate, 'area'),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
skips=(
|
|
# RuntimeError: false
|
|
# INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185,
|
|
# please report a bug to PyTorch.
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
),
|
|
supports_out=False),
|
|
OpInfo('nn.functional.upsample_bilinear',
|
|
supports_autograd=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.half),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
sample_inputs_func=partial(sample_inputs_upsample, 'bilinear'),
|
|
skips=(
|
|
# RuntimeError: false
|
|
# INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185,
|
|
# please report a bug to PyTorch.
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
),
|
|
supports_out=False),
|
|
OpInfo(
|
|
"nn.functional.soft_margin_loss",
|
|
ref=_NOTHING,
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.bfloat16, torch.float16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
# doesn't support grad on target
|
|
sample_inputs_func=partial(sample_inputs_loss, rhs_requires_grad=False),
|
|
),
|
|
OpInfo('nn.functional.upsample_nearest',
|
|
supports_autograd=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
dtypes=floating_types_and(torch.uint8),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.uint8),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
sample_inputs_func=partial(sample_inputs_upsample, 'nearest'),
|
|
skips=(
|
|
# RuntimeError: false
|
|
# INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185,
|
|
# please report a bug to PyTorch.
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
),
|
|
supports_out=False),
|
|
OpInfo(
|
|
"nn.functional.margin_ranking_loss",
|
|
ref=_NOTHING,
|
|
dtypes=all_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bfloat16, torch.float16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_margin_ranking_loss,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'),
|
|
)),
|
|
OpInfo(
|
|
"nn.functional.multi_margin_loss",
|
|
ref=_NOTHING,
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.bfloat16, torch.float16),
|
|
supports_out=False,
|
|
supports_gradgrad=False,
|
|
sample_inputs_func=sample_inputs_multi_margin_loss,
|
|
),
|
|
OpInfo(
|
|
"nn.functional.multilabel_margin_loss",
|
|
ref=_NOTHING,
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.bfloat16, torch.float16),
|
|
supports_out=False,
|
|
supports_gradgrad=False,
|
|
sample_inputs_func=sample_inputs_multilabel_margin_loss
|
|
),
|
|
OpInfo('nn.functional.leaky_relu',
|
|
aliases=None,
|
|
aten_name="leaky_relu",
|
|
aten_backward_name='leaky_relu_backward',
|
|
sample_inputs_func=sample_inputs_leaky_relu,
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
supports_autograd=True,
|
|
assert_autodiffed=True,
|
|
supports_gradgrad=True,
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
autodiff_nonfusible_nodes=["aten::leaky_relu"]),
|
|
OpInfo(
|
|
"nn.functional.multilabel_soft_margin_loss",
|
|
ref=_NOTHING,
|
|
supports_out=False,
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16),
|
|
sample_inputs_func=sample_inputs_multilabel_soft_margin_loss,
|
|
decorators=(
|
|
DecorateInfo(
|
|
toleranceOverride({torch.float32: tol(atol=1e-4, rtol=1e-4)}),
|
|
"TestJit",
|
|
"test_variant_consistency_jit",
|
|
),
|
|
DecorateInfo(toleranceOverride({torch.float16: tol(atol=1e-02, rtol=1e-02)}),
|
|
'TestCudaFuserOpInfo', 'test_nvfuser_correctness'),
|
|
),
|
|
skips=(
|
|
# AssertionError: False is not true : Scalars failed to compare as equal! 0 != 4096
|
|
# __main__.TestJitCUDA.test_variant_consistency_jit_nn_functional_multilabel_soft_margin_loss_cuda_float32
|
|
# leaked 4096 bytes CUDA memory on device 0
|
|
DecorateInfo(
|
|
# Skip instead of expectedFailure because this fails
|
|
# locally for me but passes in CI.
|
|
unittest.skip("Skipped!"),
|
|
"TestJit",
|
|
"test_variant_consistency_jit",
|
|
device_type="cuda",
|
|
),
|
|
),
|
|
),
|
|
OpInfo('nn.functional.avg_pool2d',
|
|
aten_name='avg_pool2d',
|
|
supports_autograd=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
dtypes=floating_types_and(torch.int64, torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_avgpool2d,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out', device_type='cuda'),
|
|
)),
|
|
OpInfo('nn.functional.fractional_max_pool2d',
|
|
supports_autograd=True,
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
op=lambda input, *args, **kwargs:
|
|
wrapper_set_seed(torch.nn.functional.fractional_max_pool2d, input, *args, **kwargs),
|
|
# vmap does not support random operations
|
|
check_batched_forward_grad=False,
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.float16),
|
|
test_neg_view=False,
|
|
sample_inputs_func=sample_inputs_fractional_max_pool2d,
|
|
decorators=(
|
|
# FIXME: AssertionError: False is not true : Tensors failed to compare as equal!
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
# RuntimeError: input->type()->kind() == TypeKind::OptionalType
|
|
# INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":270
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'))),
|
|
OpInfo('nn.functional.fractional_max_pool3d',
|
|
supports_autograd=True,
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
op=lambda input, *args, **kwargs:
|
|
wrapper_set_seed(torch.nn.functional.fractional_max_pool3d, input, *args, **kwargs),
|
|
# vmap does not support random operations
|
|
check_batched_forward_grad=False,
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.float16),
|
|
test_neg_view=False,
|
|
sample_inputs_func=sample_inputs_fractional_max_pool3d,
|
|
decorators=(
|
|
# FIXME: both derivatives are implemented incorrectly
|
|
# https://github.com/pytorch/pytorch/issues/69322
|
|
# RuntimeError: cannot reshape tensor of 0 elements into shape [0, 1, -1] because the
|
|
# unspecified dimension size -1 can be any value and is ambiguous
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients', 'test_fn_gradgrad'),
|
|
# FIXME: AssertionError: False is not true : Tensors failed to compare as equal!
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
# RuntimeError: input->type()->kind() == TypeKind::OptionalType
|
|
# INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":270
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),)),
|
|
OpInfo('nn.functional.max_pool1d',
|
|
aten_name='max_pool1d',
|
|
supports_autograd=True,
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
# got: Batching rule not implemented for aten::flatten.using_ints
|
|
check_batched_forward_grad=False,
|
|
# TODO: add shape checks
|
|
assert_jit_shape_analysis=False,
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
skips=(
|
|
# Pre-existing condition; Needs to be fixed
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_operator', device_type='cpu'),
|
|
# RuntimeError: "max_pool1d_impl" not implemented for 'BFloat16'
|
|
DecorateInfo(unittest.skip("Works on some configs"), 'TestNNCOpInfo',
|
|
'test_nnc_correctness', dtypes=(torch.bfloat16,)),
|
|
DecorateInfo(unittest.skip("Works on some conifgs"), 'TestCudaFuserOpInfo',
|
|
'test_nvfuser_correctness', dtypes=(torch.bfloat16,)),
|
|
),
|
|
sample_inputs_func=sample_inputs_max_pool),
|
|
OpInfo('nn.functional.max_pool2d',
|
|
aten_name='max_pool2d',
|
|
supports_autograd=True,
|
|
# Vmap is not happy with non-contiguous (channels_last) inputs
|
|
check_batched_gradgrad=False,
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
# got: Batching rule not implemented for aten::flatten.using_ints
|
|
check_batched_forward_grad=False,
|
|
assert_jit_shape_analysis=True,
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_max_pool),
|
|
OpInfo('nn.functional.max_pool3d',
|
|
aten_name='max_pool3d',
|
|
supports_autograd=True,
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
# got: Batching rule not implemented for aten::flatten.using_ints
|
|
check_batched_forward_grad=False,
|
|
# TODO: add shape checks
|
|
assert_jit_shape_analysis=False,
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
# TODO: investigate nondeterminism
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
sample_inputs_func=sample_inputs_max_pool),
|
|
OpInfo('nn.functional.max_unpool1d',
|
|
aten_name='max_unpool1d',
|
|
supports_autograd=True,
|
|
supports_out=False,
|
|
assert_jit_shape_analysis=False,
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.float16),
|
|
sample_inputs_func=sample_inputs_max_unpool,
|
|
skips=(
|
|
# Jacobian mismatch
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_fn_grad'),
|
|
# Backward is not reentrant
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_fn_gradgrad'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_forward_mode_AD'),
|
|
)),
|
|
OpInfo('nn.functional.max_unpool1d',
|
|
variant_test_name='grad',
|
|
aten_name='max_unpool1d',
|
|
supports_autograd=True,
|
|
supports_forward_ad=True,
|
|
supports_out=False,
|
|
assert_jit_shape_analysis=False,
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.float16),
|
|
sample_inputs_func=sample_inputs_max_unpool_grad),
|
|
OpInfo('nn.functional.max_unpool2d',
|
|
aten_name='max_unpool2d',
|
|
supports_autograd=True,
|
|
supports_out=False,
|
|
assert_jit_shape_analysis=False,
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.float16),
|
|
sample_inputs_func=sample_inputs_max_unpool,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients', 'test_forward_mode_AD'),
|
|
# Backward is not reentrant
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_fn_gradgrad'),
|
|
# Jacobian mismatch
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_fn_grad'),
|
|
)),
|
|
OpInfo('nn.functional.max_unpool2d',
|
|
variant_test_name='grad',
|
|
aten_name='max_unpool2d',
|
|
supports_forward_ad=True,
|
|
# Vmap is not happy with non-contiguous (channels_last) inputs
|
|
check_batched_grad=False,
|
|
supports_out=False,
|
|
assert_jit_shape_analysis=False,
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.float16),
|
|
sample_inputs_func=sample_inputs_max_unpool_grad),
|
|
OpInfo('nn.functional.max_unpool3d',
|
|
aten_name='max_unpool3d',
|
|
supports_out=False,
|
|
supports_gradgrad=False,
|
|
assert_jit_shape_analysis=False,
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.float16),
|
|
sample_inputs_func=sample_inputs_max_unpool,
|
|
skips=(
|
|
# Jacobian mismatch
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_fn_grad'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_forward_mode_AD'),
|
|
)),
|
|
OpInfo('nn.functional.max_unpool3d',
|
|
variant_test_name='grad',
|
|
aten_name='max_unpool3d',
|
|
supports_forward_ad=True,
|
|
supports_gradgrad=False,
|
|
supports_out=False,
|
|
assert_jit_shape_analysis=False,
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.float16),
|
|
sample_inputs_func=sample_inputs_max_unpool_grad),
|
|
OpInfo('nn.functional.linear',
|
|
aten_name='linear',
|
|
supports_autograd=True,
|
|
sample_inputs_func=sample_inputs_linear,
|
|
dtypes=all_types_and_complex_and(torch.bfloat16),
|
|
dtypesIfROCM=floating_and_complex_types_and(torch.float16, torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16, *[torch.bfloat16]
|
|
if (CUDA11OrLater or TEST_WITH_ROCM) else []),
|
|
backward_dtypesIfCUDA=floating_and_complex_types_and(torch.float16, *[torch.bfloat16]
|
|
if (CUDA11OrLater or TEST_WITH_ROCM) else []),
|
|
# linear calls mm under the hood which is nondeterministic on CUDA
|
|
# https://pytorch.org/docs/stable/generated/torch.use_deterministic_algorithms.html#torch.use_deterministic_algorithms
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
# See https://github.com/pytorch/pytorch/issues/66357
|
|
check_batched_forward_grad=False,
|
|
supports_expanded_weight=True,
|
|
skips=(
|
|
# Problem, needs to be fixed
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_operator'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'),
|
|
# Strides are not the same!
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'),
|
|
),
|
|
decorators=(
|
|
DecorateInfo(toleranceOverride({torch.float16: tol(atol=1e-02, rtol=1e-02)}),
|
|
'TestCudaFuserOpInfo', 'test_nvfuser_correctness'),
|
|
)),
|
|
OpInfo('nn.functional.bilinear',
|
|
aten_name='bilinear',
|
|
supports_autograd=True,
|
|
sample_inputs_func=sample_inputs_bilinear,
|
|
dtypes=all_types_and(torch.bfloat16),
|
|
dtypesIfROCM=floating_types_and(torch.float16, torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, *[torch.bfloat16] if CUDA11OrLater else []),
|
|
backward_dtypesIfCUDA=floating_types_and(torch.float16, *[torch.bfloat16] if CUDA11OrLater else []),
|
|
skips=(
|
|
# FIXME: bfloat16 backward support likely depends on CUDA11+ and SM53+
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_dtypes', device_type='cuda'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestNNCOpInfo', 'test_nnc_correctness', dtypes=(torch.bfloat16,)),
|
|
),
|
|
supports_forward_ad=False,
|
|
supports_out=False),
|
|
OpInfo('nn.functional.glu',
|
|
aten_name='glu',
|
|
supports_autograd=True,
|
|
sample_inputs_func=sample_inputs_glu,
|
|
dtypes=floating_types(),
|
|
dtypesIfROCM=floating_types_and(torch.float16, torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
backward_dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
supports_forward_ad=False,
|
|
supports_out=False),
|
|
UnaryUfuncInfo(
|
|
'nn.functional.elu',
|
|
aten_backward_name='elu_backward',
|
|
ref=lambda x, alpha=1.0, inplace=False:
|
|
np.maximum(0., x) + np.minimum(0., alpha * (np.exp(x) - 1)),
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_autograd=True,
|
|
assert_autodiffed=False,
|
|
supports_gradgrad=True,
|
|
supports_out=False,
|
|
sample_kwargs=lambda device, dtype, input:
|
|
({'alpha': 0.8}, {'alpha': 0.8}),
|
|
inplace_variant=lambda x, alpha=1.0:
|
|
torch.nn.functional.elu(x, alpha, inplace=True),
|
|
decorators=[
|
|
# Not implemented yet
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients', 'test_inplace_forward_mode_AD'),
|
|
DecorateInfo(
|
|
toleranceOverride({
|
|
torch.float16: tol(atol=1e-03, rtol=1.2e-03),
|
|
torch.bfloat16: tol(atol=1e-03, rtol=1.2e-03)
|
|
}),
|
|
'TestUnaryUfuncs', device_type='cuda',
|
|
), ],
|
|
),
|
|
OpInfo(
|
|
'nn.functional.prelu',
|
|
aten_backward_name='prelu_backward',
|
|
ref=lambda x, weight:
|
|
np.maximum(0., x) + np.minimum(0., x) *
|
|
(weight if x.ndim == 1 else weight.reshape([weight.size if i == 1 else 1 for i in range(0, x.ndim)])),
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16),
|
|
supports_forward_ad=False,
|
|
supports_autograd=True,
|
|
assert_autodiffed=False,
|
|
supports_gradgrad=True,
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_nn_functional_prelu,
|
|
decorators=[
|
|
# FIXME: second derivative is implemented but seems to be incorrect
|
|
# https://github.com/pytorch/pytorch/issues/68760
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients', 'test_fn_gradgrad'),
|
|
# RuntimeError: Cannot insert a Tensor that requires grad as a constant.
|
|
# Consider making it a parameter or input, or detaching the gradient
|
|
# https://github.com/pytorch/pytorch/issues/68752
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), ],
|
|
),
|
|
UnaryUfuncInfo(
|
|
'nn.functional.celu',
|
|
ref=lambda x, alpha=1.0, inplace=False:
|
|
np.maximum(0., x) + np.minimum(0., alpha * (np.exp(x / alpha) - 1)),
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_autograd=True,
|
|
assert_autodiffed=False,
|
|
supports_gradgrad=True,
|
|
supports_out=False,
|
|
sample_kwargs=lambda device, dtype, input:
|
|
({'alpha': 0.8}, {'alpha': 0.8}),
|
|
inplace_variant=lambda x, alpha=1.0:
|
|
torch.nn.functional.celu(x, alpha, inplace=True),
|
|
decorators=[
|
|
# Not implemented yet
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients', 'test_inplace_forward_mode_AD'),
|
|
DecorateInfo(
|
|
toleranceOverride({
|
|
torch.float16: tol(atol=1e-03, rtol=1.2e-03),
|
|
torch.bfloat16: tol(atol=1e-03, rtol=1.2e-03)
|
|
}),
|
|
'TestUnaryUfuncs', device_type='cuda',
|
|
), ],
|
|
),
|
|
UnaryUfuncInfo(
|
|
'nn.functional.rrelu',
|
|
aten_backward_name='rrelu_with_noise_backward',
|
|
op=lambda input, *args, **kwargs:
|
|
wrapper_set_seed(torch.nn.functional.rrelu, input, *args, **kwargs),
|
|
ref=_NOTHING,
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
gradcheck_wrapper=wrapper_set_seed,
|
|
supports_forward_ad=False,
|
|
supports_autograd=True,
|
|
assert_autodiffed=False,
|
|
supports_gradgrad=True,
|
|
supports_out=False,
|
|
sample_kwargs=lambda device, dtype, input:
|
|
({'lower': 0., 'upper': 1.}, {'lower': 0., 'upper': 1.}),
|
|
inplace_variant=lambda input, *args, **kwargs:
|
|
wrapper_set_seed(partial(torch.nn.functional.rrelu, inplace=True), input, *args, **kwargs),
|
|
decorators=(
|
|
DecorateInfo(
|
|
toleranceOverride({
|
|
torch.float16: tol(atol=1e-03, rtol=1.2e-03),
|
|
torch.bfloat16: tol(atol=1e-03, rtol=1.2e-03)
|
|
}),
|
|
'TestUnaryUfuncs', device_type='cuda',
|
|
),),
|
|
skips=(
|
|
# lambda impl
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),)),
|
|
UnaryUfuncInfo(
|
|
'nn.functional.selu',
|
|
ref=lambda x, inplace=False:
|
|
1.0507009873554804934193349852946 * (
|
|
np.maximum(0., x) + np.minimum(0., 1.6732632423543772848170429916717 * (np.exp(x) - 1))
|
|
),
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
supports_forward_ad=True, # depends on 'elu'
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_autograd=True,
|
|
assert_autodiffed=False,
|
|
supports_gradgrad=True,
|
|
supports_out=False,
|
|
inplace_variant=lambda x: torch.nn.functional.selu(x, inplace=True),
|
|
decorators=[
|
|
# Not implemented yet (depends on 'elu_')
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients', 'test_inplace_forward_mode_AD'),
|
|
DecorateInfo(
|
|
toleranceOverride({
|
|
torch.float16: tol(atol=1e-2, rtol=1.8e-2),
|
|
torch.bfloat16: tol(atol=1e-2, rtol=1.8e-2)
|
|
}),
|
|
'TestUnaryUfuncs', device_type='cuda',
|
|
), ],
|
|
),
|
|
UnaryUfuncInfo(
|
|
'nn.functional.silu',
|
|
aten_backward_name='silu_backward',
|
|
ref=lambda x, inplace=False: x / (1 + np.exp(-x)),
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
supports_autograd=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
assert_autodiffed=False,
|
|
supports_out=False,
|
|
inplace_variant=lambda x: torch.nn.functional.silu(x, inplace=True),
|
|
decorators=[
|
|
DecorateInfo(
|
|
toleranceOverride({
|
|
torch.float16: tol(atol=1e-3, rtol=1e-3),
|
|
torch.bfloat16: tol(atol=1e-4, rtol=1e-4)
|
|
}),
|
|
'TestUnaryUfuncs', device_type='cuda',
|
|
), ],
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
dtypes=(torch.cfloat,), device_type='cpu'),
|
|
)
|
|
),
|
|
# TODO: combine this with the nn.functional.silu OpInfo when
|
|
# complex autodiff for silu is supported or when
|
|
# the forward bug is fixed
|
|
# Note: silu errors when given inputs that require grad
|
|
# but it doesn't support grad in their dtype
|
|
# This is why the dtypes list above passes test_dtypes,
|
|
# because it's getting lucky and failing in forward
|
|
# because test_dtypes sets requires_grad to True
|
|
# THIS IS A BUG
|
|
UnaryUfuncInfo(
|
|
'nn.functional.silu',
|
|
variant_test_name='complex',
|
|
ref=lambda x, inplace=False:
|
|
x / (1 + np.exp(-x)),
|
|
dtypes=complex_types(),
|
|
dtypesIfCUDA=empty_types(),
|
|
supports_forward_ad=False,
|
|
supports_autograd=False,
|
|
assert_autodiffed=False,
|
|
supports_out=False,
|
|
inplace_variant=lambda x: torch.nn.functional.silu(x, inplace=True),
|
|
decorators=[
|
|
DecorateInfo(
|
|
toleranceOverride({
|
|
torch.float16: tol(atol=1e-3, rtol=1e-3),
|
|
torch.bfloat16: tol(atol=1e-4, rtol=1e-4)
|
|
}),
|
|
'TestUnaryUfuncs', device_type='cuda',
|
|
), ],
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
dtypes=(torch.cfloat,), device_type='cpu'),
|
|
# FIXME: intentionally misreports dtypes
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_dtypes'),
|
|
# FIXME: numpy reference diverges: Comparing (nan+nanj) and (-0+0j)
|
|
DecorateInfo(unittest.skip("Skipped!"),
|
|
'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
dtypes=(torch.complex64, torch.cdouble)),
|
|
DecorateInfo(unittest.skip("Skipped!"),
|
|
'TestUnaryUfuncs', 'test_reference_numerics_small',
|
|
dtypes=(torch.complex64,)),
|
|
DecorateInfo(unittest.skip("Skipped!"),
|
|
'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=(torch.complex64,)))),
|
|
UnaryUfuncInfo(
|
|
'nn.functional.hardsigmoid',
|
|
aten_backward_name='hardsigmoid_backward',
|
|
ref=reference_hardsigmoid,
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
supports_autograd=True,
|
|
assert_autodiffed=False,
|
|
supports_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
supports_out=False,
|
|
inplace_variant=partial(torch.nn.functional.hardsigmoid, inplace=True),
|
|
decorators=[
|
|
DecorateInfo(
|
|
toleranceOverride({torch.float16: tol(atol=1e-04, rtol=0.001)}), 'TestUnaryUfuncs', device_type='cuda',), ],
|
|
skips=[
|
|
# still want to test that first derivative works though second derivative isn't supported
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients', "test_inplace_gradgrad"),
|
|
# produces 0 instead of nan on ROCM
|
|
DecorateInfo(unittest.expectedFailure,
|
|
'TestUnaryUfuncs', "test_reference_numerics_extremal",
|
|
device_type='cuda',
|
|
active_if=(TEST_WITH_ROCM)), ]
|
|
),
|
|
UnaryUfuncInfo(
|
|
'nn.functional.logsigmoid',
|
|
aten_name="log_sigmoid",
|
|
aten_backward_name='log_sigmoid_backward',
|
|
ref=reference_logsigmoid,
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16),
|
|
supports_autograd=True,
|
|
assert_autodiffed=False,
|
|
supports_gradgrad=True,
|
|
# autodiff_nonfusible_nodes=["aten::log_sigmoid"],
|
|
decorators=[
|
|
DecorateInfo(
|
|
precisionOverride({torch.float16: 1e-2, torch.bfloat16: 5e-3}),
|
|
'TestUnaryUfuncs', 'test_reference_numerics_small'),
|
|
DecorateInfo(
|
|
precisionOverride({torch.float16: 1e-2, torch.bfloat16: 5e-3}),
|
|
'TestUnaryUfuncs', 'test_reference_numerics_large'),
|
|
DecorateInfo(
|
|
precisionOverride({torch.float16: 1e-2, torch.bfloat16: 5e-3}),
|
|
'TestUnaryUfuncs', 'test_reference_numerics_extremal'),
|
|
],
|
|
skips=(
|
|
# Resized a non-empty tensor but did not warn about it.
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warning', device_type='cpu'),
|
|
),
|
|
),
|
|
UnaryUfuncInfo(
|
|
'nn.functional.mish',
|
|
aten_backward_name='mish_backward',
|
|
ref=lambda x: x * np.tanh(reference_softplus(x)),
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_autograd=True,
|
|
assert_autodiffed=False,
|
|
supports_gradgrad=True,
|
|
supports_out=False,
|
|
inplace_variant=partial(torch.nn.functional.mish, inplace=True),
|
|
decorators=[
|
|
DecorateInfo(
|
|
toleranceOverride({torch.float16: tol(atol=1e-02, rtol=1e-03)}), 'TestUnaryUfuncs', device_type='cuda',), ],
|
|
),
|
|
UnaryUfuncInfo(
|
|
'nn.functional.softsign',
|
|
ref=lambda x: x / (np.abs(x) + 1),
|
|
dtypes=all_types_and_complex_and(torch.float16, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.float16, torch.bfloat16, torch.bool),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_autograd=True,
|
|
assert_autodiffed=False,
|
|
supports_gradgrad=True,
|
|
supports_out=False,
|
|
decorators=[
|
|
DecorateInfo(
|
|
toleranceOverride({torch.float16: tol(atol=1e-03, rtol=1.3e-04)}), 'TestUnaryUfuncs',), ],
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_small',
|
|
dtypes=(torch.int, torch.int8)),
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients',
|
|
"test_fn_fwgrad_bwgrad", dtypes=(torch.complex128,)),
|
|
# pytorch computes (0+nanj), numpy computes (-5e-18-1j) for input (-501.-1.0000e+20j)
|
|
DecorateInfo(unittest.expectedFailure, 'TestUnaryUfuncs',
|
|
"test_reference_numerics_large", dtypes=(torch.complex64,)),),
|
|
),
|
|
UnaryUfuncInfo(
|
|
'nn.functional.tanhshrink',
|
|
ref=lambda x: x - np.tanh(x),
|
|
dtypes=all_types_and_complex_and(torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.float16, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_autograd=True,
|
|
assert_autodiffed=False,
|
|
supports_gradgrad=True,
|
|
supports_out=False,
|
|
decorators=[
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(
|
|
toleranceOverride({torch.bfloat16: tol(atol=1e-02, rtol=1.6e-02)}), 'TestUnaryUfuncs',),
|
|
DecorateInfo(toleranceOverride({torch.float16: tol(atol=1e-02, rtol=1e-02)}),
|
|
'TestCudaFuserOpInfo', 'test_nvfuser_correctness'),
|
|
],
|
|
skips=(
|
|
# in each case, pytorch will produce a nan while numpy will not
|
|
DecorateInfo(unittest.expectedFailure,
|
|
'TestUnaryUfuncs', "test_reference_numerics_small",
|
|
dtypes=(torch.complex64, torch.complex128), active_if=(IS_MACOS)),
|
|
DecorateInfo(unittest.skip("Fails on some jobs works on others!"),
|
|
'TestUnaryUfuncs', "test_reference_numerics_large",
|
|
dtypes=(torch.complex64, torch.complex128), active_if=(IS_MACOS)),
|
|
DecorateInfo(unittest.skip("Fails on some jobs works on others!"),
|
|
'TestUnaryUfuncs', "test_reference_numerics_extremal",
|
|
dtypes=(torch.complex64, torch.complex128), device_type='cpu',
|
|
active_if=(IS_MACOS or IS_WINDOWS)),
|
|
),
|
|
),
|
|
OpInfo(
|
|
'nn.functional.threshold',
|
|
aten_backward_name='threshold_backward',
|
|
ref=lambda x, threshold, value: np.where(x > threshold, x, value).astype(x.dtype),
|
|
dtypes=all_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.float16, torch.bfloat16),
|
|
supports_autograd=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
assert_autodiffed=False,
|
|
supports_gradgrad=True,
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_threshold,
|
|
),
|
|
OpInfo(
|
|
"nn.functional.triplet_margin_loss",
|
|
sample_inputs_func=sample_inputs_triplet_margin_loss,
|
|
dtypes=all_types_and_complex_and(torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
),
|
|
OpInfo(
|
|
"nn.functional.triplet_margin_with_distance_loss",
|
|
sample_inputs_func=partial(sample_inputs_triplet_margin_loss, with_distance=True),
|
|
dtypes=all_types_and_complex_and(torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
# This test cannot handle a callable passed to `distance_function`. If we would use
|
|
# `distance_function=None`, the test would pass fine.
|
|
DecorateInfo(
|
|
unittest.expectedFailure,
|
|
"TestJit",
|
|
"test_variant_consistency_jit",
|
|
),
|
|
DecorateInfo(
|
|
unittest.expectedFailure,
|
|
"TestNormalizeOperators",
|
|
"test_normalize_operator_exhaustive",
|
|
),
|
|
),
|
|
),
|
|
BinaryUfuncInfo('nextafter',
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
supports_autograd=False,
|
|
supports_rhs_python_scalar=False),
|
|
OpInfo('topk',
|
|
dtypes=all_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bfloat16, torch.float16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
),
|
|
sample_inputs_func=sample_inputs_topk),
|
|
# Multiple variants for batch_norm to test with and without cuDNN disabled
|
|
# See https://github.com/pytorch/pytorch/pull/63218#discussion_r688549391 for more details
|
|
OpInfo('nn.functional.batch_norm',
|
|
aten_name='batch_norm',
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_batch_norm,
|
|
skips=(
|
|
# see https://github.com/pytorch/pytorch/issues/71286
|
|
DecorateInfo(unittest.expectedFailure, 'TestNNCOpInfo', 'test_nnc_correctness'),
|
|
# see https://github.com/pytorch/pytorch/issues/76283
|
|
DecorateInfo(unittest.skip("Fails on UBSAN!"), 'TestCompositeCompliance', 'test_forward_ad',
|
|
device_type="cpu"),
|
|
# Trying to use forward AD with miopen_batch_norm that does not support it
|
|
# because it has not been implemented yet.
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad',
|
|
device_type="cuda", active_if=TEST_WITH_ROCM),
|
|
)),
|
|
# This variant tests batch_norm with cuDNN disabled only on CUDA devices
|
|
OpInfo('nn.functional.batch_norm',
|
|
variant_test_name='without_cudnn',
|
|
aten_name='batch_norm',
|
|
dtypes=empty_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
decorators=[onlyCUDA, disablecuDNN],
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad',
|
|
device_type='cpu'),
|
|
),
|
|
sample_inputs_func=sample_inputs_batch_norm),
|
|
OpInfo(
|
|
"nn.functional.binary_cross_entropy",
|
|
aten_backward_name='binary_cross_entropy_backward',
|
|
sample_inputs_func=sample_inputs_binary_cross_entropy,
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
gradcheck_fast_mode=False,
|
|
decorators=(
|
|
# RuntimeError: expected int at position 0, but got: Tensor
|
|
DecorateInfo(
|
|
unittest.skip("Skipped!"),
|
|
"TestCudaFuserOpInfo",
|
|
"test_nvfuser_correctness",
|
|
),
|
|
# RuntimeError: expected int at position 0, but got: Tensor
|
|
DecorateInfo(
|
|
unittest.skip("Skipped!"),
|
|
"TestNNCOpInfo",
|
|
"test_nnc_correctness",
|
|
),
|
|
DecorateInfo(
|
|
toleranceOverride({torch.float32: tol(atol=1e-3, rtol=1e-3)}),
|
|
"TestJit",
|
|
"test_variant_consistency_jit",
|
|
),
|
|
),
|
|
skips=(
|
|
# RuntimeError: expected int at position 0, but got: Tensor
|
|
DecorateInfo(
|
|
unittest.expectedFailure,
|
|
"TestJit",
|
|
"test_variant_consistency_jit",
|
|
),
|
|
# NotImplementedError: the derivative for 'binary_cross_entropy_backward wrt `target`' is not implemented.
|
|
DecorateInfo(
|
|
unittest.expectedFailure,
|
|
"TestGradients",
|
|
"test_fn_gradgrad",
|
|
),
|
|
),
|
|
),
|
|
# We have to add 2 OpInfo entry for `igamma` and `igammac`.First is the
|
|
# standard entry, second is to run gradcheck tests on the second argument.
|
|
BinaryUfuncInfo('igamma',
|
|
dtypes=floating_types_and(torch.bfloat16, torch.float16),
|
|
aliases=('torch.special.gammainc',),
|
|
dtypesIfCUDA=floating_types(),
|
|
# TODO: FIXME
|
|
supports_rhs_python_scalar=False,
|
|
supports_autograd=False,
|
|
skips=(
|
|
# FIXME: incorrectly tries to pass a rhs scalar
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit',
|
|
'test_jit_alias_remapping'),
|
|
)),
|
|
# TODO: FIXME, ideally by implemented grad for both inputs
|
|
# BinaryUfuncInfo('igamma',
|
|
# variant_test_name='grad_other',
|
|
# # Since autograd formula is implemented only for other and
|
|
# # gradcheck test verifies the formula for input in SampleInput,
|
|
# # we permute the arguments.
|
|
# op=lambda self, other, **kwargs: torch.igamma(other, self, **kwargs),
|
|
# inplace_variant=None,
|
|
# method_variant=None,
|
|
# supports_rhs_python_scalar=False,
|
|
# rhs_make_tensor_kwargs=dict(requires_grad=False),
|
|
# dtypes=floating_types_and(torch.bfloat16, torch.float16),
|
|
# backward_dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
# dtypesIfCUDA=floating_types(),
|
|
# backward_dtypesIfCUDA=floating_types(),
|
|
# supports_inplace_autograd=False,
|
|
# skips=(
|
|
# # Derivative wrt first tensor not implemented
|
|
# DecorateInfo(unittest.expectedFailure, "TestCommon",
|
|
# "test_floating_inputs_are_differentiable"),"),
|
|
# # test does not work with passing lambda for op
|
|
# # AssertionError: False is not true : Tensors failed to compare as equal!
|
|
# DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
# # test fails are we permute the arguments function variant
|
|
# # but not for inplace or method.
|
|
# DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_variant_consistency_eager'),
|
|
# # TypeError: igamma(): argument 'input' (position 1) must be Tensor, not float
|
|
# DecorateInfo(unittest.skip('Skipped!'), 'TestBinaryUfuncs'),
|
|
# )),
|
|
BinaryUfuncInfo('igammac',
|
|
dtypes=floating_types_and(torch.bfloat16, torch.float16),
|
|
aliases=('torch.special.gammaincc',),
|
|
dtypesIfCUDA=floating_types(),
|
|
supports_autograd=False,
|
|
supports_rhs_python_scalar=False,
|
|
skips=(
|
|
# FIXME: incorrectly tries to pass a rhs scalar
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit',
|
|
'test_jit_alias_remapping'),
|
|
)),
|
|
# TODO: FIXME, ideally by implementing grad for both inputs
|
|
# BinaryUfuncInfo('igammac',
|
|
# variant_test_name='grad_other',
|
|
# # Since autograd formula is implemented only for other and
|
|
# # gradcheck test verifies the formula for input in SampleInput,
|
|
# # we permute the arguments
|
|
# op=lambda self, other, **kwargs: torch.igammac(other, self, **kwargs),
|
|
# inplace_variant=None,
|
|
# method_variant=None,
|
|
# supports_rhs_python_scalar=False,
|
|
# rhs_make_tensor_kwargs=dict(requires_grad=False),
|
|
# dtypes=floating_types_and(torch.bfloat16, torch.float16),
|
|
# backward_dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
# dtypesIfCUDA=floating_types(),
|
|
# backward_dtypesIfCUDA=floating_types(),
|
|
# supports_inplace_autograd=False,
|
|
# decorators=[
|
|
# # Derivative wrt first tensor not implemented
|
|
# DecorateInfo(unittest.expectedFailure, "TestCommon",
|
|
# "test_floating_inputs_are_differentiable"),
|
|
# ],
|
|
# skips=(
|
|
# # test does not work with passing lambda for op
|
|
# # AssertionError: False is not true : Tensors failed to compare as equal!
|
|
# DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
# # test fails are we permute the arguments function variant
|
|
# # but not for inplace or method.
|
|
# DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_variant_consistency_eager'),
|
|
# # TypeError: igammac(): argument 'input' (position 1) must be Tensor, not float
|
|
# DecorateInfo(unittest.skip('Skipped!'), 'TestBinaryUfuncs'),
|
|
# )),
|
|
OpInfo('nn.functional.softshrink',
|
|
aten_name="softshrink",
|
|
aten_backward_name='softshrink_backward',
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
supports_autograd=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
assert_autodiffed=False,
|
|
sample_inputs_func=sample_inputs_softshrink_hardshrink_hardtanh,
|
|
supports_gradgrad=True,
|
|
),
|
|
OpInfo('nn.functional.hardshrink',
|
|
aten_name="hardshrink",
|
|
aten_backward_name='hardshrink_backward',
|
|
dtypes=floating_types_and(torch.bfloat16,),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
supports_autograd=True,
|
|
assert_autodiffed=True,
|
|
sample_inputs_func=sample_inputs_softshrink_hardshrink_hardtanh,
|
|
supports_gradgrad=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
autodiff_nonfusible_nodes=["aten::hardshrink"]),
|
|
OpInfo('nn.functional.hardtanh',
|
|
aten_name="hardtanh",
|
|
aten_backward_name='hardtanh_backward',
|
|
dtypes=floating_types_and(torch.int8, torch.int16, torch.int32, torch.int64, torch.bfloat16),
|
|
backward_dtypes=all_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.int8, torch.int16, torch.int32, torch.int64, torch.float16, torch.bfloat16),
|
|
backward_dtypesIfCUDA=floating_types_and(torch.float16),
|
|
supports_autograd=True,
|
|
assert_autodiffed=True,
|
|
sample_inputs_func=sample_inputs_softshrink_hardshrink_hardtanh,
|
|
supports_gradgrad=True,
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
autodiff_nonfusible_nodes=["aten::hardtanh"],
|
|
),
|
|
OpInfo('nn.functional.gelu',
|
|
aten_name="gelu",
|
|
aten_backward_name='gelu_backward',
|
|
ref=reference_gelu if TEST_SCIPY else _NOTHING,
|
|
supports_autograd=True,
|
|
assert_autodiffed=True,
|
|
sample_inputs_func=sample_inputs_gelu,
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
supports_gradgrad=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
autodiff_nonfusible_nodes=["aten::gelu"],
|
|
skips=(
|
|
# AssertionError: Tensor-likes are not close!
|
|
# May not replicate in CI
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out'),)),
|
|
OpInfo('nn.functional.relu6',
|
|
aten_name="relu6",
|
|
dtypes=all_types_and(torch.bfloat16),
|
|
backward_dtypes=floating_types(),
|
|
dtypesIfCUDA=all_types_and(torch.float16, torch.bfloat16),
|
|
backward_dtypesIfCUDA=floating_types_and(torch.float16),
|
|
supports_autograd=True,
|
|
assert_autodiffed=True,
|
|
sample_inputs_func=sample_inputs_softshrink_hardshrink_hardtanh,
|
|
supports_gradgrad=True,
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
autodiff_nonfusible_nodes=["aten::relu6"]),
|
|
OpInfo('mm',
|
|
dtypes=all_types_and_complex_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16, *[torch.bfloat16]
|
|
if (CUDA11OrLater or TEST_WITH_ROCM) else []),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_mm),
|
|
OpInfo('mode',
|
|
op=torch.mode,
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
# Resized a non-empty tensor but did not warn about it
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warning'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
),
|
|
sample_inputs_func=sample_inputs_mode,),
|
|
MvlGammaInfo(variant_test_name='mvlgamma_p_1',
|
|
domain=(1, None),
|
|
skips=skips_mvlgamma() + \
|
|
(DecorateInfo(unittest.expectedFailure, 'TestUnaryUfuncs', 'test_reference_numerics_extremal'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
dtypes=(torch.float16, torch.int8)),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_small',
|
|
dtypes=(torch.int8,)),),
|
|
sample_kwargs=lambda device, dtype, input: ({'p': 1}, {'d': 1})),
|
|
MvlGammaInfo(variant_test_name='mvlgamma_p_3',
|
|
domain=(2, None),
|
|
skips=skips_mvlgamma(skip_redundant=True) + (
|
|
DecorateInfo(unittest.expectedFailure, 'TestUnaryUfuncs', 'test_reference_numerics_extremal'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
dtypes=(torch.float16, torch.int8)),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_small',
|
|
dtypes=(torch.int8,)),
|
|
),
|
|
sample_kwargs=lambda device, dtype, input: ({'p': 3}, {'d': 3})),
|
|
MvlGammaInfo(variant_test_name='mvlgamma_p_5',
|
|
domain=(3, None),
|
|
skips=skips_mvlgamma(skip_redundant=True) + (
|
|
DecorateInfo(unittest.expectedFailure, 'TestUnaryUfuncs', 'test_reference_numerics_extremal'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
dtypes=(torch.float16, torch.int8)),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_small',
|
|
dtypes=(torch.int8,)),
|
|
),
|
|
sample_kwargs=lambda device, dtype, input: ({'p': 5}, {'d': 5})),
|
|
BinaryUfuncInfo('ne',
|
|
aliases=('not_equal',),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
always_returns_bool=True,
|
|
supports_autograd=False,),
|
|
OpInfo('narrow',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_narrow),
|
|
UnaryUfuncInfo('neg',
|
|
aliases=('negative', ),
|
|
ref=np.negative,
|
|
dtypes=all_types_and_complex_and(torch.half, torch.bfloat16),
|
|
error_inputs_func=error_inputs_neg,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_sparse=True,
|
|
supports_sparse_csr=True,
|
|
assert_autodiffed=True,),
|
|
OpInfo('dist',
|
|
op=torch.dist,
|
|
dtypes=floating_and_complex_types_and(torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
# torch.autograd.gradcheck.GradcheckError: While computing batched gradients, got:
|
|
# Could not allocate memory to change Tensor SizesAndStrides!
|
|
check_batched_forward_grad=False,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_dist),
|
|
OpInfo('outer',
|
|
op=torch.outer,
|
|
aliases=('ger', ),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_outer,),
|
|
OpInfo('ormqr',
|
|
op=torch.ormqr,
|
|
dtypes=floating_and_complex_types(),
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_ormqr,
|
|
error_inputs_func=error_inputs_ormqr,
|
|
decorators=[skipCUDAIfNoCusolver, skipCPUIfNoLapack],
|
|
skips=(
|
|
# ormqr does not support forward when complex inputs require grad
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_dtypes'),
|
|
# Strides are not the same!
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'),
|
|
)),
|
|
OpInfo('permute',
|
|
ref=np.transpose,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
assert_autodiffed=True,
|
|
autodiff_fusible_nodes=[], # aliases inputs, shouldn't be fused
|
|
autodiff_nonfusible_nodes=[], # aliases inputs, shouldn't be fused
|
|
assert_jit_shape_analysis=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_permute,
|
|
reference_inputs_func=reference_inputs_permute),
|
|
BinaryUfuncInfo('pow',
|
|
dtypes=all_types_and_complex_and(torch.half, torch.bfloat16),
|
|
# Due to AVX2 curently not being fully supported for Float16, log_vml_cpu can't be enabled
|
|
# for Float16, causing this test to fail. pow's autograd for Float16 is thus currently
|
|
# unsupported on CPU.
|
|
backward_dtypes=floating_and_complex_types_and(torch.bfloat16),
|
|
backward_dtypesIfCUDA=floating_and_complex_types_and(torch.bfloat16, torch.half),
|
|
supports_inplace_autograd=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
assert_autodiffed=True,
|
|
supports_one_python_scalar=True,
|
|
# TODO: FIXME: pow needs a way of specifying that for integer
|
|
# types only it does not support negative exponentes
|
|
rhs_make_tensor_kwargs=dict(low=1),
|
|
skips=(
|
|
# nan vs nan comparisons
|
|
# https://github.com/pytorch/pytorch/issues/74279
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients'),
|
|
)),
|
|
BinaryUfuncInfo('float_power',
|
|
dtypes=all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool),
|
|
promotes_int_to_float=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_one_python_scalar=True,
|
|
skips=(
|
|
# FIXME
|
|
# AssertionError: Object comparison failed: torch.float64 != torch.float32
|
|
DecorateInfo(unittest.expectedFailure, 'TestBinaryUfuncs', 'test_type_promotion'),
|
|
# nan vs nan comparisons
|
|
# https://github.com/pytorch/pytorch/issues/74279
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients'),
|
|
# -3.43399e+38 is outside the range of representable values of type 'float'
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('qr',
|
|
op=torch.qr,
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_linalg_qr_geqrf,
|
|
# batched gradients do not work for empty inputs
|
|
# https://github.com/pytorch/pytorch/issues/50743#issuecomment-767376085
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
# See https://github.com/pytorch/pytorch/issues/66357
|
|
check_batched_forward_grad=False,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'),
|
|
),
|
|
decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack]),
|
|
UnaryUfuncInfo('rad2deg',
|
|
ref=np.degrees,
|
|
decorators=(precisionOverride({torch.bfloat16: 7e-1,
|
|
torch.float16: 7e-1}),),
|
|
dtypes=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/pull/51283#issuecomment-770614273
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_small',
|
|
dtypes=[torch.bfloat16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
dtypes=[torch.bfloat16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=[torch.bfloat16]),
|
|
),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True),
|
|
UnaryUfuncInfo('real',
|
|
ref=np.real,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
# See https://github.com/pytorch/pytorch/issues/66357
|
|
check_batched_forward_grad=False,
|
|
skips=(
|
|
# Skip since real and imag don't have out variants.
|
|
DecorateInfo(unittest.expectedFailure, 'TestUnaryUfuncs', 'test_out_arg_all_dtypes'),
|
|
)),
|
|
OpInfo('roll',
|
|
ref=np.roll,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_roll),
|
|
OpInfo('rot90',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_rot90),
|
|
# To test reference numerics against multiple values of argument `decimals`,
|
|
# we make multiple OpInfo entries with each entry corresponding to different value of decimals.
|
|
UnaryUfuncInfo('round',
|
|
ref=np.round,
|
|
aliases=('special.round',),
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_sparse=True,
|
|
supports_sparse_csr=True,
|
|
assert_autodiffed=True,),
|
|
UnaryUfuncInfo('round',
|
|
ref=np.round,
|
|
variant_test_name='decimals_0',
|
|
aliases=('special.round',),
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
sample_kwargs=lambda device, dtype, input: ({'decimals': 0}, {'decimals': 0}),
|
|
sample_inputs_func=partial(sample_inputs_elementwise_unary, op_kwargs={'decimals': 0}),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
assert_autodiffed=False,
|
|
supports_sparse_csr=False),
|
|
UnaryUfuncInfo('round',
|
|
ref=np.round,
|
|
variant_test_name='decimals_3',
|
|
aliases=('special.round',),
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
sample_kwargs=lambda device, dtype, input: ({'decimals': 3}, {'decimals': 3}),
|
|
sample_inputs_func=partial(sample_inputs_elementwise_unary, op_kwargs={'decimals': 3}),
|
|
skips=(
|
|
# test_ops already tested for this overload with `decimals_0` opinfo entry
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits'),
|
|
),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
assert_autodiffed=False,
|
|
supports_sparse_csr=False),
|
|
UnaryUfuncInfo('round',
|
|
ref=np.round,
|
|
variant_test_name='decimals_neg_3',
|
|
aliases=('special.round',),
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
sample_kwargs=lambda device, dtype, input: ({'decimals': -3}, {'decimals': -3}),
|
|
sample_inputs_func=partial(sample_inputs_elementwise_unary, op_kwargs={'decimals': -3}),
|
|
skips=(
|
|
# test_ops already tested for this overload with `decimals_0` opinfo entry
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits'),
|
|
),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
assert_autodiffed=False,
|
|
supports_sparse_csr=False),
|
|
UnaryUfuncInfo('sin',
|
|
ref=np.sin,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
handles_large_floats=False,
|
|
supports_sparse=True,
|
|
supports_sparse_csr=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
# Fails on CUDA but passes on ROCm
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
dtypes=(torch.cdouble,), device_type='cuda'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=(torch.cfloat, torch.cdouble,), device_type='cpu', active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
dtypes=(torch.cfloat, torch.cdouble,), device_type='cpu', active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped! sparse backward not supported"),
|
|
'TestSparseUnaryUfuncs', 'test_sparse_fn_grad'),
|
|
),
|
|
decorators=(precisionOverride({torch.bfloat16: 1e-2}),)),
|
|
UnaryUfuncInfo('sinc',
|
|
ref=np_sinc_with_fp16_as_fp32,
|
|
aliases=('special.sinc',),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
handles_large_floats=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
decorators=(precisionOverride({torch.bfloat16: 1e-2,
|
|
torch.float16: 1e-2}),),
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/issues/49133
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_small',
|
|
dtypes=[torch.cfloat]),
|
|
)),
|
|
UnaryUfuncInfo('sinh',
|
|
ref=np_unary_ufunc_integer_promotion_wrapper(np.sinh),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_sparse=True,
|
|
supports_sparse_csr=True,
|
|
decorators=(precisionOverride({torch.float16: 1e-2}),),
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=(IS_MACOS or IS_WINDOWS)),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=(IS_MACOS or IS_WINDOWS)),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
dtypes=(torch.cdouble,)),
|
|
# Reference: https://github.com/pytorch/pytorch/issues/48641
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
device_type='cpu', dtypes=[torch.int8]),
|
|
DecorateInfo(unittest.skip("Skipped! sparse backward not supported"),
|
|
'TestSparseUnaryUfuncs', 'test_sparse_fn_grad'),
|
|
)),
|
|
UnaryUfuncInfo('sign',
|
|
ref=reference_sign,
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16, torch.half),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.bfloat16, torch.half),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_sparse=True,
|
|
supports_sparse_csr=True,
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/issues/41245
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=[torch.bfloat16, torch.float16, torch.float32, torch.float64]),
|
|
)),
|
|
UnaryUfuncInfo('sgn',
|
|
ref=reference_sgn,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_sparse=True,
|
|
supports_sparse_csr=True,
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/issues/41245
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=[torch.bfloat16, torch.float16, torch.float32, torch.float64]),
|
|
# Reference: https://github.com/pytorch/pytorch/issues/53958
|
|
# Test fails in comparison on Nan as the `equal_nan` is True for
|
|
# comparing the CPU tensors.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.complex64, torch.complex128]),
|
|
# Reference: https://github.com/pytorch/pytorch/issues/48486
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
device_type='cpu', dtypes=[torch.complex64]),
|
|
# The complex formula might be wrong
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_forward_mode_AD',
|
|
dtypes=complex_types()),
|
|
# Passes for float, but for complex - Need: _s_where
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients', 'test_fn_fwgrad_bwgrad',
|
|
dtypes=complex_types()),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_inplace_forward_mode_AD',
|
|
dtypes=complex_types()),
|
|
DecorateInfo(unittest.skip("Skipped! sparse backward not supported"),
|
|
'TestSparseUnaryUfuncs', 'test_sparse_fn_grad'),
|
|
)),
|
|
OpInfo('split',
|
|
dtypes=all_types_and_complex_and(torch.bfloat16, torch.half, torch.bool),
|
|
sample_inputs_func=partial(sample_inputs_split, list_args=False),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_out=False,
|
|
autodiff_fusible_nodes=[], # aliases inputs, shouldn't be fused
|
|
autodiff_nonfusible_nodes=[], # aliases inputs, shouldn't be fused
|
|
assert_autodiffed=True),
|
|
OpInfo('split',
|
|
# Cannot declare this aten_name because of
|
|
# test_variant_consistency_jit_split_list_args_cpu_float32
|
|
decomp_aten_name='split_with_sizes',
|
|
variant_test_name='list_args',
|
|
dtypes=all_types_and_complex_and(torch.bfloat16, torch.half, torch.bool),
|
|
sample_inputs_func=partial(sample_inputs_split, list_args=True),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_out=False),
|
|
OpInfo('split_with_sizes',
|
|
dtypes=all_types_and_complex_and(torch.bfloat16, torch.half, torch.bool),
|
|
sample_inputs_func=sample_inputs_split_with_sizes,
|
|
autodiff_fusible_nodes=[], # aliases inputs, shouldn't be fused
|
|
autodiff_nonfusible_nodes=[], # aliases inputs, shouldn't be fused
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
assert_autodiffed=True),
|
|
BinaryUfuncInfo('__radd__',
|
|
op=torch.Tensor.__radd__,
|
|
dtypes=all_types_and_complex_and(torch.bfloat16, torch.half, torch.bool),
|
|
supports_out=False,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit',),
|
|
),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
autodiff_nonfusible_nodes=['aten::add'],),
|
|
BinaryUfuncInfo('__rdiv__',
|
|
op=torch.Tensor.__rdiv__,
|
|
dtypes=all_types_and_complex_and(torch.bfloat16, torch.half, torch.bool),
|
|
promotes_int_to_float=True,
|
|
lhs_make_tensor_kwargs={'exclude_zero': True},
|
|
supports_out=False,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit',),
|
|
),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
assert_autodiffed=True,
|
|
autodiff_nonfusible_nodes=['aten::mul', 'aten::reciprocal'],),
|
|
BinaryUfuncInfo('__rmul__',
|
|
op=torch.Tensor.__rmul__,
|
|
dtypes=all_types_and_complex_and(torch.bfloat16, torch.half, torch.bool),
|
|
supports_out=False,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit',),
|
|
),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
autodiff_nonfusible_nodes=['aten::mul'],),
|
|
BinaryUfuncInfo('__rand__',
|
|
op=torch.Tensor.__rand__,
|
|
dtypes=integral_types_and(torch.bool),
|
|
supports_out=False,
|
|
supports_autograd=False,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
)),
|
|
BinaryUfuncInfo('__ror__',
|
|
op=torch.Tensor.__ror__,
|
|
dtypes=integral_types_and(torch.bool),
|
|
supports_out=False,
|
|
supports_autograd=False,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
)),
|
|
BinaryUfuncInfo('__rxor__',
|
|
op=torch.Tensor.__rxor__,
|
|
dtypes=integral_types_and(torch.bool),
|
|
supports_out=False,
|
|
supports_autograd=False,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
)),
|
|
OpInfo('__rmatmul__',
|
|
op=torch.Tensor.__rmatmul__,
|
|
dtypes=all_types_and_complex_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16,
|
|
*[torch.bfloat16] if ((SM53OrLater and CUDA11OrLater)
|
|
or TEST_WITH_ROCM) else [],
|
|
torch.complex64, torch.complex128),
|
|
backward_dtypesIfCUDA=floating_types_and(torch.float16, *[torch.bfloat16]
|
|
if ((SM60OrLater and CUDA11OrLater) or TEST_WITH_ROCM) else [],
|
|
torch.complex64, torch.complex128),
|
|
assert_autodiffed=True,
|
|
sample_inputs_func=sample_inputs_matmul,
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
check_batched_forward_grad=False,
|
|
decorators=(
|
|
DecorateInfo(toleranceOverride({torch.complex64: tol(atol=1e-05, rtol=1.2e-03)}),
|
|
'TestMathBits', 'test_conj_view'),
|
|
DecorateInfo(toleranceOverride({torch.float32: tol(atol=1e-05, rtol=1.2e-03)}),
|
|
'TestCommon', 'test_noncontiguous_samples',
|
|
device_type='cuda', active_if=TEST_WITH_ROCM),
|
|
),
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit',),
|
|
# https://github.com/pytorch/pytorch/issues/67470
|
|
DecorateInfo(unittest.skip("67470!"),
|
|
'TestCommon', 'test_noncontiguous_samples',
|
|
device_type='cpu', dtypes=(torch.long,)),
|
|
# Fails on XLA.
|
|
# AssertionError: False is not true : Tensors failed to compare as equal
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestOpInfo', device_type='xla', dtypes=(torch.long,)),
|
|
# https://github.com/pytorch/pytorch/issues/71774
|
|
DecorateInfo(unittest.skip('Skipped!'), 'TestNNCOpInfo', 'test_nnc_correctness',
|
|
device_type='cpu', dtypes=(torch.long,)),
|
|
)),
|
|
BinaryUfuncInfo('__rmod__',
|
|
op=torch.Tensor.__rmod__,
|
|
dtypes=floating_types_and(torch.bfloat16, torch.half,),
|
|
dtypesIfCUDA=all_types_and(torch.bfloat16, torch.half),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_two_python_scalars=True,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit',),
|
|
),
|
|
# Support autograd after torch.remainder(Tensor, Tensor) supports
|
|
# autograd of the second argument.
|
|
# https://github.com/pytorch/pytorch/pull/58476/files#r637167630
|
|
# supports_autograd=False,
|
|
assert_autodiffed=True,
|
|
autodiff_nonfusible_nodes=['aten::remainder'],),
|
|
BinaryUfuncInfo('__rpow__',
|
|
op=torch.Tensor.__rpow__,
|
|
dtypes=all_types_and_complex_and(torch.bfloat16, torch.half),
|
|
# Reference: https://github.com/pytorch/pytorch/issues/54774
|
|
# "log2" "_vml_cpu" not implemented for Half
|
|
backward_dtypes=all_types_and_complex_and(torch.bfloat16),
|
|
backward_dtypesIfCUDA=all_types_and_complex_and(torch.bfloat16, torch.half),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit',),
|
|
# TODO: FIXME tolerance is too high
|
|
DecorateInfo(unittest.skip('Skipped!'), 'TestGradients'),
|
|
),
|
|
assert_autodiffed=True,
|
|
autodiff_nonfusible_nodes=['aten::pow'],),
|
|
BinaryUfuncInfo('__rsub__',
|
|
op=torch.Tensor.__rsub__,
|
|
dtypes=all_types_and_complex_and(torch.bfloat16, torch.half),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_out=False,
|
|
supports_two_python_scalars=True,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit',),
|
|
),
|
|
assert_autodiffed=True,
|
|
autodiff_nonfusible_nodes=['aten::rsub'],),
|
|
BinaryUfuncInfo('rsub',
|
|
dtypes=all_types_and_complex_and(torch.bfloat16, torch.half),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_out=False,
|
|
supports_inplace_autograd=False,
|
|
assert_autodiffed=None,
|
|
sample_inputs_func=sample_inputs_add_sub),
|
|
OpInfo('select',
|
|
aten_backward_name='select_backward',
|
|
dtypes=all_types_and_complex_and(torch.bfloat16, torch.half, torch.bool),
|
|
sample_inputs_func=sample_inputs_select,
|
|
assert_jit_shape_analysis=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_out=False),
|
|
OpInfo('select_scatter',
|
|
dtypes=all_types_and(torch.bfloat16, torch.half, torch.bool),
|
|
sample_inputs_func=sample_inputs_select_scatter,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_out=False),
|
|
OpInfo('slice_scatter',
|
|
dtypes=all_types_and(torch.bfloat16, torch.half, torch.bool),
|
|
sample_inputs_func=sample_inputs_slice_scatter,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_out=False),
|
|
UnaryUfuncInfo('signbit',
|
|
ref=np.signbit,
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16, torch.half),
|
|
supports_sparse=True,
|
|
supports_sparse_csr=True,
|
|
supports_autograd=False,),
|
|
OpInfo('solve',
|
|
op=torch.solve,
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_legacy_solve,
|
|
check_batched_gradgrad=False,
|
|
decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack]),
|
|
UnaryUfuncInfo('tan',
|
|
ref=np.tan,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_sparse=True,
|
|
supports_sparse_csr=True,
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.bfloat16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
device_type='cpu', dtypes=[torch.bfloat16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_small',
|
|
device_type='cpu', dtypes=[torch.bfloat16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=(IS_MACOS or IS_WINDOWS)),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=(IS_MACOS or IS_WINDOWS)),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
device_type='cuda', dtypes=[torch.float64],
|
|
active_if=TEST_WITH_ROCM),
|
|
DecorateInfo(unittest.skip("Skipped! sparse backward not supported"),
|
|
'TestSparseUnaryUfuncs', 'test_sparse_fn_grad'),
|
|
),
|
|
# tan(pi/2 * odd_number) is nan
|
|
reference_numerics_filter=NumericsFilter(
|
|
condition=lambda x: close_to_int(x / (math.pi * 0.5)), safe_val=math.pi)),
|
|
UnaryUfuncInfo('tanh',
|
|
ref=np.tanh,
|
|
aten_backward_name='tanh_backward',
|
|
aliases=('nn.functional.tanh',),
|
|
decorators=(precisionOverride({torch.bfloat16: 1e-2}),),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
assert_jit_shape_analysis=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_sparse=True,
|
|
supports_sparse_csr=True,
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=(IS_MACOS or IS_WINDOWS)),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=(IS_MACOS or IS_WINDOWS)),
|
|
# alias, nn.functional.tanh, will produce (because of warning string saved):
|
|
# "RuntimeError: Expected to not find "tanh" but found it"
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_jit_alias_remapping'),
|
|
DecorateInfo(unittest.skip("Skipped! sparse backward not supported"),
|
|
'TestSparseUnaryUfuncs', 'test_sparse_fn_grad'),
|
|
),
|
|
# tan(j * pi/2 * odd_number) is nan
|
|
reference_numerics_filter=NumericsFilter(
|
|
condition=lambda x: (close_to_int(x / (math.pi * 0.5j))
|
|
if x.is_complex() else x.new_tensor(False, dtype=torch.bool)),
|
|
safe_val=0)),
|
|
OpInfo('tensor_split',
|
|
ref=np.array_split,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
# Pre-existing condition; Needs to be fixed
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_operator'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'),
|
|
),
|
|
sample_inputs_func=sample_inputs_tensor_split,),
|
|
OpInfo('hsplit',
|
|
dtypes=all_types_and_complex_and(torch.complex32, torch.bool, torch.bfloat16, torch.float16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_hsplit,
|
|
error_inputs_func=error_inputs_hsplit,),
|
|
OpInfo('vsplit',
|
|
dtypes=all_types_and_complex_and(torch.complex32, torch.bool, torch.bfloat16, torch.float16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_vsplit,
|
|
error_inputs_func=error_inputs_vsplit,),
|
|
OpInfo('dsplit',
|
|
dtypes=all_types_and_complex_and(torch.complex32, torch.bool, torch.bfloat16, torch.float16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_dsplit,
|
|
error_inputs_func=error_inputs_dsplit,),
|
|
OpInfo('triangular_solve',
|
|
op=torch.triangular_solve,
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_legacy_solve,
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
gradcheck_wrapper=lambda *args, **kwargs: gradcheck_wrapper_triangular_input(*args, idx=1, **kwargs),
|
|
decorators=[skipCUDAIfNoMagma],
|
|
skips=(
|
|
# AssertionError: Scalars are not equal!
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'),
|
|
# Gradcheck fails
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients', 'test_fn_fwgrad_bwgrad',
|
|
dtypes=floating_and_complex_types()),
|
|
)),
|
|
UnaryUfuncInfo('trunc',
|
|
aliases=('fix', ),
|
|
ref=np.trunc,
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_sparse=True,
|
|
supports_sparse_csr=True,
|
|
assert_autodiffed=True),
|
|
UnaryUfuncInfo('exp2',
|
|
aliases=('special.exp2', ),
|
|
ref=np_unary_ufunc_integer_promotion_wrapper(np.exp2),
|
|
dtypes=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True),
|
|
UnaryUfuncInfo('expm1',
|
|
aliases=('special.expm1', ),
|
|
ref=np_unary_ufunc_integer_promotion_wrapper(np.expm1),
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_sparse=True,
|
|
supports_sparse_csr=True,
|
|
assert_autodiffed=True,
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/pull/48926#issuecomment-739734774
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.bfloat16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
device_type='cpu', dtypes=[torch.bfloat16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_small',
|
|
device_type='cpu', dtypes=[torch.bfloat16]),
|
|
DecorateInfo(unittest.skip("Skipped! sparse backward not supported"),
|
|
'TestSparseUnaryUfuncs', 'test_sparse_fn_grad'),
|
|
)),
|
|
UnaryUfuncInfo('nan_to_num',
|
|
ref=np.nan_to_num,
|
|
dtypes=all_types_and(torch.half, torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.half, torch.bool, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_sparse=True,
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped! sparse backward not supported"),
|
|
'TestSparseUnaryUfuncs', 'test_sparse_fn_grad'),
|
|
),
|
|
# Passing numpy_kwargs via sample_kwargs, as numpy does comparison
|
|
# with BFloat16 in float, since it currently doesn't support BFloat16.
|
|
# Ref: https://github.com/pytorch/pytorch/issues/57982#issuecomment-839150556
|
|
sample_kwargs=lambda device, dtype, input: ({},
|
|
{'posinf': torch.finfo(torch.bfloat16).max,
|
|
'neginf': torch.finfo(torch.bfloat16).min})
|
|
if dtype is torch.bfloat16 else ({}, {})),
|
|
UnaryUfuncInfo('reciprocal',
|
|
ref=np_unary_ufunc_integer_promotion_wrapper(np.reciprocal),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/issues/45690
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=[torch.cfloat, torch.cdouble]),
|
|
# Reference: https://github.com/pytorch/pytorch/pull/49102#issuecomment-744604601
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=[torch.bfloat16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
dtypes=[torch.bfloat16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_small',
|
|
dtypes=[torch.bfloat16]),
|
|
)),
|
|
UnaryUfuncInfo('rsqrt',
|
|
ref=lambda x: np.reciprocal(np.sqrt(x)),
|
|
domain=(0, None),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
decorators=(precisionOverride({torch.half: 5e-2}),),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=(torch.cfloat, torch.cdouble)),
|
|
)),
|
|
UnaryUfuncInfo('sqrt',
|
|
ref=np.sqrt,
|
|
supports_sparse=True,
|
|
domain=(0, None),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
supports_sparse_csr=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
decorators=(precisionOverride({torch.bfloat16: 7e-2}),),
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/issues/47358
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=IS_MACOS),
|
|
# Reference: https://github.com/pytorch/pytorch/pull/47293#issuecomment-721774436
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
dtypes=[torch.bfloat16]),
|
|
DecorateInfo(unittest.skip("Skipped! sparse backward not supported"),
|
|
'TestSparseUnaryUfuncs', 'test_sparse_fn_grad'),
|
|
)),
|
|
UnaryUfuncInfo('square',
|
|
ref=np.square,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
decorators=(precisionOverride({torch.complex64: 3e-4, torch.bfloat16: 3e-1}),),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/issues/52549
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
dtypes=[torch.cfloat, torch.cdouble]),
|
|
# >>> t = torch.tensor(complex(-0.01, float("inf")))
|
|
# >>> np.square(t.numpy())
|
|
# (-inf-infj)
|
|
# >>> t.square()
|
|
# tensor(-inf-infj)
|
|
# >>> t.cuda().square()
|
|
# tensor(inf+nanj, device='cuda:0')
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cuda', dtypes=[torch.cfloat, torch.cdouble]),
|
|
# Reference: https://github.com/pytorch/pytorch/pull/52551#issuecomment-782596181
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
dtypes=[torch.bfloat16]),
|
|
),),
|
|
OpInfo('lerp',
|
|
dtypes=floating_and_complex_types(),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.half, torch.bfloat16),
|
|
dtypesIfROCM=floating_and_complex_types_and(torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_lerp,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
assert_autodiffed=True),
|
|
OpInfo('linalg.inv',
|
|
aten_name='linalg_inv',
|
|
op=torch.linalg.inv,
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_linalg_invertible,
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCPUIfNoLapack],
|
|
skips=(
|
|
# AssertionError: Scalars are not equal!
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'),
|
|
)),
|
|
OpInfo('linalg.inv_ex',
|
|
aten_name='linalg_inv_ex',
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_linalg_invertible,
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCPUIfNoLapack],
|
|
skips=(
|
|
# AssertionError: Scalars are not equal!
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'),
|
|
)),
|
|
UnaryUfuncInfo('angle',
|
|
ref=np.angle,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool),
|
|
decorators=(precisionOverride({torch.float16: 1e-2,
|
|
torch.bfloat16: 1e-2}),),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_sparse_csr=True,
|
|
supports_complex_to_float=True,
|
|
skips=(
|
|
# The complex formula might be wrong
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_forward_mode_AD',
|
|
dtypes=complex_types()),
|
|
)),
|
|
UnaryUfuncInfo('isfinite',
|
|
ref=np.isfinite,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
supports_out=False,
|
|
supports_autograd=False),
|
|
UnaryUfuncInfo('isinf',
|
|
ref=np.isinf,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
supports_out=False,
|
|
supports_sparse=True,
|
|
supports_sparse_csr=True,
|
|
supports_autograd=False),
|
|
UnaryUfuncInfo('isposinf',
|
|
ref=np.isposinf,
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16, torch.float16),
|
|
supports_sparse=True,
|
|
supports_sparse_csr=True,
|
|
supports_autograd=False),
|
|
UnaryUfuncInfo('isneginf',
|
|
ref=np.isneginf,
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16, torch.float16),
|
|
supports_sparse=True,
|
|
supports_sparse_csr=True,
|
|
supports_autograd=False),
|
|
UnaryUfuncInfo('isreal',
|
|
ref=np.isreal,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
supports_out=False,
|
|
supports_autograd=False),
|
|
UnaryUfuncInfo('isnan',
|
|
ref=np.isnan,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
supports_out=False,
|
|
supports_sparse=True,
|
|
supports_sparse_csr=True,
|
|
supports_autograd=False),
|
|
OpInfo('linalg.solve',
|
|
aten_name='linalg_solve',
|
|
op=torch.linalg.solve,
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_linalg_solve,
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack],
|
|
skips=(
|
|
# AssertionError: Scalars are not equal!
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'),
|
|
)),
|
|
OpInfo('linalg.solve_triangular',
|
|
aten_name='linalg_solve_triangular',
|
|
op=torch.linalg.solve_triangular,
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_linalg_solve_triangular,
|
|
supports_fwgrad_bwgrad=True,
|
|
# linalg.solve_triangular cannot be batched over because of a call to out.copy_(result);
|
|
supports_forward_ad=True),
|
|
OpInfo('linalg.matrix_rank',
|
|
aten_name='linalg_matrix_rank',
|
|
dtypes=floating_and_complex_types(),
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_linalg_invertible,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCPUIfNoLapack],
|
|
skips=(
|
|
# Pre-existing condition; Needs to be fixed
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_operator'),
|
|
),
|
|
),
|
|
OpInfo('linalg.matrix_rank',
|
|
aten_name='linalg_matrix_rank',
|
|
variant_test_name='hermitian',
|
|
dtypes=floating_and_complex_types(),
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_linalg_pinv_hermitian,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCPUIfNoLapack],
|
|
skips=(
|
|
# Pre-existing condition; Needs to be fixed
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_operator'),
|
|
),
|
|
),
|
|
OpInfo('linalg.pinv',
|
|
aten_name='linalg_pinv',
|
|
op=torch.linalg.pinv,
|
|
dtypes=floating_and_complex_types(),
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_linalg_pinv,
|
|
skips=(
|
|
# errors with "leaked XXXX bytes CUDA memory on device 0"
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit', device_type='cuda'),)
|
|
),
|
|
OpInfo('linalg.pinv',
|
|
aten_name='linalg_pinv',
|
|
variant_test_name='singular',
|
|
# pinv is Frechet-differentiable in a rank-preserving neighborhood,
|
|
# so we feed inputs that are the products of two full-rank factors,
|
|
# to avoid any rank changes caused by the perturbations in the gradcheck
|
|
op=lambda a, b: torch.linalg.pinv(a @ b.mT),
|
|
dtypes=floating_and_complex_types(),
|
|
supports_out=False,
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_linalg_pinv_singular,
|
|
# Only large tensors show issues with implicit backward used prior to
|
|
# explicit backward implementation.
|
|
decorators=[slowTest, skipCUDAIfNoMagmaAndNoCusolver, skipCPUIfNoLapack],
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
# CUDA runs out of memory
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_fn_fwgrad_bwgrad',
|
|
device_type='cuda', dtypes=[torch.cdouble]),
|
|
)),
|
|
OpInfo('linalg.pinv',
|
|
aten_name='linalg_pinv',
|
|
variant_test_name='hermitian',
|
|
dtypes=floating_and_complex_types(),
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_linalg_pinv_hermitian,
|
|
gradcheck_wrapper=gradcheck_wrapper_hermitian_input,
|
|
decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack],
|
|
),
|
|
OpInfo('eig',
|
|
op=torch.eig,
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_eig,
|
|
error_inputs_func=error_inputs_eig,
|
|
decorators=[
|
|
skipCUDAIfNoMagma,
|
|
skipCPUIfNoLapack,
|
|
],
|
|
skips=(
|
|
# following 2 tests failed intermittenly
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_fn_grad', device_type='cuda',
|
|
dtypes=[torch.complex128], active_if=TEST_WITH_ROCM),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_fn_gradgrad', device_type='cuda',
|
|
dtypes=[torch.complex128], active_if=TEST_WITH_ROCM)),
|
|
),
|
|
OpInfo('einsum',
|
|
# we need this lambda because SampleInput expects tensor input as the first argument
|
|
# TODO(@heitorschueroff) update SampleInput to handle such cases
|
|
op=lambda tensors, equation: torch.einsum(equation, tensors),
|
|
dtypes=all_types_and_complex_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.half,
|
|
*[torch.bfloat16] if (CUDA11OrLater or TEST_WITH_ROCM) else []),
|
|
backward_dtypesIfCUDA=floating_and_complex_types_and(torch.half, *[torch.bfloat16]
|
|
if ((SM60OrLater and CUDA11OrLater)
|
|
or TEST_WITH_ROCM) else []),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
check_batched_forward_grad=False,
|
|
# See https://github.com/pytorch/pytorch/issues/66357
|
|
sample_inputs_func=sample_inputs_einsum,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
# test does not work with passing lambda for op
|
|
# there's a test `test_einsum` in `test_jit.py` to handle this case
|
|
# AssertionError: JIT Test does not execute any logic
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('svd',
|
|
op=torch.svd,
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_svd,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
check_batched_forward_grad=False,
|
|
# We're using at::allclose, which does not have a batching rule
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCPUIfNoLapack, with_tf32_off],
|
|
skips=(
|
|
# Fixme, forward over backward gives a numerical error
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients', 'test_fn_fwgrad_bwgrad', dtypes=(torch.complex128,)),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'),
|
|
)),
|
|
OpInfo('linalg.svd',
|
|
op=torch.linalg.svd,
|
|
aten_name='linalg_svd',
|
|
dtypes=floating_and_complex_types(),
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_forward_ad=True,
|
|
check_batched_forward_grad=False,
|
|
# We're using at::allclose, which does not have a batching rule
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
sample_inputs_func=sample_inputs_svd,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCPUIfNoLapack, with_tf32_off],
|
|
skips=(
|
|
# FIXME forward over backward gives a numerical error
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients', 'test_fn_fwgrad_bwgrad', dtypes=(torch.complex128,)),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'),
|
|
)),
|
|
OpInfo('linalg.svdvals',
|
|
op=torch.linalg.svdvals,
|
|
aten_name='linalg_svdvals',
|
|
dtypes=floating_and_complex_types(),
|
|
check_batched_forward_grad=False,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_forward_ad=True,
|
|
# We're using at::allclose, which does not have a batching rule
|
|
check_batched_gradgrad=False,
|
|
sample_inputs_func=sample_inputs_linalg_svdvals,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'),
|
|
),
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCPUIfNoLapack, with_tf32_off]),
|
|
OpInfo('svd_lowrank',
|
|
op=lambda *args, **kwargs: wrapper_set_seed(
|
|
lambda a, b, **kwargs: torch.svd_lowrank(a @ b.mT, **kwargs),
|
|
*args, **kwargs
|
|
),
|
|
dtypes=floating_types(),
|
|
supports_out=False,
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
check_batched_forward_grad=False,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_svd_lowrank,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCPUIfNoLapack, with_tf32_off,
|
|
DecorateInfo(toleranceOverride({torch.float32: tol(atol=1e-03, rtol=1e-03)}),
|
|
'TestCommon', 'test_noncontiguous_samples',
|
|
device_type='cuda')],
|
|
skips=(
|
|
# test does not work with passing lambda for op
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'),
|
|
)),
|
|
OpInfo('pca_lowrank',
|
|
op=lambda *args, **kwargs: wrapper_set_seed(
|
|
lambda a, b, **kwargs: torch.pca_lowrank(a @ b.mT, **kwargs),
|
|
*args, **kwargs
|
|
),
|
|
dtypes=floating_types(),
|
|
supports_out=False,
|
|
check_batched_forward_grad=False,
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_pca_lowrank,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCPUIfNoLapack, with_tf32_off,
|
|
DecorateInfo(toleranceOverride({torch.float32: tol(atol=1e-03, rtol=1e-03)}),
|
|
'TestCommon', 'test_noncontiguous_samples',
|
|
device_type='cuda')],
|
|
skips=(
|
|
# test does not work with passing lambda for op
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'),
|
|
)),
|
|
BinaryUfuncInfo('polar',
|
|
dtypes=floating_types(),
|
|
# this function is undefined if 'abs' values are <0
|
|
supports_forward_ad=True,
|
|
lhs_make_tensor_kwargs=dict(low=0),
|
|
supports_rhs_python_scalar=False,
|
|
skips=(
|
|
# RuntimeError: Expected object of scalar type Float but got scalar type Double for second argument
|
|
DecorateInfo(unittest.skip('Skipped!'), 'TestBinaryUfuncs', 'test_type_promotion'),
|
|
# GradcheckError: Jacobian computed with forward mode mismatch for output 0 with respect to input 0
|
|
# Numerical:
|
|
# tensor([[0.]], dtype=torch.float64)
|
|
# Analytical:
|
|
# tensor([[-0.0047]], dtype=torch.float64, grad_fn=<CopySlices>)
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients', 'test_fn_fwgrad_bwgrad'),
|
|
)),
|
|
# TODO(@kshitij12345): Refactor similar to `mvlgamma` entries.
|
|
# To test reference numerics against multiple values of argument `n`,
|
|
# we make multiple OpInfo entries with each entry corresponding to different value of n (currently 0 to 4).
|
|
# We run the op tests from test_ops.py only for `n=0` to avoid redundancy in testing.
|
|
UnaryUfuncInfo('polygamma',
|
|
op=lambda x, n, **kwargs: torch.polygamma(n, x, **kwargs),
|
|
variant_test_name='polygamma_n_0',
|
|
ref=reference_polygamma if TEST_SCIPY else _NOTHING,
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_polygamma,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
),
|
|
sample_kwargs=lambda device, dtype, input: ({'n': 0}, {'n': 0})),
|
|
# A separate OpInfo entry for special.polygamma is needed to reorder the arguments
|
|
# for the alias. See the discussion here: https://github.com/pytorch/pytorch/pull/59691#discussion_r650261939
|
|
UnaryUfuncInfo('special.polygamma',
|
|
op=lambda x, n, **kwargs: torch.special.polygamma(n, x, **kwargs),
|
|
variant_test_name='special_polygamma_n_0',
|
|
ref=reference_polygamma if TEST_SCIPY else _NOTHING,
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_polygamma,
|
|
skips=(
|
|
# lambda impl
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
),
|
|
sample_kwargs=lambda device, dtype, input: ({'n': 0}, {'n': 0}),
|
|
# polygamma functions have multiple singularities at x <= 0
|
|
reference_numerics_filter=NumericsFilter(condition=lambda x: x < 0.1, safe_val=1)),
|
|
UnaryUfuncInfo('polygamma',
|
|
op=lambda x, n, **kwargs: torch.polygamma(n, x, **kwargs),
|
|
variant_test_name='polygamma_n_1',
|
|
ref=reference_polygamma if TEST_SCIPY else _NOTHING,
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_polygamma,
|
|
skips=(
|
|
# Redundant tests
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestNormalizeOperators'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon'),
|
|
# Mismatch: https://github.com/pytorch/pytorch/issues/55357
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large'),
|
|
),
|
|
sample_kwargs=lambda device, dtype, input: ({'n': 1}, {'n': 1}),
|
|
# polygamma functions have multiple singularities at x <= 0
|
|
reference_numerics_filter=NumericsFilter(condition=lambda x: x < 0.1, safe_val=1)),
|
|
UnaryUfuncInfo('polygamma',
|
|
op=lambda x, n, **kwargs: torch.polygamma(n, x, **kwargs),
|
|
variant_test_name='polygamma_n_2',
|
|
ref=reference_polygamma if TEST_SCIPY else _NOTHING,
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_polygamma,
|
|
skips=(
|
|
# Redundant tests
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestNormalizeOperators'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon'),
|
|
# Mismatch: https://github.com/pytorch/pytorch/issues/55357
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
active_if=TEST_WITH_ROCM),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_small',
|
|
active_if=TEST_WITH_ROCM),),
|
|
sample_kwargs=lambda device, dtype, input: ({'n': 2}, {'n': 2}),
|
|
# polygamma functions have multiple singularities at x <= 0
|
|
reference_numerics_filter=NumericsFilter(condition=lambda x: x < 0.1, safe_val=1)),
|
|
UnaryUfuncInfo('polygamma',
|
|
op=lambda x, n, **kwargs: torch.polygamma(n, x, **kwargs),
|
|
variant_test_name='polygamma_n_3',
|
|
ref=reference_polygamma if TEST_SCIPY else _NOTHING,
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_polygamma,
|
|
skips=(
|
|
# Redundant tests
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestNormalizeOperators'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon'),
|
|
# Mismatch: https://github.com/pytorch/pytorch/issues/55357
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal'),),
|
|
sample_kwargs=lambda device, dtype, input: ({'n': 3}, {'n': 3}),
|
|
# polygamma functions have multiple singularities at x <= 0
|
|
reference_numerics_filter=NumericsFilter(condition=lambda x: x < 0.1, safe_val=1)),
|
|
UnaryUfuncInfo('polygamma',
|
|
op=lambda x, n, **kwargs: torch.polygamma(n, x, **kwargs),
|
|
variant_test_name='polygamma_n_4',
|
|
ref=reference_polygamma if TEST_SCIPY else _NOTHING,
|
|
decorators=(precisionOverride({torch.float16: 5e-4, torch.float32: 5e-4}),),
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_polygamma,
|
|
skips=(
|
|
# Redundant tests
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestNormalizeOperators'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon'),
|
|
# Mismatch: https://github.com/pytorch/pytorch/issues/55357
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
active_if=TEST_WITH_ROCM),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_small',
|
|
active_if=TEST_WITH_ROCM),),
|
|
sample_kwargs=lambda device, dtype, input: ({'n': 4}, {'n': 4}),
|
|
# polygamma functions have multiple singularities at x <= 0
|
|
reference_numerics_filter=NumericsFilter(condition=lambda x: x < 0.1, safe_val=1)),
|
|
OpInfo('ravel',
|
|
ref=np.ravel,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_ravel,
|
|
),
|
|
OpInfo('reshape',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_view_reshape,
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
),
|
|
OpInfo('reshape_as',
|
|
op=lambda x, other: x.reshape_as(other),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_view_as_reshape_as,
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
)),
|
|
OpInfo('view',
|
|
op=lambda x, shape: x.view(shape),
|
|
dtypes=all_types_and_complex_and(torch.complex32, torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
assert_jit_shape_analysis=True,
|
|
sample_inputs_func=sample_inputs_view_reshape,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
)),
|
|
OpInfo('view_as',
|
|
op=lambda x, other: x.view_as(other),
|
|
dtypes=all_types_and_complex_and(torch.complex32, torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_view_as_reshape_as,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
)),
|
|
OpInfo('atleast_1d',
|
|
dtypes=all_types_and_complex_and(torch.complex32, torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_atleast1d2d3d,
|
|
skips=(
|
|
# JIT does not support variadic tensors.
|
|
# RuntimeError: input->type()->kind() == TypeKind::OptionalType
|
|
# INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":252,
|
|
# please report a bug to PyTorch.
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit', dtypes=[torch.float32]),
|
|
),
|
|
),
|
|
OpInfo('atleast_2d',
|
|
dtypes=all_types_and_complex_and(torch.complex32, torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit', dtypes=[torch.float32]),
|
|
),
|
|
sample_inputs_func=sample_inputs_atleast1d2d3d,
|
|
),
|
|
OpInfo('atleast_3d',
|
|
dtypes=all_types_and_complex_and(torch.complex32, torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit', dtypes=[torch.float32]),
|
|
),
|
|
sample_inputs_func=sample_inputs_atleast1d2d3d,
|
|
),
|
|
OpInfo('flatten',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_flatten,
|
|
),
|
|
OpInfo('column_stack',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
# lambda impl
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),),
|
|
sample_inputs_func=sample_inputs_column_stack,),
|
|
OpInfo('pinverse',
|
|
op=torch.pinverse,
|
|
dtypes=floating_and_complex_types(),
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_linalg_invertible,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCPUIfNoLapack]),
|
|
OpInfo('gather',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_gather,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
error_inputs_func=error_inputs_gather,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
),
|
|
),
|
|
OpInfo('index_fill',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
# https://github.com/pytorch/pytorch/issues/66357
|
|
check_batched_forward_grad=False,
|
|
sample_inputs_func=sample_inputs_index),
|
|
OpInfo('index_copy',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
# https://github.com/pytorch/pytorch/issues/66357
|
|
check_batched_forward_grad=False,
|
|
skips=(
|
|
),
|
|
sample_inputs_func=sample_inputs_index,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL),
|
|
OpInfo('index_select',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_index,
|
|
error_inputs_func=error_inputs_index_select,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
assert_jit_shape_analysis=True,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL),
|
|
OpInfo('index_add',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
# https://github.com/pytorch/pytorch/issues/66357
|
|
check_batched_forward_grad=False,
|
|
sample_inputs_func=sample_inputs_index,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL),
|
|
OpInfo('_index_reduce',
|
|
dtypes=floating_types_and(torch.float16, torch.bfloat16),
|
|
supports_out=True,
|
|
decorators=[onlyCPU],
|
|
sample_inputs_func=sample_inputs_index),
|
|
OpInfo('__getitem__',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_inplace_autograd=False,
|
|
supports_scripting=False,
|
|
op=torch.Tensor.__getitem__,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
# AssertionError: False is not true : Scalars failed to compare as equal! 0 != 104448
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit', device_type='cuda'),),
|
|
assert_jit_shape_analysis=False, # TODO: support index.Tensor()
|
|
sample_inputs_func=sample_inputs_getitem),
|
|
OpInfo('index_put',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_inplace_autograd=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
# https://github.com/pytorch/pytorch/issues/66357
|
|
check_batched_forward_grad=False,
|
|
test_neg_view=False,
|
|
sample_inputs_func=sample_inputs_index_put,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
# RuntimeError: The following operation failed in the TorchScript interpreter.
|
|
# Traceback of TorchScript (most recent call last):
|
|
# File "<string>", line 3, in forward
|
|
# def the_method(i0, i1: List[torch.Tensor], i2):
|
|
# return torch.index_put(i0, i1, i2, accumulate=False)
|
|
# ~~~~~~~~~~~~~~~ <--- HERE
|
|
# RuntimeError: a leaf Variable that requires grad is being used in an in-place operation.
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('sort',
|
|
dtypes=all_types_and(torch.bool, torch.float16, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_sort,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
)),
|
|
OpInfo('unique',
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.float16),
|
|
sample_inputs_func=sample_inputs_unique,
|
|
supports_out=False,
|
|
supports_autograd=False,
|
|
skips=(
|
|
# lambda impl
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('unique_consecutive',
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.float16),
|
|
sample_inputs_func=sample_inputs_unique_consecutive,
|
|
supports_out=False,
|
|
supports_autograd=False,
|
|
skips=(
|
|
# lambda impl
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('put',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
check_batched_gradgrad=False, # vmap complains of the sizes
|
|
skips=(
|
|
# Problem, needs to be fixed
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_operator'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
),
|
|
sample_inputs_func=sample_inputs_put),
|
|
OpInfo('take',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
check_batched_grad=False, # vmap complains of the sizes
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=False, # Need: put_
|
|
sample_inputs_func=sample_inputs_take,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
),
|
|
error_inputs_func=error_inputs_take),
|
|
OpInfo('scatter',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_scatter,
|
|
error_inputs_func=error_inputs_scatter_and_scatter_add),
|
|
OpInfo('bfloat16',
|
|
op=lambda x, *args, **kwargs: x.bfloat16(*args, **kwargs),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_conversion,
|
|
skips=(
|
|
# autograd tests don't handle operators that change dtype
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients'),
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
# RuntimeError: attribute lookup is not defined on builtin
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestNNCOpInfo', 'test_nnc_correctness'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCudaFuserOpInfo', 'test_nvfuser_correctness'),
|
|
)),
|
|
OpInfo('bool',
|
|
op=lambda x, *args, **kwargs: x.bool(*args, **kwargs),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_conversion,
|
|
supports_autograd=False,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
# RuntimeError: attribute lookup is not defined on builtin
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
# 76047
|
|
DecorateInfo(unittest.expectedFailure, 'TestNNCOpInfo', 'test_nnc_correctness',
|
|
dtypes=(torch.int8,)),
|
|
)),
|
|
OpInfo('byte',
|
|
op=lambda x, *args, **kwargs: x.byte(*args, **kwargs),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_conversion,
|
|
# The autograd test runner cannot handle functions that change dtype
|
|
supports_autograd=False,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
# RuntimeError: attribute lookup is not defined on builtin
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('char',
|
|
op=lambda x, *args, **kwargs: x.char(*args, **kwargs),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_conversion,
|
|
# The autograd test runner cannot handle functions that change dtype
|
|
supports_autograd=False,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
# RuntimeError: attribute lookup is not defined on builtin
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('double',
|
|
op=lambda x, *args, **kwargs: x.double(*args, **kwargs),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_conversion,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
# RuntimeError: attribute lookup is not defined on builtin
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('float',
|
|
op=lambda x, *args, **kwargs: x.float(*args, **kwargs),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_conversion,
|
|
skips=(
|
|
# autograd tests don't handle operators that change dtype
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients'),
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
# RuntimeError: attribute lookup is not defined on builtin
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('half',
|
|
op=lambda x, *args, **kwargs: x.half(*args, **kwargs),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_conversion,
|
|
supports_autograd=True,
|
|
skips=(
|
|
# autograd tests don't handle operators that change dtype
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients'),
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
# RuntimeError: attribute lookup is not defined on builtin
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('int',
|
|
op=lambda x, *args, **kwargs: x.int(*args, **kwargs),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_conversion,
|
|
supports_autograd=False,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
# RuntimeError: attribute lookup is not defined on builtin
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('long',
|
|
op=lambda x, *args, **kwargs: x.long(*args, **kwargs),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_conversion,
|
|
supports_autograd=False,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
# RuntimeError: attribute lookup is not defined on builtin
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('short',
|
|
op=lambda x, *args, **kwargs: x.short(*args, **kwargs),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_conversion,
|
|
supports_autograd=False,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
# RuntimeError: attribute lookup is not defined on builtin
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('chalf',
|
|
op=lambda x, *args, **kwargs: x.chalf(*args, **kwargs),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_conversion,
|
|
skips=(
|
|
# autograd tests don't handle operators that change dtype
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients'),
|
|
# use of lambda doesn't work with test_normalize_operator_exhaustive
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
# RuntimeError: "index_select" not implemented for 'ComplexHalf'
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_noncontiguous_samples',
|
|
dtypes=(torch.float, torch.cfloat)),
|
|
# RuntimeError: "sum_cpu" not implemented for 'ComplexHalf'
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_variant_consistency_eager'),
|
|
# TypeError: 'int' object is not iterable
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
# RuntimeError: "sum_cpu" not implemented for 'ComplexHalf'
|
|
DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_conj_view'),
|
|
# RuntimeError: "sum_cpu" not implemented for 'ComplexHalf'
|
|
DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'),
|
|
# RuntimeError: "sum_cpu" not implemented for 'ComplexHalf'
|
|
DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_conj_view'),
|
|
)
|
|
),
|
|
OpInfo('empty_like',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_like_fns,
|
|
supports_autograd=False,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
# Empty tensor data is garbage so it's hard to make comparisons with it.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_noncontiguous_samples'),
|
|
# Empty tensor data is garbage so it's hard to make comparisons with it.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
# Empty tensor data is garbage so it's hard to make comparisons with it.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_conj_view'),
|
|
# Empty tensor data is garbage so it's hard to make comparisons with it.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_neg_view'),
|
|
# Empty tensor data is garbage so it's hard to make comparisons with it.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_neg_conj_view'),
|
|
# Empty tensor data is garbage so it's hard to make comparisons with it.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestNNCOpInfo', 'test_nnc_correctness'),
|
|
# Empty tensor data is garbage so it's hard to make comparisons with it.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCudaFuserOpInfo', 'test_nvfuser_correctness'),
|
|
# Can't find schemas for this operator for some reason
|
|
DecorateInfo(unittest.expectedFailure, 'TestOperatorSignatures', 'test_get_torch_func_signature_exhaustive'),
|
|
)),
|
|
OpInfo('zeros_like',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_like_fns,
|
|
supports_autograd=False,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
# Can't find schemas for this operator for some reason
|
|
DecorateInfo(unittest.expectedFailure, 'TestOperatorSignatures', 'test_get_torch_func_signature_exhaustive'),
|
|
)),
|
|
OpInfo('ones_like',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_like_fns,
|
|
supports_autograd=False,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
# Can't find schemas for this operator for some reason
|
|
DecorateInfo(unittest.expectedFailure, 'TestOperatorSignatures', 'test_get_torch_func_signature_exhaustive'),
|
|
)),
|
|
OpInfo('randn_like',
|
|
dtypes=floating_types_and(torch.half, torch.bfloat16, torch.complex64, torch.complex128),
|
|
op=lambda inp, *args, **kwargs:
|
|
wrapper_set_seed(torch.randn_like, inp, *args, **kwargs),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_like_fns,
|
|
supports_autograd=False,
|
|
supports_sparse_csr=True,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
# AssertionError: JIT Test does not execute any logic
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('rand_like',
|
|
dtypes=floating_types_and(torch.half, torch.bfloat16, torch.complex64, torch.complex128),
|
|
op=lambda inp, *args, **kwargs:
|
|
wrapper_set_seed(torch.randn_like, inp, *args, **kwargs),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_like_fns,
|
|
supports_autograd=False,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
# AssertionError: JIT Test does not execute any logic
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
# Can't find schemas for this operator for some reason
|
|
DecorateInfo(unittest.expectedFailure, 'TestOperatorSignatures', 'test_get_torch_func_signature_exhaustive'),
|
|
)),
|
|
OpInfo('randint_like',
|
|
dtypes=all_types_and(torch.half, torch.bfloat16),
|
|
op=lambda inp, *args, **kwargs:
|
|
wrapper_set_seed(torch.randint_like, inp, *args, **kwargs),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_randint_like,
|
|
supports_autograd=False,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
# AssertionError: JIT Test does not execute any logic
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
# Can't find schemas for this operator for some reason
|
|
DecorateInfo(unittest.expectedFailure, 'TestOperatorSignatures', 'test_get_torch_func_signature_exhaustive'),
|
|
)),
|
|
OpInfo('full_like',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_full_like,
|
|
supports_autograd=False,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
# Can't find schemas for this operator for some reason
|
|
DecorateInfo(unittest.expectedFailure, 'TestOperatorSignatures', 'test_get_torch_func_signature_exhaustive'),
|
|
)),
|
|
OpInfo('new_zeros',
|
|
op=lambda x, *args, **kwargs: x.new_zeros(*args, **kwargs),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_new_fns,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
# Can't find schemas for this operator for some reason
|
|
DecorateInfo(unittest.expectedFailure, 'TestOperatorSignatures', 'test_get_torch_func_signature_exhaustive'),
|
|
),
|
|
supports_autograd=False),
|
|
OpInfo('new_ones',
|
|
op=lambda x, *args, **kwargs: x.new_ones(*args, **kwargs),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_new_fns,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
# Can't find schemas for this operator for some reason
|
|
DecorateInfo(unittest.expectedFailure, 'TestOperatorSignatures', 'test_get_torch_func_signature_exhaustive'),
|
|
),
|
|
supports_autograd=False),
|
|
OpInfo('new_empty',
|
|
op=lambda x, *args, **kwargs: x.new_empty(*args, **kwargs),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_new_fns,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
# Empty tensor data is garbage so it's hard to make comparisons with it.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
# Empty tensor data is garbage so it's hard to make comparisons with it.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_variant_consistency_eager'),
|
|
# Empty tensor data is garbage so it's hard to make comparisons with it.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_noncontiguous_samples'),
|
|
# Empty tensor data is garbage so it's hard to make comparisons with it.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_conj_view'),
|
|
# Empty tensor data is garbage so it's hard to make comparisons with it.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_neg_view'),
|
|
# Empty tensor data is garbage so it's hard to make comparisons with it.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_neg_conj_view'),
|
|
# Empty tensor data is garbage so it's hard to make comparisons with it.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestNNCOpInfo', 'test_nnc_correctness'),
|
|
# Empty tensor data is garbage so it's hard to make comparisons with it.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCudaFuserOpInfo', 'test_nvfuser_correctness'),
|
|
# Can't find schemas for this operator for some reason
|
|
DecorateInfo(unittest.expectedFailure, 'TestOperatorSignatures', 'test_get_torch_func_signature_exhaustive'),
|
|
),
|
|
supports_autograd=False),
|
|
OpInfo('new_full',
|
|
op=lambda x, *args, **kwargs: x.new_full(*args, **kwargs),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_new_full,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
# Can't find schemas for this operator for some reason
|
|
DecorateInfo(unittest.expectedFailure, 'TestOperatorSignatures', 'test_get_torch_func_signature_exhaustive'),
|
|
),
|
|
supports_autograd=False),
|
|
OpInfo('multinomial',
|
|
op=lambda inp, *args, **kwargs:
|
|
wrapper_set_seed(torch.multinomial, inp, *args, **kwargs),
|
|
method_variant=lambda inp, *args, **kwargs:
|
|
wrapper_set_seed(torch.Tensor.multinomial, inp, *args, **kwargs),
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half),
|
|
supports_out=True,
|
|
sample_inputs_func=sample_inputs_multinomial,
|
|
error_inputs_func=error_inputs_multinomial,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
# Strides are not the same!
|
|
# This may not be reproducible in CI
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out'),
|
|
# AssertionError: JIT Test does not execute any logic
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
# UserWarning not triggered : Resized a non-empty tensor but did not warn about it.
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warning')),
|
|
supports_autograd=False),
|
|
OpInfo('normal',
|
|
op=lambda inp, *args, **kwargs:
|
|
wrapper_set_seed(torch.normal, inp, *args, **kwargs),
|
|
# The inplace variant (Tensor.normal_) is different from torch.normal
|
|
inplace_variant=None,
|
|
dtypes=floating_types_and(torch.bfloat16, torch.half),
|
|
dtypesIfCUDA=floating_types_and(torch.bfloat16, torch.half),
|
|
supports_out=True,
|
|
sample_inputs_func=sample_inputs_normal_tensor_first,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
# Tensor-likes are not close!
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'),
|
|
# AssertionError: JIT Test does not execute any logic
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
# UserWarning not triggered : Resized a non-empty tensor but did not warn about it.
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warning'),
|
|
# NotImplementedError not raised
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients', 'test_fn_fwgrad_bwgrad'),
|
|
# Computed gradient is incorrect -- would be an exfail but gradgrad somehow passes
|
|
DecorateInfo(unittest.skip("Gradients are incorrect!"), 'TestGradients'),)),
|
|
OpInfo('normal',
|
|
# This has its own variant b/c OpInfos assume the first arg is a Tensor but it is not here
|
|
variant_test_name='number_mean',
|
|
op=lambda std, mean, *args, **kwargs:
|
|
wrapper_set_seed(torch.normal, mean, std, *args, **kwargs),
|
|
# The inplace variant (Tensor.normal_) is different from torch.normal
|
|
inplace_variant=None,
|
|
dtypes=floating_types_and(torch.bfloat16, torch.half),
|
|
dtypesIfCUDA=floating_types_and(torch.bfloat16, torch.half),
|
|
supports_out=True,
|
|
sample_inputs_func=sample_inputs_normal_tensor_second,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
# AssertionError: JIT Test does not execute any logic
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
# NotImplementedError not raised
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients', 'test_fn_fwgrad_bwgrad'),
|
|
# Computed gradient is incorrect -- would be an exfail but gradgrad somehow passes
|
|
DecorateInfo(unittest.skip("Gradients are incorrect!"), 'TestGradients'),)),
|
|
OpInfo('bernoulli',
|
|
op=lambda inp, *args, **kwargs:
|
|
wrapper_set_seed(torch.bernoulli, inp, *args, **kwargs),
|
|
# The inplace variant (Tensor.bernoulli_) is different from torch.bernoulli
|
|
inplace_variant=None,
|
|
method_variant=lambda inp, *args, **kwargs:
|
|
wrapper_set_seed(torch.Tensor.bernoulli, inp, *args, **kwargs),
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.bfloat16, torch.half),
|
|
supports_out=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_bernoulli,
|
|
skips=(
|
|
# vmap: We do not yet support calling random operations inside of vmap
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients', 'test_forward_mode_AD'),
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
# AssertionError: JIT Test does not execute any logic
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
# Expected RuntimeError when doing an unsafe cast from a result of
|
|
# dtype torch.float32 into an out= with dtype torch.lon
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'),
|
|
# UserWarning not triggered : Resized a non-empty tensor but did not warn about it.
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warning'))),
|
|
OpInfo('scatter_add',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_scatter_add,
|
|
error_inputs_func=error_inputs_scatter_and_scatter_add,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
),
|
|
OpInfo('stack',
|
|
dtypes=all_types_and_complex_and(torch.complex32, torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_stack,
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
),
|
|
OpInfo('hstack',
|
|
dtypes=all_types_and_complex_and(torch.complex32, torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_hstack_dstack_vstack,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
),
|
|
BinaryUfuncInfo('hypot',
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_rhs_python_scalar=False),
|
|
OpInfo('histogram',
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=_dispatch_dtypes(), # histogram is only implemented on CPU
|
|
sample_inputs_func=sample_inputs_histogram,
|
|
supports_autograd=False,
|
|
skips=(
|
|
# JIT tests don't work with Tensor keyword arguments
|
|
# https://github.com/pytorch/pytorch/issues/58507
|
|
# RuntimeError:
|
|
# undefined value tensor:
|
|
# File "<string>", line 3
|
|
# def the_method(i0):
|
|
# return torch.histogram(i0, 1, weight=tensor(-0.5735, dtype=torch.float32), density=False)
|
|
# ~~~~~~ <--- HERE
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
# Not Implemented on XLA.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestOpInfo', device_type='xla'),
|
|
)),
|
|
OpInfo('histogramdd',
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=_dispatch_dtypes(), # histogramdd is only implemented on CPU
|
|
sample_inputs_func=sample_inputs_histogramdd,
|
|
supports_autograd=False,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
# JIT tests don't work with Tensor keyword arguments
|
|
# https://github.com/pytorch/pytorch/issues/58507
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('histc',
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.int8, torch.int16, torch.int32, torch.int64),
|
|
sample_inputs_func=sample_inputs_histc,
|
|
supports_out=True,
|
|
supports_autograd=False,
|
|
skips=(
|
|
# CUDA histc returns a float tensor but does not correctly warn when passed an integral out tensor
|
|
# "AssertionError: RuntimeError not raised : Expected RuntimeError when doing an unsafe cast
|
|
# from a result of dtype torch.float32 into an out= with dtype torch.long"
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out', device_type='cuda'),
|
|
)),
|
|
OpInfo('bincount',
|
|
dtypes=integral_types_and(),
|
|
sample_inputs_func=sample_inputs_bincount,
|
|
supports_out=False,
|
|
supports_autograd=False,
|
|
skips=(
|
|
# JIT tests don't work with Tensor keyword arguments
|
|
# https://github.com/pytorch/pytorch/issues/58507
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('bucketize',
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.float16),
|
|
sample_inputs_func=sample_inputs_bucketize,
|
|
supports_autograd=False,
|
|
skips=(
|
|
# JIT tests don't work with Tensor keyword arguments
|
|
DecorateInfo(unittest.skip("Expected failure!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('searchsorted',
|
|
dtypes=all_types_and(torch.bfloat16, torch.float16),
|
|
dtypesIfCUDA=all_types_and(torch.float16),
|
|
sample_inputs_func=sample_inputs_searchsorted,
|
|
supports_autograd=False,
|
|
ref=reference_searchsorted,
|
|
skips=(
|
|
# JIT tests don't work with Tensor keyword arguments
|
|
# https://github.com/pytorch/pytorch/issues/58507
|
|
DecorateInfo(unittest.skip("Expected failure!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('cat',
|
|
ref=lambda input_seq, dim=0, **kwargs: np.concatenate(input_seq, axis=dim, **kwargs),
|
|
aliases=('concat',),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16, torch.complex32),
|
|
sample_inputs_func=sample_inputs_cat_concat,
|
|
reference_inputs_func=reference_inputs_cat,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
assert_autodiffed=True,
|
|
skips=(
|
|
# RuntimeError: Arguments for call not valid.
|
|
# Expected a value of type 'List[Tensor]' for argument
|
|
# 'tensors' but instead found type 'Tensor (inferred)'.
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_jit_alias_remapping'),
|
|
# see https://github.com/pytorch/pytorch/issues/71286
|
|
DecorateInfo(unittest.expectedFailure, 'TestNNCOpInfo', 'test_nnc_correctness'),)),
|
|
OpInfo('vstack',
|
|
aliases=('row_stack',),
|
|
dtypes=all_types_and_complex_and(torch.complex32, torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_hstack_dstack_vstack,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
# RuntimeError: _fn() Expected a value of type
|
|
# 'Tensor (inferred)' for argument 't0' but instead found type 'tuple'.
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_jit_alias_remapping'),)),
|
|
OpInfo('dstack',
|
|
dtypes=all_types_and_complex_and(torch.complex32, torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_hstack_dstack_vstack,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
),
|
|
OpInfo('unfold',
|
|
op=lambda x, *args: x.unfold(*args),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
check_batched_gradgrad=False,
|
|
# See https://github.com/pytorch/pytorch/issues/66357
|
|
check_batched_forward_grad=False,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
# Skip operator schema test because this is a functional and not an operator
|
|
DecorateInfo(unittest.expectedFailure, 'TestOperatorSignatures', 'test_get_torch_func_signature_exhaustive'),
|
|
),
|
|
sample_inputs_func=sample_inputs_unfold),
|
|
OpInfo('msort',
|
|
dtypes=all_types_and(torch.bool, torch.float16, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.float16, torch.bfloat16),
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
),
|
|
sample_inputs_func=sample_inputs_msort),
|
|
OpInfo('movedim',
|
|
aliases=('moveaxis',),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_movedim_moveaxis),
|
|
OpInfo('renorm',
|
|
dtypes=floating_and_complex_types_and(torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_renorm,
|
|
error_inputs_func=error_inputs_renorm),
|
|
ShapeFuncInfo('repeat',
|
|
op=lambda x, dims: x.repeat(dims),
|
|
ref=np.tile,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_repeat_tile,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
)),
|
|
OpInfo('squeeze',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
assert_autodiffed=True,
|
|
autodiff_fusible_nodes=[], # aliases inputs, shouldn't be fused
|
|
autodiff_nonfusible_nodes=[], # aliases inputs, shouldn't be fused
|
|
assert_jit_shape_analysis=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
# vmap does not support inplace views
|
|
check_inplace_batched_forward_grad=False,
|
|
# https://github.com/pytorch/pytorch/issues/66357
|
|
check_batched_forward_grad=False,
|
|
sample_inputs_func=sample_inputs_squeeze),
|
|
OpInfo('fill_',
|
|
op=lambda x, scalar: torch.fill_(x.clone(), scalar),
|
|
method_variant=None,
|
|
inplace_variant=torch.Tensor.fill_,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
# https://github.com/pytorch/pytorch/issues/66357
|
|
check_batched_forward_grad=False,
|
|
dtypes=all_types_and_complex_and(torch.complex32, torch.bool, torch.float16, torch.bfloat16),
|
|
backward_dtypes=floating_and_complex_types_and(torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
skips=(
|
|
# JIT has issue when op is passed as lambda
|
|
# AssertionError: JIT Test does not execute any logic
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
# Fails due to a limitation of gradgradcheck
|
|
# https://github.com/pytorch/pytorch/issues/59137
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients', 'test_fn_gradgrad'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients', 'test_inplace_gradgrad'),
|
|
DecorateInfo(unittest.skip('Allowed exemption'), 'TestCompositeCompliance', 'test_operator'),
|
|
DecorateInfo(unittest.skip('Allowed exemption'), 'TestCompositeCompliance', 'test_backward'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'),
|
|
),
|
|
sample_inputs_func=sample_inputs_fill_),
|
|
OpInfo('resize_',
|
|
op=lambda x, shape: x.clone().resize_(shape),
|
|
method_variant=None,
|
|
inplace_variant=torch.Tensor.resize_,
|
|
# the test fails because resize_ doesn't work with imag views as expected by the test
|
|
# https://github.com/pytorch/pytorch/issues/65945
|
|
test_neg_view=False,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_autograd=False,
|
|
skips=(
|
|
# Cannot resize variables that require grad
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_dtypes'),
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
DecorateInfo(unittest.skip("Allowed exception"), 'TestCompositeCompliance', 'test_operator'),
|
|
),
|
|
sample_inputs_func=sample_inputs_resize_ops),
|
|
OpInfo('resize_as_',
|
|
op=lambda x, other: torch.resize_as_(x.clone(), other),
|
|
method_variant=None,
|
|
inplace_variant=torch.Tensor.resize_as_,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_autograd=False,
|
|
skips=(
|
|
# Cannot resize variables that require grad
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_dtypes'),
|
|
DecorateInfo(unittest.skip('Allowed exemption'), 'TestCompositeCompliance', 'test_operator'),
|
|
),
|
|
sample_inputs_func=sample_inputs_resize_ops),
|
|
OpInfo('take_along_dim',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_inplace_autograd=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_take_along_dim,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL),
|
|
ShapeFuncInfo('tile',
|
|
ref=np.tile,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_repeat_tile),
|
|
OpInfo('trapz', # TODO: in the future, 'trapz' should be made a proper alias of 'trapezoid'
|
|
dtypes=all_types_and_complex_and(torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_trapezoid),
|
|
OpInfo('trapezoid',
|
|
dtypes=all_types_and_complex_and(torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_trapezoid),
|
|
OpInfo('cumulative_trapezoid',
|
|
dtypes=all_types_and_complex_and(),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bfloat16, torch.float16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_out=False,
|
|
sample_inputs_func=sample_cumulative_trapezoid,),
|
|
OpInfo('unsqueeze',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
# vmap does not support inplace views
|
|
check_inplace_batched_forward_grad=False,
|
|
assert_jit_shape_analysis=True,
|
|
assert_autodiffed=True,
|
|
autodiff_fusible_nodes=[], # aliases inputs, shouldn't be fused
|
|
autodiff_nonfusible_nodes=[], # aliases inputs, shouldn't be fused
|
|
sample_inputs_func=sample_unsqueeze),
|
|
BinaryUfuncInfo('xlogy',
|
|
aliases=('special.xlogy',),
|
|
dtypes=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
promotes_int_to_float=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_one_python_scalar=True,
|
|
skips=(
|
|
# nan vs nan comparisons
|
|
# https://github.com/pytorch/pytorch/issues/74279
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients'),
|
|
)),
|
|
OpInfo('zero_',
|
|
op=lambda x: torch.zero_(x.clone()),
|
|
method_variant=None,
|
|
inplace_variant=torch.Tensor.zero_,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_gradgrad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
),
|
|
sample_inputs_func=sample_inputs_zero_),
|
|
BinaryUfuncInfo('special.xlog1py',
|
|
aten_name='special_xlog1py',
|
|
dtypes=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
backward_dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
backward_dtypesIfCUDA=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
promotes_int_to_float=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_one_python_scalar=True,
|
|
skips=(
|
|
# nan vs 0 comparisons
|
|
# https://github.com/pytorch/pytorch/issues/74279
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients'),
|
|
)),
|
|
BinaryUfuncInfo('special.zeta',
|
|
aten_name='special_zeta',
|
|
dtypes=all_types_and(torch.bool),
|
|
promotes_int_to_float=True,
|
|
supports_autograd=False,
|
|
supports_one_python_scalar=True),
|
|
# TODO: FIXME
|
|
# OpInfo entry to verify the gradient formula of `other`/`q`
|
|
# BinaryUfuncInfo('special.zeta',
|
|
# op=lambda q, x, **kwargs: torch.special.zeta(x, q, **kwargs),
|
|
# aten_name='special_zeta',
|
|
# variant_test_name='grad',
|
|
# dtypes=all_types_and(torch.bool),
|
|
# promotes_int_to_float=True,
|
|
# supports_autograd=True,
|
|
# supports_rhs_python_scalar=False,
|
|
# decorators=[
|
|
# # Derivative wrt first tensor not implemented
|
|
# DecorateInfo(unittest.expectedFailure, "TestCommon",
|
|
# "test_floating_inputs_are_differentiable")
|
|
# ],
|
|
# skips=(
|
|
# # Lambda doesn't work in JIT test
|
|
# # AssertionError: JIT Test does not execute any logic
|
|
# DecorateInfo(unittest.skip("Skipped!"), "TestJit", "test_variant_consistency_jit"),
|
|
# )),
|
|
OpInfo('logsumexp',
|
|
aliases=('special.logsumexp',),
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.bfloat16, torch.half),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_logsumexp),
|
|
OpInfo('trace',
|
|
dtypes=all_types_and_complex(),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_inplace_autograd=False,
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
),
|
|
sample_inputs_func=sample_inputs_trace),
|
|
OpInfo('transpose',
|
|
ref=_numpy_ref_transpose,
|
|
aliases=('swapdims', 'swapaxes'),
|
|
assert_jit_shape_analysis=True,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
# vmap does not support inplace views
|
|
check_inplace_batched_forward_grad=False,
|
|
sample_inputs_func=sample_inputs_transpose_swapdims),
|
|
OpInfo('T',
|
|
op=lambda x: x.T,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
# lambda impl
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
DecorateInfo(unittest.expectedFailure, "TestJit", "test_variant_consistency_jit"),),
|
|
sample_inputs_func=sample_inputs_T),
|
|
OpInfo('H',
|
|
op=lambda x: x.H,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
# lambda impl
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
DecorateInfo(unittest.expectedFailure, "TestJit", "test_variant_consistency_jit"),),
|
|
sample_inputs_func=sample_inputs_T),
|
|
OpInfo('mT',
|
|
op=lambda x: x.mT,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
# lambda impl
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
DecorateInfo(unittest.expectedFailure, "TestJit", "test_variant_consistency_jit"),),
|
|
sample_inputs_func=sample_inputs_adjoint),
|
|
OpInfo('mH',
|
|
op=lambda x: x.mH,
|
|
aliases=('adjoint',),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
# lambda impl
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
DecorateInfo(unittest.expectedFailure, "TestJit", "test_variant_consistency_jit"),),
|
|
sample_inputs_func=sample_inputs_adjoint),
|
|
OpInfo('tril',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_tril_triu),
|
|
OpInfo('triu',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_tril_triu),
|
|
OpInfo('kron',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_inplace_autograd=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_kron),
|
|
OpInfo('inner',
|
|
dtypes=all_types_and_complex_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16, *[torch.bfloat16]
|
|
if (CUDA11OrLater or TEST_WITH_ROCM) else []),
|
|
dtypesIfROCM=floating_and_complex_types_and(torch.half, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_inner,
|
|
),
|
|
OpInfo('tensordot',
|
|
dtypes=all_types_and_complex_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16, *[torch.bfloat16]
|
|
if (CUDA11OrLater or TEST_WITH_ROCM) else []),
|
|
dtypesIfROCM=floating_and_complex_types_and(torch.half, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_tensordot,
|
|
skips=(
|
|
# Skip operator schema test because this is a functional and not an operator.
|
|
# Reference: https://github.com/pytorch/pytorch/issues/54574
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestOperatorSignatures', 'test_get_torch_func_signature_exhaustive'),
|
|
)
|
|
),
|
|
OpInfo('to_sparse',
|
|
op=lambda x, *args: x.to_sparse(*args),
|
|
sample_inputs_func=sample_inputs_to_sparse,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
backward_dtypes=floating_types(),
|
|
backward_dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_sparse_csr=True,
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
skips=(
|
|
# to_sparse does not support automatic differentiation for outputs with complex dtype
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients',
|
|
'test_nondifferentiable', dtypes=(torch.cdouble,)),
|
|
# NotImplementedError: Could not run 'aten::normal_' with arguments from the 'SparseCPU' backend
|
|
DecorateInfo(unittest.skip(""), 'TestCommon', 'test_noncontiguous_samples'),
|
|
# TODO: FIXME: complex inputs requiring grad error in forward
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_dtypes'),
|
|
# lambda impl
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
# Allowed exception: sparse tensors don't have strides
|
|
DecorateInfo(unittest.skip("Allowed exception"), 'TestCompositeCompliance', 'test_operator'),
|
|
DecorateInfo(unittest.skip("Allowed exception"), 'TestCompositeCompliance', 'test_backward'),
|
|
# TODO: implement csr.to_sparse(sample_dim) where sampled_dim is 1.
|
|
DecorateInfo(unittest.skip("csr.to_sparse(1) not implemented. Skipped!"),
|
|
'TestSparseCSR', 'test_sparse_csr_consistency'),
|
|
)
|
|
),
|
|
OpInfo('logcumsumexp',
|
|
dtypes=floating_types_and(),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
backward_dtypesIfCUDA=floating_types_and(),
|
|
skips=(
|
|
# AssertionError: UserWarning not triggered : Resized a non-empty tensor but did not warn about it.
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warning', device_type='cuda'),
|
|
),
|
|
sample_inputs_func=sample_inputs_logcumsumexp),
|
|
UnaryUfuncInfo('sigmoid',
|
|
aliases=('special.expit', 'nn.functional.sigmoid'),
|
|
aten_backward_name='sigmoid_backward',
|
|
ref=reference_sigmoid if TEST_SCIPY else _NOTHING,
|
|
decorators=(precisionOverride({torch.float16: 1e-2,
|
|
torch.complex64: 1e-1,
|
|
torch.bfloat16: 1e-2}),),
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/issues/56012
|
|
DecorateInfo(unittest.expectedFailure, 'TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
dtypes=(torch.chalf,)),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=[torch.complex64, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
dtypes=[torch.chalf, torch.complex64, torch.cdouble]),
|
|
# RuntimeError: "div_true_cuda" not implemented for 'ComplexHalf'
|
|
DecorateInfo(unittest.expectedFailure, 'TestUnaryUfuncs', 'test_reference_numerics_small',
|
|
dtypes=(torch.complex32,)),
|
|
# alias, nn.functional.sigmoid, will produce (because of warning string saved):
|
|
# "RuntimeError: Expected to not find "sigmoid" but found it"
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_jit_alias_remapping')),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.complex32, torch.bool, torch.half, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
assert_autodiffed=True,
|
|
# sigmoid(z) = 1 / (1 + exp(-z)), at z = j * pi * odd_number, the denominator is zero
|
|
reference_numerics_filter=NumericsFilter(
|
|
condition=lambda x: (close_to_int(x / (math.pi * 1j))
|
|
if x.is_complex() else x.new_tensor(False, dtype=torch.bool)),
|
|
safe_val=0)),
|
|
UnaryUfuncInfo('digamma',
|
|
ref=scipy.special.digamma if TEST_SCIPY else _NOTHING,
|
|
aliases=('special.psi', 'special.digamma',),
|
|
decorators=(precisionOverride({torch.float16: 5e-1}),),
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True),
|
|
UnaryUfuncInfo('special.entr',
|
|
ref=scipy.special.entr if TEST_SCIPY else _NOTHING,
|
|
aten_name='special_entr',
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
decorators=(precisionOverride({torch.float16: 1e-1,
|
|
torch.bfloat16: 1e-1}),),
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
dtypes=[torch.bfloat16, torch.float16]),
|
|
),
|
|
supports_inplace_autograd=False,
|
|
sample_inputs_func=sample_inputs_entr),
|
|
UnaryUfuncInfo('special.ndtri',
|
|
ref=scipy.special.ndtri if TEST_SCIPY else _NOTHING,
|
|
domain=(0, 1),
|
|
aten_name='special_ndtri',
|
|
dtypes=all_types_and(torch.bool),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True),
|
|
UnaryUfuncInfo('special.log_ndtr',
|
|
aten_name='special_log_ndtr',
|
|
ref=scipy.special.log_ndtr if TEST_SCIPY else _NOTHING,
|
|
dtypes=all_types_and(torch.bool),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
),
|
|
UnaryUfuncInfo('erf',
|
|
ref=scipy.special.erf if TEST_SCIPY else _NOTHING,
|
|
aliases=('special.erf', ),
|
|
decorators=(precisionOverride({torch.float16: 1e-2,
|
|
torch.bfloat16: 1e-2}),),
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped! sparse backward not supported"),
|
|
'TestSparseUnaryUfuncs', 'test_sparse_fn_grad'),
|
|
|
|
),
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
assert_jit_shape_analysis=True,
|
|
supports_sparse=True,
|
|
supports_sparse_csr=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True),
|
|
UnaryUfuncInfo('erfc',
|
|
ref=scipy.special.erfc if TEST_SCIPY else _NOTHING,
|
|
aliases=('special.erfc', ),
|
|
decorators=(precisionOverride({torch.float16: 1e-2,
|
|
torch.bfloat16: 1e-2}),),
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True),
|
|
UnaryUfuncInfo('erfinv',
|
|
ref=scipy.special.erfinv if TEST_SCIPY else _NOTHING,
|
|
aliases=('special.erfinv', ),
|
|
decorators=(precisionOverride({torch.float16: 1e-2,
|
|
torch.bfloat16: 1e-2,
|
|
torch.float32: 1e-4}),),
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half),
|
|
supports_sparse_csr=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
domain=(-1, 1),
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/pull/49155#issuecomment-742664611
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
active_if=TEST_SCIPY and LooseVersion(scipy.__version__) < "1.4.0"),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
active_if=TEST_SCIPY and LooseVersion(scipy.__version__) < "1.4.0"),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_small',
|
|
active_if=TEST_SCIPY and LooseVersion(scipy.__version__) < "1.4.0"),
|
|
)),
|
|
OpInfo("nn.functional.smooth_l1_loss",
|
|
ref=reference_smooth_l1_loss,
|
|
sample_inputs_func=sample_inputs_smooth_l1_loss,
|
|
dtypes=floating_types_and(torch.float16, torch.bfloat16),
|
|
backward_dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16),
|
|
backward_dtypesIfCUDA=floating_types_and(torch.float16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
# RuntimeError: input->type()->kind() == TypeKind::OptionalTypeINTERNAL ASSERT FAILED
|
|
# at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":270, please report a bug to PyTorch.
|
|
DecorateInfo(unittest.expectedFailure, "TestJit", "test_variant_consistency_jit"),)),
|
|
OpInfo(
|
|
"nn.functional.l1_loss",
|
|
ref=loss_reference_reduction_wrapper(lambda input, target: np.abs(input - target)),
|
|
aten_backward_name='l1_loss_backward',
|
|
sample_inputs_func=sample_inputs_l1_loss,
|
|
dtypes=floating_and_complex_types_and(torch.float16, torch.bfloat16),
|
|
backward_dtypes=all_types_and(torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
# RuntimeError: input->type()->kind() == TypeKind::OptionalTypeINTERNAL ASSERT FAILED
|
|
# at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":270, please report a bug to PyTorch.
|
|
DecorateInfo(
|
|
unittest.expectedFailure,
|
|
"TestJit",
|
|
"test_variant_consistency_jit",
|
|
dtypes=(torch.float32,),
|
|
),
|
|
),
|
|
),
|
|
UnaryUfuncInfo('lgamma',
|
|
ref=reference_lgamma if TEST_SCIPY else _NOTHING,
|
|
aliases=('special.gammaln', ),
|
|
decorators=(precisionOverride({torch.float16: 7e-1}),),
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/pull/50140#discussion_r552615345
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=[torch.bfloat16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
device_type='cpu', dtypes=[torch.bfloat16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_small',
|
|
device_type='cpu', dtypes=[torch.bfloat16]),
|
|
# Reference: https://github.com/pytorch/pytorch/pull/50140#issuecomment-756150214
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=[torch.float32, torch.float64], active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large',
|
|
dtypes=[torch.float32, torch.float64], active_if=IS_WINDOWS),
|
|
),
|
|
# lgamma have multiple singularities at x <= 0
|
|
reference_numerics_filter=NumericsFilter(condition=lambda x: x < 0.1, safe_val=1)),
|
|
OpInfo(
|
|
'logdet',
|
|
dtypes=floating_types(),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_logdet,
|
|
decorators=(skipCPUIfNoLapack, skipCUDAIfNoMagma)),
|
|
# `log_softmax` supports different dtypes based on whether `dtype` argument,
|
|
# is passed or not. Hence two OpInfo entries, one with dtype and other without.
|
|
OpInfo(
|
|
'log_softmax',
|
|
aliases=('special.log_softmax', 'nn.functional.log_softmax'),
|
|
supports_out=True,
|
|
aten_backward_name='_log_softmax_backward_data',
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_softmax_variant,
|
|
supports_forward_ad=True,
|
|
assert_autodiffed=True),
|
|
OpInfo(
|
|
'log_softmax',
|
|
variant_test_name='dtype',
|
|
aliases=('special.log_softmax', 'nn.functional.log_softmax'),
|
|
supports_out=True,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=partial(sample_inputs_softmax_variant, with_dtype=True),
|
|
supports_forward_ad=True,
|
|
assert_autodiffed=True),
|
|
UnaryUfuncInfo('logit',
|
|
aten_backward_name='logit_backward',
|
|
ref=scipy.special.logit if TEST_SCIPY else _NOTHING,
|
|
domain=(0, 1),
|
|
aliases=('special.logit', ),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
decorators=(precisionOverride({torch.bfloat16: 5e-1,
|
|
torch.float16: 5e-1}),),
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_logit),
|
|
OpInfo('where',
|
|
# Currently only the `input` is tested in gradcheck.
|
|
# If we pass `condition` first, none of the input which supports
|
|
# autograd will be tested. Hence the following lambda.
|
|
op=lambda self, condition, other: torch.where(condition, self, other),
|
|
ref=lambda self, condition, other: np.where(condition, self, other),
|
|
sample_inputs_func=sample_inputs_where,
|
|
error_inputs_func=error_inputs_where,
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
decorators=(
|
|
DecorateInfo(onlyCUDA, "TestCommon", 'test_errors'),),
|
|
skips=(
|
|
# lambda impl
|
|
DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16)),
|
|
OpInfo('nonzero',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
sample_inputs_func=sample_inputs_nonzero,
|
|
supports_autograd=False,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
# nonzero(): argument 'out' must be Tensor, not tuple
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'),
|
|
# https://github.com/pytorch/pytorch/issues/67458
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
# nonzero is not raising a warning when the out is resized
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warning'),
|
|
# Can't find schemas for this operator for some reason
|
|
DecorateInfo(unittest.expectedFailure, 'TestOperatorSignatures', 'test_get_torch_func_signature_exhaustive'),
|
|
)),
|
|
# `torch.norm` has multiple code paths depending on the value of `p`.
|
|
# These paths have different dtype support. Also JIT supports,
|
|
# most variants but not all of them. So we split the OpInfo entries,
|
|
# for `norm` based on the code-paths and JIT support.
|
|
OpInfo(
|
|
"norm",
|
|
sample_inputs_func=sample_inputs_norm,
|
|
dtypes=floating_and_complex_types_and(torch.float16, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
# AssertionError: RuntimeError not raised : Expected RuntimeError when doing an unsafe cast from a result
|
|
# of dtype torch.float32 into an out= with dtype torch.long
|
|
DecorateInfo(
|
|
unittest.expectedFailure,
|
|
"TestCommon",
|
|
"test_out",
|
|
device_type="meta",
|
|
),
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients', 'test_fn_fwgrad_bwgrad',
|
|
dtypes=[torch.complex128]),
|
|
),
|
|
),
|
|
OpInfo('norm',
|
|
variant_test_name='nuc',
|
|
sample_inputs_func=sample_inputs_norm_nuc,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCPUIfNoLapack],
|
|
check_batched_gradgrad=False,
|
|
# torch.autograd.gradcheck.GradcheckError: While computing batched gradients
|
|
# got: Could not allocate memory to change Tensor SizesAndStrides!
|
|
check_batched_forward_grad=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
dtypes=floating_and_complex_types(),
|
|
dtypesIfCUDA=floating_and_complex_types(),
|
|
skips=(
|
|
# Pre-existing condition; Needs to be fixed
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_operator'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'),
|
|
# RuntimeError not raised :
|
|
# Expected RuntimeError when calling with input.device=cpu and out.device=cuda
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'),
|
|
# RuntimeError:
|
|
# Arguments for call are not valid.
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit', dtypes=(torch.complex64, torch.float32,)), # noqa: B950
|
|
)
|
|
),
|
|
OpInfo('norm',
|
|
variant_test_name='fro',
|
|
sample_inputs_func=sample_inputs_norm_fro,
|
|
dtypes=floating_and_complex_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
# torch.autograd.gradcheck.GradcheckError: While computing batched gradients
|
|
# got: Could not allocate memory to change Tensor SizesAndStrides!
|
|
check_batched_forward_grad=False,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
# Pre-existing condition; Needs to be fixed
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_operator'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'),
|
|
# Expected RuntimeError when calling with input.device=cpu and out.device=cuda
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'),
|
|
# Arguments for call are not valid.
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit', dtypes=(torch.complex64, torch.float32,)), # noqa: B950
|
|
)),
|
|
OpInfo(
|
|
"norm",
|
|
variant_test_name="inf",
|
|
sample_inputs_func=sample_inputs_norm_inf,
|
|
dtypes=floating_and_complex_types_and(torch.float16, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
# https://github.com/pytorch/pytorch/issues/67517
|
|
DecorateInfo(unittest.skip("Skipped!"), "TestCommon", "test_noncontiguous_samples"),
|
|
# following 2 tests failed intermittenly
|
|
DecorateInfo(
|
|
unittest.skip("Skipped!"),
|
|
"TestGradients",
|
|
"test_fn_grad",
|
|
device_type="cpu",
|
|
dtypes=(torch.complex128,),
|
|
),
|
|
DecorateInfo(
|
|
unittest.skip("Skipped!"),
|
|
"TestGradients",
|
|
"test_fn_gradgrad",
|
|
device_type="cpu",
|
|
dtypes=(torch.complex128,),
|
|
),
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients', 'test_fn_fwgrad_bwgrad',
|
|
dtypes=[torch.complex128]),
|
|
# AssertionError: RuntimeError not raised : Expected RuntimeError when doing an unsafe cast from a result
|
|
# of dtype torch.float32 into an out= with dtype torch.long
|
|
DecorateInfo(
|
|
unittest.expectedFailure,
|
|
"TestCommon",
|
|
"test_out",
|
|
device_type="meta",
|
|
),
|
|
),
|
|
),
|
|
OpInfo('t',
|
|
sample_inputs_func=sample_inputs_t,
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
# vmap does not support inplace views
|
|
check_inplace_batched_forward_grad=False,
|
|
autodiff_fusible_nodes=[], # aliases inputs, shouldn't be fused
|
|
autodiff_nonfusible_nodes=[], # aliases inputs, shouldn't be fused
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
assert_autodiffed=True,),
|
|
UnaryUfuncInfo('special.erfcx',
|
|
ref=scipy.special.erfcx if TEST_SCIPY else _NOTHING,
|
|
aten_name='special_erfcx',
|
|
decorators=(toleranceOverride({torch.float32: tol(atol=0, rtol=4e-6), }),),
|
|
dtypes=all_types_and(torch.bool),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True),
|
|
OpInfo(
|
|
"nn.functional.dropout",
|
|
op=lambda input, *args, **kwargs:
|
|
wrapper_set_seed(torch.nn.functional.dropout, input, *args, **kwargs),
|
|
ref=_NOTHING,
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
# Probably because we have used lambda for the op here
|
|
# AssertionError: JIT Test does not execute any logic
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
# inplace variant dispatches to dropout kernel, while on CUDA
|
|
# the op dispatches to _fused_dropout (with a few more conditions)
|
|
# hence, different values and this skip here
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_neg_view', device_type='cuda'),),
|
|
gradcheck_wrapper=wrapper_set_seed,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
# https://github.com/pytorch/pytorch/issues/66357
|
|
check_batched_forward_grad=False,
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_dropout,
|
|
inplace_variant=lambda input, *args, **kwargs:
|
|
wrapper_set_seed(torch.nn.functional.dropout, input, *args, **kwargs, inplace=True)),
|
|
OpInfo(
|
|
"nn.functional.dropout2d",
|
|
op=lambda input, *args, **kwargs:
|
|
wrapper_set_seed(torch.nn.functional.dropout2d, input, *args, **kwargs),
|
|
ref=_NOTHING,
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
skips=(
|
|
# lambda impl
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
# torch.autograd.gradcheck.GradcheckError: While computing batched gradients, got:
|
|
# vmap: We do not yet support calling random operations inside of vmap.
|
|
# Please perform random operations outside of vmap as a workaround
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients', "test_forward_mode_AD"),
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients', "test_inplace_forward_mode_AD"),),
|
|
gradcheck_wrapper=wrapper_set_seed,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_out=False,
|
|
# As per the docs, valid input dims are (3, 4)
|
|
sample_inputs_func=partial(sample_inputs_dropout, valid_input_dim=(3, 4)),
|
|
inplace_variant=lambda input, *args, **kwargs:
|
|
wrapper_set_seed(torch.nn.functional.dropout2d, input, *args, **kwargs, inplace=True)),
|
|
# In training mode, feature_alpha_dropout currently doesn't support inputs of complex dtype
|
|
# unlike when `train=False`, it supports complex inputs, hence 2 OpInfos to cover all cases
|
|
OpInfo(
|
|
"nn.functional.feature_alpha_dropout",
|
|
op=lambda input, *args, **kwargs:
|
|
wrapper_set_seed(torch.nn.functional.feature_alpha_dropout, input, *args, **kwargs),
|
|
variant_test_name="with_train",
|
|
ref=_NOTHING,
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
skips=(
|
|
# lambda impl
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
# torch.autograd.gradcheck.GradcheckError: While computing batched gradients, got:
|
|
# vmap: We do not yet support calling random operations inside of vmap.
|
|
# Please perform random operations outside of vmap as a workaround
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients', "test_forward_mode_AD"),
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients', "test_inplace_forward_mode_AD"),),
|
|
gradcheck_wrapper=wrapper_set_seed,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_out=False,
|
|
# As per the docs, valid input dims are (4, 5)
|
|
sample_inputs_func=partial(sample_inputs_dropout, train=True, valid_input_dim=(4, 5)),
|
|
inplace_variant=lambda input, *args, **kwargs:
|
|
wrapper_set_seed(torch.nn.functional.feature_alpha_dropout, input, *args, **kwargs, inplace=True)),
|
|
OpInfo(
|
|
"nn.functional.feature_alpha_dropout",
|
|
op=lambda input, *args, **kwargs:
|
|
wrapper_set_seed(torch.nn.functional.feature_alpha_dropout, input, *args, **kwargs),
|
|
variant_test_name="without_train",
|
|
ref=_NOTHING,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
skips=(
|
|
# lambda impl
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),),
|
|
gradcheck_wrapper=wrapper_set_seed,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_out=False,
|
|
sample_inputs_func=partial(sample_inputs_dropout, train=False),
|
|
inplace_variant=lambda input, *args, **kwargs:
|
|
wrapper_set_seed(torch.nn.functional.feature_alpha_dropout, input, *args, **kwargs, inplace=True)),
|
|
OpInfo(
|
|
"nn.functional.one_hot",
|
|
ref=reference_one_hot,
|
|
supports_out=False,
|
|
dtypes=_dispatch_dtypes((torch.int64,)),
|
|
sample_inputs_func=sample_inputs_one_hot,
|
|
),
|
|
OpInfo(
|
|
"nn.functional.embedding",
|
|
aten_backward_name="embedding_dense_backward",
|
|
# We use lambda to reshuffle the positional arguments.
|
|
# This is because currently only the `input` field of SampleInput
|
|
# is tested in gradient tests.
|
|
op=lambda weight, idx, **kwargs: torch.nn.functional.embedding(idx, weight, **kwargs),
|
|
dtypes=floating_types_and(torch.bfloat16, torch.float16),
|
|
sample_inputs_func=sample_inputs_embedding,
|
|
error_inputs_func=error_inputs_embedding,
|
|
skips=(
|
|
# lambda impl
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
# Reference: https://github.com/pytorch/pytorch/issues/67084
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_neg_view', device_type='cuda'),
|
|
# Not a problem: embedding does weird stuff to its input (it renormalizes)
|
|
DecorateInfo(unittest.skip('Allowed exemption'), 'TestCompositeCompliance', 'test_operator'),
|
|
),
|
|
supports_expanded_weight=True,
|
|
supports_out=False,
|
|
),
|
|
OpInfo(
|
|
"nn.functional.embedding_bag",
|
|
# We use lambda to reshuffle the positional arguments.
|
|
# This is because currently only the `input` field of SampleInput
|
|
# is tested in gradient tests.
|
|
op=lambda weight, idx, **kwargs: torch.nn.functional.embedding_bag(idx, weight, **kwargs),
|
|
dtypes=floating_types_and(torch.float16),
|
|
dtypesIfCUDA=floating_types_and(torch.bfloat16, torch.float16),
|
|
# backward is not supported for mode `max` and dtype `bfloat16`
|
|
backward_dtypesIfCUDA=floating_types_and(torch.float16),
|
|
sample_inputs_func=sample_inputs_embedding_bag,
|
|
skips=(
|
|
# lambda impl
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
# Not a problem: embedding_bag does weird stuff to its input (it renormalizes)
|
|
DecorateInfo(unittest.skip('Allowed exemption'), 'TestCompositeCompliance', 'test_operator'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward', device_type='cpu'),
|
|
),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
supports_out=False,
|
|
supports_gradgrad=False,
|
|
),
|
|
OpInfo(
|
|
"nn.functional.softplus",
|
|
aten_backward_name='softplus_backward',
|
|
ref=reference_softplus,
|
|
sample_inputs_func=sample_inputs_softplus,
|
|
supports_forward_ad=True,
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.bfloat16, torch.float16),
|
|
),
|
|
OpInfo(
|
|
"linalg.tensorinv",
|
|
ref=np.linalg.tensorinv,
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_tensorinv,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
decorators=[skipCPUIfNoLapack, skipCUDAIfNoMagmaAndNoCusolver],
|
|
),
|
|
OpInfo(
|
|
"linalg.tensorsolve",
|
|
ref=lambda a, b, dims=None: np.linalg.tensorsolve(a, b, axes=dims),
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_tensorsolve,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
decorators=[skipCPUIfNoLapack, skipCUDAIfNoMagmaAndNoCusolver],
|
|
),
|
|
OpInfo(
|
|
"nn.functional.mse_loss",
|
|
aten_backward_name='mse_loss_backward',
|
|
ref=loss_reference_reduction_wrapper(lambda input, target: (input - target) ** 2),
|
|
sample_inputs_func=sample_inputs_loss,
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
dtypes=floating_types_and(torch.float16),
|
|
backward_dtypes=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.bfloat16, torch.float16),
|
|
backward_dtypesIfCUDA=floating_types_and(torch.bfloat16, torch.float16),
|
|
skips=(
|
|
# RuntimeError: input->type()->kind() == TypeKind::OptionalType
|
|
# INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":252,
|
|
# please report a bug to PyTorch.
|
|
DecorateInfo(unittest.expectedFailure, "TestJit", "test_variant_consistency_jit", dtypes=(torch.float32,),),
|
|
),
|
|
),
|
|
OpInfo(
|
|
"nn.functional.grid_sample",
|
|
ref=_NOTHING,
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.float16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_grid_sample,
|
|
supports_gradgrad=False,
|
|
gradcheck_nondet_tol=1e-15),
|
|
OpInfo(
|
|
"argwhere",
|
|
ref=np.argwhere,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_argwhere,
|
|
),
|
|
ReductionOpInfo(
|
|
'all',
|
|
identity=True,
|
|
supports_multiple_dims=False,
|
|
supports_autograd=False,
|
|
result_dtype=torch.bool,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
ref=reference_reduction_numpy(np.all),
|
|
skips=(
|
|
# FIXME: does not support passing keepdim without dim
|
|
DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_dim_default_keepdim'),
|
|
# FIXME: does not support dim=None
|
|
DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_dim_none'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_dim_none_keepdim'),
|
|
# FIXME: uint8 input returns uint8 instead of bool
|
|
DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_result_dtype', dtypes=[torch.uint8]),
|
|
),
|
|
),
|
|
ReductionOpInfo(
|
|
'any',
|
|
identity=False,
|
|
supports_multiple_dims=False,
|
|
supports_autograd=False,
|
|
result_dtype=torch.bool,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
ref=reference_reduction_numpy(np.any),
|
|
skips=(
|
|
# FIXME: does not support passing keepdim without dim
|
|
DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_dim_default_keepdim'),
|
|
# FIXME: does not support dim=None
|
|
DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_dim_none'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_dim_none_keepdim'),
|
|
# FIXME: uint8 input returns uint8 instead of bool
|
|
DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_result_dtype', dtypes=[torch.uint8]),
|
|
),
|
|
),
|
|
ReductionOpInfo(
|
|
'amax',
|
|
nan_policy='propagate',
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
ref=reference_reduction_numpy(np.amax),
|
|
skips=(
|
|
# FIXME: sum reduces all dimensions when dim=[]
|
|
DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_dim_empty'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_dim_empty_keepdim'),
|
|
),
|
|
error_inputs_func=error_inputs_aminmax_amax_amin,
|
|
),
|
|
ReductionOpInfo(
|
|
'amin',
|
|
nan_policy='propagate',
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
ref=reference_reduction_numpy(np.amin),
|
|
skips=(
|
|
# FIXME: sum reduces all dimensions when dim=[]
|
|
DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_dim_empty'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_dim_empty_keepdim'),
|
|
),
|
|
error_inputs_func=error_inputs_aminmax_amax_amin,
|
|
),
|
|
ReductionOpInfo(
|
|
'argmax',
|
|
supports_multiple_dims=False,
|
|
supports_autograd=False,
|
|
assert_jit_shape_analysis=True,
|
|
result_dtype=torch.int64,
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16),
|
|
ref=reference_reduction_numpy(np.argmax, supports_keepdims=False),
|
|
skips=(
|
|
# FIXME: keepdim parameter is ignored when dim=None
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_default_keepdim'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_none_keepdim'),
|
|
),
|
|
),
|
|
ReductionOpInfo(
|
|
'argmin',
|
|
supports_multiple_dims=False,
|
|
supports_autograd=False,
|
|
result_dtype=torch.int64,
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16),
|
|
ref=reference_reduction_numpy(np.argmin, supports_keepdims=False),
|
|
skips=(
|
|
# FIXME: keepdim parameter is ignored when dim=None
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_default_keepdim'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_none_keepdim'),
|
|
),
|
|
),
|
|
ReductionOpInfo(
|
|
'count_nonzero',
|
|
identity=0,
|
|
supports_out=False,
|
|
supports_autograd=False,
|
|
result_dtype=torch.int64,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_reduction_count_nonzero,
|
|
ref=reference_reduction_numpy(np.count_nonzero),
|
|
skips=(
|
|
# FIXME: count_nonzero does not accept keepdim kwarg
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_default_keepdim'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_none_keepdim'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_single_keepdim'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty_keepdim'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_multi_keepdim'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_multi_unsorted_keepdim'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_offbounds_keepdim'),
|
|
# FIXME: dim=[] reduces all dimensions
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty'),
|
|
),
|
|
),
|
|
ReductionOpInfo(
|
|
'mean',
|
|
nan_policy='propagate',
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
assert_autodiffed=True,
|
|
assert_jit_shape_analysis=True,
|
|
promotes_int_to_float=True,
|
|
dtypes=floating_and_complex_types_and(torch.float16, torch.bfloat16),
|
|
ref=reference_reduction_numpy(np.mean),
|
|
skips=(
|
|
# FIXME: mean does not support passing keepdim without passing dim
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_default_keepdim'),
|
|
# FIXME: mean reduces all dimensions when dim=[]
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty_keepdim'),
|
|
# FIXME: mean does not support passing None to dim
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_none'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_none_keepdim'),
|
|
# FIXME: improve precision
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_small_input',
|
|
dtypes=[torch.float16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_extremal_values',
|
|
device_type='cuda', dtypes=[torch.complex64]),
|
|
),
|
|
),
|
|
ReductionOpInfo(
|
|
'nanmean',
|
|
nan_policy='omit',
|
|
assert_autodiffed=True,
|
|
promotes_int_to_float=True,
|
|
dtypes=floating_types_and(torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_nan_reduction(supports_multiple_dims=True),
|
|
ref=reference_reduction_numpy(np.nanmean),
|
|
skips=(
|
|
# AssertionError: False is not true :
|
|
# Failure in testing nodes' autodifferentiation.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
# FIXME: prod reduces all dimensions when dim=[]
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty_keepdim'),
|
|
# FIXME: improve precision
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_small_input',
|
|
dtypes=[torch.float16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_duplicate_values',
|
|
device_type='cuda', dtypes=[torch.float16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_extremal_values',
|
|
device_type='cuda', dtypes=[torch.complex64]),
|
|
),
|
|
),
|
|
ReductionOpInfo(
|
|
'std',
|
|
nan_policy='propagate',
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
assert_autodiffed=True,
|
|
promotes_int_to_float=True,
|
|
dtypes=floating_and_complex_types_and(torch.half, torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_std_var,
|
|
ref=reference_std_var(np.std),
|
|
generate_args_kwargs=generate_std_var_kwargs,
|
|
skips=(
|
|
# FIXME: cannot specify keepdim without dim
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_default_keepdim'),
|
|
# FIXME: dim=None not supported
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_none'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_none_keepdim'),
|
|
# FIXME: dim=[] reduces all dimensions
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty_keepdim'),
|
|
# TODO(@heitorschueroff) std return float for complex types
|
|
# need to find a better way to model result dtype
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_result_dtype'),
|
|
# FIXME: improve precision
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_small_input'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_duplicate_values'),
|
|
# NumPy is giving NaN for this
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_large_input'),
|
|
),
|
|
),
|
|
ReductionOpInfo(
|
|
'var',
|
|
nan_policy='propagate',
|
|
supports_out=False,
|
|
assert_autodiffed=True,
|
|
promotes_int_to_float=True,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
dtypes=floating_and_complex_types_and(torch.half, torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_std_var,
|
|
ref=reference_std_var(np.var),
|
|
generate_args_kwargs=generate_std_var_kwargs,
|
|
skips=(
|
|
# FIXME: cannot specify keepdim without dim
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_default_keepdim'),
|
|
# FIXME: dim=None not supported
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_none'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_none_keepdim'),
|
|
# FIXME: dim=[] reduces all dimensions
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty_keepdim'),
|
|
# TODO(@heitorschueroff) std return float for complex types
|
|
# need to find a better way to model result dtype
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_result_dtype'),
|
|
# FIXME: improve precision
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_small_input'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_duplicate_values'),
|
|
# NumPy is giving NaN for this
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_large_input'),
|
|
),
|
|
),
|
|
ReductionOpInfo(
|
|
'prod',
|
|
identity=1,
|
|
nan_policy='propagate',
|
|
supports_multiple_dims=False,
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
promotes_int_to_int64=True,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_prod,
|
|
ref=reference_reduction_numpy(np.prod),
|
|
skips=(
|
|
# FIXME: prod does not support passing keepdim without passing dim
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_default_keepdim'),
|
|
# FIXME: prod reduces all dimensions when dim=[]
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty_keepdim'),
|
|
# FIXME: prod does not support passing None to dim
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_none'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_none_keepdim'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_small_input',
|
|
dtypes=[torch.float16, torch.complex64]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_duplicate_values',
|
|
dtypes=[torch.uint8, torch.float16, torch.complex64]),
|
|
),
|
|
),
|
|
ReductionOpInfo(
|
|
'sum',
|
|
identity=0,
|
|
nan_policy='propagate',
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
promotes_int_to_int64=True,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
ref=reference_reduction_numpy(np.sum),
|
|
skips=(
|
|
# FIXME: sum does not support passing keepdim without passing dim
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_default_keepdim'),
|
|
# FIXME: sum reduces all dimensions when dim=[]
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty_keepdim'),
|
|
# FIXME: sum does not support passing None to dim
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_none'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_none_keepdim'),
|
|
# FIXME: improve precision
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_small_input',
|
|
dtypes=[torch.float16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_duplicate_values',
|
|
dtypes=[torch.float16]),
|
|
),
|
|
),
|
|
ReductionOpInfo(
|
|
'nansum',
|
|
identity=0,
|
|
nan_policy='omit',
|
|
supports_out=True,
|
|
promotes_int_to_int64=True,
|
|
dtypes=all_types_and(torch.bool, torch.float16, torch.bfloat16),
|
|
ref=reference_reduction_numpy(np.nansum),
|
|
skips=(
|
|
# FIXME: nansum reduces all dimensions when dim=[]
|
|
DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_dim_empty'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_dim_empty_keepdim'),
|
|
# FIXME: flaky test so skipped instead of xfailed
|
|
# possibly bad low precision reference in numpy
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_small_input',
|
|
dtypes=[torch.float16]),
|
|
),
|
|
),
|
|
ReductionOpInfo(
|
|
'_masked.sum',
|
|
ref=reference_reduction_numpy(np.sum),
|
|
method_variant=None,
|
|
identity=0,
|
|
nan_policy='propagate',
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_sparse=True,
|
|
supports_sparse_csr=True,
|
|
promotes_int_to_int64=True,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Failing on some jobs"), 'TestReductions', 'test_reference_masked',
|
|
dtypes=(torch.bool, torch.int8, torch.int16, torch.int32)),
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
# FIXME: sum reduces all dimensions when dim=[]
|
|
DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_dim_empty'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_dim_empty_keepdim'),
|
|
# RuntimeError: undefined value tensor
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
# see https://github.com/pytorch/pytorch/issues/76227
|
|
DecorateInfo(unittest.skip("Fails on UBSAN!"), 'TestCompositeCompliance', 'test_forward_ad',
|
|
device_type='cpu'),
|
|
),
|
|
decorators=[
|
|
DecorateInfo(toleranceOverride({torch.bfloat16: tol(atol=1e-03, rtol=1e-03)}),
|
|
'TestReductions', 'test_reference_masked'),
|
|
DecorateInfo(toleranceOverride({torch.float16: tol(atol=1e-03, rtol=1e-03)}),
|
|
'TestReductions', 'test_reference_masked'),
|
|
DecorateInfo(toleranceOverride({torch.float16: tol(atol=1e-02, rtol=1e-03)}),
|
|
'TestReductions', 'test_ref_small_input'),
|
|
],
|
|
sample_inputs_func=sample_inputs_masked_reduction,
|
|
sample_inputs_sparse_coo_func=sample_inputs_sparse_coo_masked_reduction,
|
|
sample_inputs_sparse_csr_func=sample_inputs_sparse_csr_masked_reduction
|
|
),
|
|
ReductionOpInfo(
|
|
'_masked.prod',
|
|
ref=reference_reduction_numpy(np.prod),
|
|
method_variant=None,
|
|
identity=1,
|
|
nan_policy='propagate',
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_sparse=True,
|
|
supports_sparse_csr=True,
|
|
promotes_int_to_int64=True,
|
|
# FIXME: "prod_cpu" not implemented for 'BFloat16'
|
|
# FIXME: "prod_cpu" not implemented for 'Half'
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
DecorateInfo(unittest.skip("Failing on some jobs"), 'TestReductions', 'test_reference_masked',
|
|
dtypes=(torch.bool, torch.int8, torch.int16, torch.int32),),
|
|
# see https://github.com/pytorch/pytorch/issues/76227
|
|
DecorateInfo(unittest.skip("Fails on UBSAN!"), 'TestCompositeCompliance', 'test_forward_ad',
|
|
device_type='cpu'),
|
|
# FIXME: "cuda_scatter_gather_base_kernel_func" not implemented for ... (used for sparse_coo inputs)
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestMasked', 'test_mask_layout', device_type='cuda',
|
|
dtypes=(torch.bool, torch.int8, torch.uint8, torch.int16, torch.int32,
|
|
torch.int64, torch.complex64, torch.complex128)),
|
|
),
|
|
decorators=[
|
|
DecorateInfo(toleranceOverride({torch.float16: tol(atol=1e-03, rtol=1e-02)}),
|
|
'TestReductions', 'test_reference_masked'),
|
|
DecorateInfo(toleranceOverride({torch.float16: tol(atol=1e-03, rtol=1e-03)}),
|
|
'TestReductions', 'test_ref_duplicate_values'),
|
|
],
|
|
sample_inputs_func=sample_inputs_masked_reduction,
|
|
sample_inputs_sparse_coo_func=sample_inputs_sparse_coo_masked_reduction,
|
|
sample_inputs_sparse_csr_func=sample_inputs_sparse_csr_masked_reduction,
|
|
),
|
|
ReductionOpInfo(
|
|
'_masked.amax',
|
|
nan_policy='propagate',
|
|
supports_out=False,
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16),
|
|
supports_sparse=True,
|
|
ref=reference_reduction_numpy(np.amax),
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
# FIXME: amax reduces all dimensions when dim=[]
|
|
DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_dim_empty'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_dim_empty_keepdim'),
|
|
# RuntimeError: Unknown builtin op: aten::iinfo
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
# FIXME: "cuda_scatter_gather_base_kernel_func" not implemented for ... (used for sparse_coo inputs)
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestMasked', 'test_mask_layout', device_type='cuda',
|
|
dtypes=(torch.bool, torch.int8, torch.uint8, torch.int16, torch.int32,
|
|
torch.int64, torch.complex64, torch.complex128)),
|
|
),
|
|
sample_inputs_func=sample_inputs_masked_reduction,
|
|
sample_inputs_sparse_coo_func=sample_inputs_sparse_coo_masked_reduction,
|
|
gradcheck_wrapper=gradcheck_wrapper_masked_operation
|
|
),
|
|
ReductionOpInfo(
|
|
'_masked.amin',
|
|
nan_policy='propagate',
|
|
supports_out=False,
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16),
|
|
supports_sparse=True,
|
|
ref=reference_reduction_numpy(np.amin),
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
# FIXME: amax reduces all dimensions when dim=[]
|
|
DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_dim_empty'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_dim_empty_keepdim'),
|
|
# RuntimeError: Unknown builtin op: aten::iinfo
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
# FIXME: "cuda_scatter_gather_base_kernel_func" not implemented for ... (used for sparse_coo inputs)
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestMasked', 'test_mask_layout', device_type='cuda',
|
|
dtypes=(torch.bool, torch.int8, torch.uint8, torch.int16, torch.int32,
|
|
torch.int64, torch.complex64, torch.complex128)),
|
|
),
|
|
sample_inputs_func=sample_inputs_masked_reduction,
|
|
sample_inputs_sparse_coo_func=sample_inputs_sparse_coo_masked_reduction,
|
|
gradcheck_wrapper=gradcheck_wrapper_masked_operation
|
|
),
|
|
ReductionOpInfo(
|
|
'_masked.argmax',
|
|
supports_out=False,
|
|
supports_multiple_dims=False,
|
|
supports_autograd=False,
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16),
|
|
ref=reference_reduction_numpy(np.argmax, supports_keepdims=False),
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
# initial is not a keyword for argmax
|
|
DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_reference_masked'),
|
|
# NotSupportedError: Compiled functions can't ... use keyword-only arguments with defaults
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestNNCOpInfo', 'test_nnc_correctness', dtypes=(torch.bfloat16,)),
|
|
),
|
|
sample_inputs_func=sample_inputs_masked_reduction,
|
|
gradcheck_wrapper=gradcheck_wrapper_masked_operation
|
|
),
|
|
ReductionOpInfo(
|
|
'_masked.argmin',
|
|
supports_out=False,
|
|
supports_multiple_dims=False,
|
|
supports_autograd=False,
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16),
|
|
ref=reference_reduction_numpy(np.argmin, supports_keepdims=False),
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
# initial is not a keyword for argmin
|
|
DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_reference_masked'),
|
|
# NotSupportedError: Compiled functions can't ... use keyword-only arguments with defaults
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestNNCOpInfo', 'test_nnc_correctness', dtypes=(torch.bfloat16,)),
|
|
),
|
|
sample_inputs_func=sample_inputs_masked_reduction,
|
|
gradcheck_wrapper=gradcheck_wrapper_masked_operation
|
|
),
|
|
ReductionOpInfo(
|
|
'_masked.mean',
|
|
ref=reference_reduction_numpy(np.mean) if np.lib.NumpyVersion(np.__version__) >= '1.20.2' else None,
|
|
method_variant=None,
|
|
nan_policy='propagate',
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
promotes_int_to_float=True,
|
|
dtypes=all_types_and_complex_and(torch.float16, torch.bfloat16, torch.bool),
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_ref_duplicate_values',
|
|
dtypes=(torch.bool,)),
|
|
DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_reference_masked',
|
|
dtypes=(torch.bool,)),
|
|
DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_ref_small_input',
|
|
dtypes=(torch.bool,)),
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
# FIXME: sum reduces all dimensions when dim=[]
|
|
DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_dim_empty'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_dim_empty_keepdim'),
|
|
# RuntimeError: undefined value tensor
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
# see https://github.com/pytorch/pytorch/issues/76227
|
|
DecorateInfo(unittest.skip("Fails on UBSAN!"), 'TestCompositeCompliance', 'test_forward_ad',
|
|
device_type='cpu'),
|
|
),
|
|
decorators=[
|
|
DecorateInfo(toleranceOverride({torch.float16: tol(atol=1e-03, rtol=1e-03)}),
|
|
'TestReductions', 'test_reference_masked'),
|
|
],
|
|
sample_inputs_func=sample_inputs_masked_reduction,
|
|
gradcheck_wrapper=gradcheck_wrapper_masked_operation
|
|
),
|
|
ReductionOpInfo(
|
|
'_masked.norm',
|
|
identity=0,
|
|
method_variant=None,
|
|
nan_policy='propagate',
|
|
supports_out=False,
|
|
promotes_int_to_float=True,
|
|
dtypes=floating_types_and(torch.float16, torch.bfloat16),
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
# FIXME: sum reduces all dimensions when dim=[]
|
|
DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_dim_empty'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_dim_empty_keepdim'),
|
|
# torch.jit.frontend.NotSupportedError: Compiled functions
|
|
# can't take variable number of arguments or use
|
|
# keyword-only arguments with defaults
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
# see https://github.com/pytorch/pytorch/issues/76227
|
|
DecorateInfo(unittest.skip("Fails on UBSAN!"), 'TestCompositeCompliance', 'test_forward_ad',
|
|
device_type='cpu'),
|
|
),
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_masked_norm,
|
|
gradcheck_wrapper=gradcheck_wrapper_masked_operation
|
|
),
|
|
ReductionOpInfo(
|
|
'_masked.var',
|
|
ref=reference_reduction_numpy(np.var) if np.lib.NumpyVersion(np.__version__) >= '1.20.2' else None,
|
|
method_variant=None,
|
|
nan_policy='propagate',
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
promotes_int_to_float=True,
|
|
dtypes=all_types_and_complex_and(torch.float16, torch.bfloat16),
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
# FIXME: sum reduces all dimensions when dim=[]
|
|
DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_dim_empty'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_dim_empty_keepdim'),
|
|
# RuntimeError: undefined value tensor
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
# see https://github.com/pytorch/pytorch/issues/76227
|
|
DecorateInfo(unittest.skip("Fails on UBSAN!"), 'TestCompositeCompliance', 'test_forward_ad',
|
|
device_type='cpu'),
|
|
),
|
|
decorators=[
|
|
DecorateInfo(toleranceOverride({torch.float16: tol(atol=1e-02, rtol=1e-02),
|
|
torch.bfloat16: tol(atol=1e-03, rtol=1e-03)}),
|
|
'TestReductions', 'test_reference_masked'),
|
|
DecorateInfo(toleranceOverride({torch.float16: tol(atol=1e-02, rtol=1e-02)}),
|
|
'TestReductions', 'test_ref_small_input'),
|
|
DecorateInfo(toleranceOverride({torch.float16: tol(atol=1e-02, rtol=1e-02)}),
|
|
'TestMasked', 'test_reference_masked'),
|
|
DecorateInfo(toleranceOverride({torch.float16: tol(atol=1e-02, rtol=1e-02)}),
|
|
'TestCudaFuserOpInfo', 'test_nvfuser_correctness'),
|
|
],
|
|
sample_inputs_func=sample_inputs_masked_std_var,
|
|
gradcheck_wrapper=gradcheck_wrapper_masked_operation,
|
|
check_batched_grad=True,
|
|
check_batched_forward_grad=True,
|
|
),
|
|
ReductionOpInfo(
|
|
'_masked.std',
|
|
ref=reference_reduction_numpy(np.std) if np.lib.NumpyVersion(np.__version__) >= '1.20.2' else None,
|
|
method_variant=None,
|
|
nan_policy='propagate',
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
promotes_int_to_float=True,
|
|
dtypes=all_types_and_complex_and(torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.float16, torch.bfloat16),
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
# FIXME: sum reduces all dimensions when dim=[]
|
|
DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_dim_empty'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_dim_empty_keepdim'),
|
|
# RuntimeError: undefined value tensor
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
# see https://github.com/pytorch/pytorch/issues/76227
|
|
DecorateInfo(unittest.skip("Fails on UBSAN!"), 'TestCompositeCompliance', 'test_forward_ad',
|
|
device_type='cpu'),
|
|
DecorateInfo(unittest.skip('Skipped!'), 'TestCudaFuserOpInfo', 'test_nvfuser_correctness',
|
|
dtypes=(torch.float16,)),
|
|
),
|
|
decorators=[
|
|
DecorateInfo(toleranceOverride({torch.float16: tol(atol=1e-02, rtol=1e-02)}),
|
|
'TestReductions', 'test_reference_masked'),
|
|
DecorateInfo(toleranceOverride({torch.float16: tol(atol=1e-02, rtol=1e-02)}),
|
|
'TestReductions', 'test_ref_small_input'),
|
|
DecorateInfo(toleranceOverride({torch.float16: tol(atol=1e-02, rtol=1e-02)}),
|
|
'TestMasked', 'test_reference_masked'),
|
|
],
|
|
sample_inputs_func=sample_inputs_masked_std_var,
|
|
gradcheck_wrapper=gradcheck_wrapper_masked_operation,
|
|
check_batched_grad=True,
|
|
check_batched_forward_grad=True,
|
|
),
|
|
OpInfo(
|
|
'_masked.softmax',
|
|
method_variant=None,
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_masked_softmax,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
# see https://github.com/pytorch/pytorch/issues/76227
|
|
DecorateInfo(unittest.skip("Fails on UBSAN!"), 'TestCompositeCompliance', 'test_forward_ad',
|
|
device_type='cpu'),
|
|
),
|
|
gradcheck_wrapper=gradcheck_wrapper_masked_operation,
|
|
supports_forward_ad=True,
|
|
supports_out=False),
|
|
OpInfo(
|
|
'_masked.log_softmax',
|
|
method_variant=None,
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_masked_softmax,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
# see https://github.com/pytorch/pytorch/issues/76227
|
|
DecorateInfo(unittest.skip("Fails on UBSAN!"), 'TestCompositeCompliance', 'test_forward_ad',
|
|
device_type='cpu'),
|
|
),
|
|
decorators=[
|
|
DecorateInfo(toleranceOverride({torch.bfloat16: tol(atol=1e-02, rtol=1e-02)}),
|
|
'TestMasked', 'test_reference_masked'),
|
|
],
|
|
gradcheck_wrapper=gradcheck_wrapper_masked_operation,
|
|
supports_forward_ad=True,
|
|
supports_out=False),
|
|
OpInfo(
|
|
'_masked.softmin',
|
|
method_variant=None,
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_masked_softmax,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
# see https://github.com/pytorch/pytorch/issues/76227
|
|
DecorateInfo(unittest.skip("Fails on UBSAN!"), 'TestCompositeCompliance', 'test_forward_ad',
|
|
device_type='cpu'),
|
|
),
|
|
gradcheck_wrapper=gradcheck_wrapper_masked_operation,
|
|
supports_forward_ad=True,
|
|
supports_out=False),
|
|
OpInfo(
|
|
'_masked.normalize',
|
|
method_variant=None,
|
|
dtypes=floating_types_and(torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_masked_normalize,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
|
|
# RuntimeError: "clamp_min_cpu" not implemented for 'Half'
|
|
DecorateInfo(unittest.expectedFailure, 'TestMasked', 'test_reference_masked',
|
|
device_type='cpu', dtypes=[torch.half]),
|
|
),
|
|
gradcheck_wrapper=gradcheck_wrapper_masked_operation,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
supports_out=False),
|
|
OpInfo(
|
|
"nn.functional.ctc_loss",
|
|
ref=_NOTHING,
|
|
dtypes=floating_types(),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_ctc_loss,
|
|
skips=(
|
|
# https://github.com/pytorch/pytorch/issues/67462
|
|
# torch.autograd.gradcheck.GradcheckError: Jacobian mismatch for output 0 with respect to input 0
|
|
DecorateInfo(
|
|
unittest.expectedFailure,
|
|
"TestGradients",
|
|
"test_fn_grad",
|
|
dtypes=(torch.float64,),
|
|
),
|
|
# RuntimeError: derivative for aten::_ctc_loss_backward is not implemented
|
|
DecorateInfo(
|
|
unittest.expectedFailure,
|
|
"TestGradients",
|
|
"test_fn_gradgrad",
|
|
dtypes=(torch.float64,),
|
|
),
|
|
# RuntimeError: derivative for aten::_ctc_loss_backward is not implemented
|
|
DecorateInfo(
|
|
unittest.skip("Skipped!"),
|
|
"TestJit",
|
|
"test_variant_consistency_jit",
|
|
dtypes=(torch.float32,),
|
|
),
|
|
# Operation calls data_ptr() somewhere; needs to be fixed
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_operator'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
),
|
|
),
|
|
OpInfo(
|
|
"nn.functional.cosine_embedding_loss",
|
|
ref=_NOTHING,
|
|
dtypes=all_types_and(torch.bfloat16, torch.bool),
|
|
dtypesIfCUDA=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_cosine_embedding_loss,
|
|
),
|
|
OpInfo(
|
|
"nn.functional.nll_loss",
|
|
ref=_NOTHING,
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_nll_loss,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
# RuntimeError:
|
|
# undefined value tensor:
|
|
# File "<string>", line 3
|
|
# def the_method(i0, i1):
|
|
# return torch.nn.functional.nll_loss(i0, i1, weight=tensor([8.4784, 1.7658, 4.3228], dtype=torch.float32))
|
|
# ~~~~~~ <--- HERE
|
|
DecorateInfo(unittest.skip("Skipped!"), "TestJit", "test_variant_consistency_jit", dtypes=(torch.float32,),),
|
|
),
|
|
),
|
|
OpInfo(
|
|
"nn.functional.gaussian_nll_loss",
|
|
ref=_NOTHING,
|
|
dtypes=all_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_gaussian_nll_loss,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'),
|
|
# JIT does not support variadic tensors.
|
|
# RuntimeError: input->type()->kind() == TypeKind::OptionalType
|
|
# INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":270,
|
|
# please report a bug to PyTorch.
|
|
DecorateInfo(unittest.skip("Skipped!"), "TestJit", "test_variant_consistency_jit", dtypes=(torch.float32,),),
|
|
),
|
|
decorators=(
|
|
DecorateInfo(toleranceOverride({torch.float16: tol(atol=1e-02, rtol=1e-02)}),
|
|
'TestCudaFuserOpInfo', 'test_nvfuser_correctness'),
|
|
)
|
|
),
|
|
OpInfo(
|
|
"nn.functional.hinge_embedding_loss",
|
|
ref=_NOTHING,
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_hinge_embedding_loss,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'),
|
|
)
|
|
),
|
|
OpInfo(
|
|
"nn.functional.huber_loss",
|
|
aten_backward_name='huber_loss_backward',
|
|
ref=_NOTHING,
|
|
dtypes=floating_types_and(torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_huber_loss,
|
|
skips=(
|
|
# JIT does not support variadic tensors.
|
|
# RuntimeError: input->type()->kind() == TypeKind::OptionalType
|
|
# INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":270,
|
|
# please report a bug to PyTorch.
|
|
DecorateInfo(unittest.skip("Skipped!"), "TestJit", "test_variant_consistency_jit", dtypes=(torch.float32,),),
|
|
)
|
|
),
|
|
OpInfo(
|
|
"nn.functional.pdist",
|
|
ref=reference_pdist,
|
|
sample_inputs_func=sample_inputs_pdist,
|
|
dtypes=floating_types(),
|
|
supports_out=False,
|
|
supports_gradgrad=False),
|
|
OpInfo(
|
|
"nn.functional.poisson_nll_loss",
|
|
ref=_NOTHING,
|
|
dtypes=all_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
sample_inputs_func=sample_inputs_poisson_nll_loss,
|
|
),
|
|
OpInfo(
|
|
"argsort",
|
|
dtypes=all_types_and(torch.bool, torch.float16, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_argsort,
|
|
supports_out=False,
|
|
supports_autograd=False,
|
|
skips=(
|
|
DecorateInfo(
|
|
unittest.skip("Skipped!"),
|
|
"TestJit",
|
|
"test_variant_consistency_jit",
|
|
dtypes=(torch.float32,),
|
|
),
|
|
),
|
|
),
|
|
OpInfo(
|
|
"repeat_interleave",
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_repeat_interleave,
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
|
|
DecorateInfo(
|
|
unittest.skip("Skipped!"),
|
|
"TestJit",
|
|
"test_variant_consistency_jit",
|
|
dtypes=(torch.float32, torch.complex64),
|
|
),
|
|
),
|
|
),
|
|
OpInfo(
|
|
"nn.functional.pairwise_distance",
|
|
ref=lambda a, b, p=2.0, eps=1e-6, keepdim=False: (
|
|
np.sum(np.abs(a - b + eps) ** p, axis=-1, keepdims=keepdim) ** (1 / p)
|
|
),
|
|
sample_inputs_func=sample_inputs_pairwise_distance,
|
|
dtypes=all_types_and_complex_and(torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
DecorateInfo(
|
|
unittest.skip("Skipped!"),
|
|
"TestJit",
|
|
"test_variant_consistency_jit",
|
|
dtypes=(torch.float32, torch.complex64),
|
|
),
|
|
DecorateInfo(unittest.expectedFailure, 'TestGradients', 'test_fn_fwgrad_bwgrad',
|
|
dtypes=[torch.complex128]),
|
|
),
|
|
),
|
|
OpInfo(
|
|
"nn.functional.pixel_shuffle",
|
|
sample_inputs_func=sample_inputs_pixel_shuffle,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
DecorateInfo(
|
|
unittest.skip("Skipped!"),
|
|
"TestJit",
|
|
"test_variant_consistency_jit",
|
|
dtypes=(torch.float32, torch.complex64),
|
|
),
|
|
),
|
|
),
|
|
OpInfo(
|
|
"nn.functional.pixel_unshuffle",
|
|
sample_inputs_func=sample_inputs_pixel_unshuffle,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
skips=(
|
|
DecorateInfo(
|
|
unittest.skip("Skipped!"),
|
|
"TestJit",
|
|
"test_variant_consistency_jit",
|
|
dtypes=(torch.float32, torch.complex64),
|
|
),
|
|
),
|
|
),
|
|
OpInfo(
|
|
"nn.functional.kl_div",
|
|
sample_inputs_func=sample_inputs_kl_div,
|
|
dtypes=floating_types_and(torch.bfloat16, torch.int8, torch.int16, torch.int32, torch.int64),
|
|
backward_dtypes=floating_types_and(torch.int8, torch.int16, torch.int32, torch.int64),
|
|
dtypesIfCUDA=floating_types_and(
|
|
torch.float16, torch.bfloat16, torch.int8, torch.int16, torch.int32, torch.int64
|
|
),
|
|
backward_dtypesIfCUDA=floating_types_and(torch.float16, torch.int8, torch.int16, torch.int32, torch.int64),
|
|
supports_out=False,
|
|
check_batched_grad=False,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
# See https://github.com/pytorch/pytorch/issues/65466
|
|
DecorateInfo(
|
|
unittest.expectedFailure,
|
|
"TestGradients",
|
|
"test_fn_gradgrad",
|
|
),
|
|
),
|
|
),
|
|
OpInfo(
|
|
"diagflat",
|
|
ref=lambda input, offset=0: np.diagflat(input, k=offset),
|
|
sample_inputs_func=sample_inputs_diagflat,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
supports_fwgrad_bwgrad=True,
|
|
),
|
|
OpInfo(
|
|
'scatter_reduce',
|
|
variant_test_name='sum',
|
|
# complex not added to dtypes as complex gradients are not properly handled
|
|
# and scatter_reduce hasn't been added to the whitelist in gen_variable_type yet
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
sample_inputs_func=sample_inputs_scatter_reduce,
|
|
),
|
|
OpInfo(
|
|
'scatter_reduce',
|
|
variant_test_name='prod',
|
|
# complex not added to dtypes as complex gradients are not properly handled
|
|
# and scatter_reduce hasn't been added to the whitelist in gen_variable_type yet
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_scatter_reduce,
|
|
),
|
|
OpInfo(
|
|
'scatter_reduce',
|
|
variant_test_name='mean',
|
|
# complex not added to dtypes as complex gradients are not properly handled
|
|
# and scatter_reduce hasn't been added to the whitelist in gen_variable_type yet
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_scatter_reduce,
|
|
),
|
|
OpInfo(
|
|
'scatter_reduce',
|
|
variant_test_name='amin',
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_scatter_reduce,
|
|
),
|
|
OpInfo(
|
|
'scatter_reduce',
|
|
variant_test_name='amax',
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_scatter_reduce,
|
|
),
|
|
]
|
|
|
|
# NOTE [Python References]
|
|
# Python References emulate existing PyTorch operations, but can ultimately
|
|
# be expressed in terms of "primitive" operations from torch._prims.
|
|
#
|
|
# These references are experimental.
|
|
# See https://dev-discuss.pytorch.org/t/tracing-with-primitives-update-0/577
|
|
# for additional context.
|
|
#
|
|
# Python Reference OpInfos should be added to the python_ref_db list below.
|
|
# Tests can opt-into running on these references by including
|
|
# that list in the Sequence they pass to the @ops decorator.
|
|
#
|
|
# When a Python Reference OpInfo is constructed a pointer to an
|
|
# existing OpInfo must be provided using the torch_opinfo_name kwarg.
|
|
# The existing OpInfo with that name and no variant will be found
|
|
# to inherit from.
|
|
#
|
|
# Instead of just inheriting the existing OpInfo's metadata, the
|
|
# Python Reference OpInfos inherit the existing OpInfo's
|
|
# construction arguments. These arguments can be overridden
|
|
# by adding kwargs to the constructor.
|
|
|
|
def _find_referenced_opinfo(referenced_name):
|
|
'''
|
|
Finds the OpInfo with the given name that has no variant name.
|
|
'''
|
|
for opinfo in op_db:
|
|
if opinfo.name == referenced_name and opinfo.variant_test_name == '':
|
|
return opinfo
|
|
|
|
def _inherit_constructor_args(name, op, inherited, overrides):
|
|
# inherits metadata
|
|
common_kwargs = {
|
|
'name': name,
|
|
'op': op,
|
|
'aliases': None, # TODO add a check for alias coverage
|
|
'method_variant': None,
|
|
'inplace_variant': None, # TODO: add a check for inplace coverage
|
|
'supports_scripting': False,
|
|
}
|
|
|
|
# Acquires inherited kwargs
|
|
kwargs = inherited.copy()
|
|
|
|
# Fixes metadata
|
|
if 'kwargs' in kwargs:
|
|
kwargs.update(kwargs['kwargs'])
|
|
del kwargs['kwargs']
|
|
if 'self' in kwargs:
|
|
del kwargs['self']
|
|
if '__class__' in kwargs:
|
|
del kwargs['__class__']
|
|
|
|
# Overrides metadata
|
|
kwargs.update(common_kwargs)
|
|
kwargs.update(overrides)
|
|
|
|
return kwargs
|
|
|
|
class PythonRefInfo(OpInfo):
|
|
'''
|
|
An OpInfo for a Python reference of an OpInfo base class operation.
|
|
'''
|
|
def __init__(
|
|
self,
|
|
name, # the stringname of the callable Python reference
|
|
*,
|
|
op=None, # the function variant of the operation, populated as torch.<name> if None
|
|
torch_opinfo_name, # the string name of the corresponding torch opinfo
|
|
**kwargs): # additional kwargs override kwargs inherited from the torch opinfo
|
|
|
|
self.torch_opinfo_name = torch_opinfo_name
|
|
self.torch_opinfo = _find_referenced_opinfo(torch_opinfo_name)
|
|
assert isinstance(self.torch_opinfo, OpInfo)
|
|
|
|
inherited = self.torch_opinfo._original_opinfo_args
|
|
ukwargs = _inherit_constructor_args(name, op, inherited, kwargs)
|
|
super(PythonRefInfo, self).__init__(**ukwargs)
|
|
|
|
class ReductionPythonRefInfo(ReductionOpInfo):
|
|
'''
|
|
An OpInfo for a Python reference of an elementwise unary operation.
|
|
'''
|
|
def __init__(
|
|
self,
|
|
name, # the stringname of the callable Python reference
|
|
*,
|
|
op=None, # the function variant of the operation, populated as torch.<name> if None
|
|
torch_opinfo_name, # the string name of the corresponding torch opinfo
|
|
**kwargs): # additional kwargs override kwargs inherited from the torch opinfo
|
|
|
|
self.torch_opinfo_name = torch_opinfo_name
|
|
self.torch_opinfo = _find_referenced_opinfo(torch_opinfo_name)
|
|
assert isinstance(self.torch_opinfo, ReductionOpInfo)
|
|
|
|
inherited = self.torch_opinfo._original_reduction_args
|
|
ukwargs = _inherit_constructor_args(name, op, inherited, kwargs)
|
|
|
|
super().__init__(**ukwargs)
|
|
|
|
class ElementwiseUnaryPythonRefInfo(UnaryUfuncInfo):
|
|
'''
|
|
An OpInfo for a Python reference of an elementwise unary operation.
|
|
'''
|
|
def __init__(
|
|
self,
|
|
name, # the stringname of the callable Python reference
|
|
*,
|
|
op=None, # the function variant of the operation, populated as torch.<name> if None
|
|
torch_opinfo_name, # the string name of the corresponding torch opinfo
|
|
**kwargs): # additional kwargs override kwargs inherited from the torch opinfo
|
|
|
|
self.torch_opinfo_name = torch_opinfo_name
|
|
self.torch_opinfo = _find_referenced_opinfo(torch_opinfo_name)
|
|
assert isinstance(self.torch_opinfo, UnaryUfuncInfo)
|
|
|
|
inherited = self.torch_opinfo._original_unary_ufunc_args
|
|
ukwargs = _inherit_constructor_args(name, op, inherited, kwargs)
|
|
|
|
super(ElementwiseUnaryPythonRefInfo, self).__init__(**ukwargs)
|
|
|
|
class ElementwiseBinaryPythonRefInfo(BinaryUfuncInfo):
|
|
'''
|
|
An OpInfo for a Python reference of an elementwise binary operation.
|
|
'''
|
|
def __init__(
|
|
self,
|
|
name, # the stringname of the callable Python reference
|
|
*,
|
|
op=None, # the function variant of the operation, populated as torch.<name> if None
|
|
torch_opinfo_name, # the string name of the corresponding torch opinfo
|
|
**kwargs): # additional kwargs override kwargs inherited from the torch opinfo
|
|
|
|
self.torch_opinfo_name = torch_opinfo_name
|
|
self.torch_opinfo = _find_referenced_opinfo(torch_opinfo_name)
|
|
assert isinstance(self.torch_opinfo, BinaryUfuncInfo)
|
|
|
|
inherited = self.torch_opinfo._original_binary_ufunc_args
|
|
ukwargs = _inherit_constructor_args(name, op, inherited, kwargs)
|
|
|
|
super(ElementwiseBinaryPythonRefInfo, self).__init__(**ukwargs)
|
|
|
|
|
|
# Separate registry for experimental Python Reference OpInfos.
|
|
python_ref_db = [
|
|
#
|
|
# Elementwise Unary OpInfos
|
|
#
|
|
ElementwiseUnaryPythonRefInfo(
|
|
"_refs.abs",
|
|
torch_opinfo_name="abs",
|
|
),
|
|
ElementwiseUnaryPythonRefInfo(
|
|
"_refs.acos",
|
|
torch_opinfo_name="acos",
|
|
),
|
|
ElementwiseUnaryPythonRefInfo(
|
|
"_refs.acosh",
|
|
torch_opinfo_name="acosh",
|
|
),
|
|
ElementwiseUnaryPythonRefInfo(
|
|
"_refs.asin",
|
|
torch_opinfo_name="asin",
|
|
),
|
|
ElementwiseUnaryPythonRefInfo(
|
|
"_refs.atan",
|
|
torch_opinfo_name="atan",
|
|
),
|
|
ElementwiseUnaryPythonRefInfo(
|
|
"_refs.ceil",
|
|
torch_opinfo_name="ceil",
|
|
),
|
|
ElementwiseUnaryPythonRefInfo(
|
|
"_refs.cos",
|
|
torch_opinfo_name="cos",
|
|
),
|
|
ElementwiseUnaryPythonRefInfo(
|
|
"_refs.cosh",
|
|
torch_opinfo_name="cosh",
|
|
),
|
|
ElementwiseUnaryPythonRefInfo(
|
|
"_refs.digamma",
|
|
torch_opinfo_name="digamma",
|
|
),
|
|
ElementwiseUnaryPythonRefInfo(
|
|
"_refs.erf",
|
|
torch_opinfo_name="erf",
|
|
),
|
|
ElementwiseUnaryPythonRefInfo(
|
|
"_refs.erfinv",
|
|
torch_opinfo_name="erfinv",
|
|
),
|
|
ElementwiseUnaryPythonRefInfo(
|
|
"_refs.erfc",
|
|
torch_opinfo_name="erfc",
|
|
),
|
|
ElementwiseUnaryPythonRefInfo(
|
|
"_refs.exp",
|
|
torch_opinfo_name="exp",
|
|
),
|
|
ElementwiseUnaryPythonRefInfo(
|
|
"_refs.expm1",
|
|
torch_opinfo_name="expm1",
|
|
),
|
|
ElementwiseUnaryPythonRefInfo(
|
|
"_refs.floor",
|
|
torch_opinfo_name="floor",
|
|
),
|
|
ElementwiseUnaryPythonRefInfo(
|
|
"_refs.isfinite",
|
|
torch_opinfo_name="isfinite",
|
|
supports_out=True,
|
|
),
|
|
ElementwiseUnaryPythonRefInfo(
|
|
"_refs.isnan",
|
|
torch_opinfo_name="isnan",
|
|
supports_out=True,
|
|
),
|
|
ElementwiseUnaryPythonRefInfo(
|
|
"_refs.lgamma",
|
|
torch_opinfo_name="lgamma",
|
|
),
|
|
ElementwiseUnaryPythonRefInfo(
|
|
"_refs.log",
|
|
torch_opinfo_name="log",
|
|
),
|
|
ElementwiseUnaryPythonRefInfo(
|
|
"_refs.log1p",
|
|
torch_opinfo_name="log1p",
|
|
),
|
|
ElementwiseUnaryPythonRefInfo(
|
|
"_refs.neg",
|
|
torch_opinfo_name="neg",
|
|
),
|
|
ElementwiseUnaryPythonRefInfo(
|
|
"_refs.reciprocal",
|
|
torch_opinfo_name="reciprocal",
|
|
),
|
|
ElementwiseUnaryPythonRefInfo(
|
|
"_refs.round",
|
|
torch_opinfo_name="round",
|
|
),
|
|
ElementwiseUnaryPythonRefInfo(
|
|
"_refs.sign",
|
|
torch_opinfo_name="sign",
|
|
),
|
|
ElementwiseUnaryPythonRefInfo(
|
|
"_refs.sin",
|
|
torch_opinfo_name="sin",
|
|
),
|
|
ElementwiseUnaryPythonRefInfo(
|
|
"_refs.sinh",
|
|
torch_opinfo_name="sinh",
|
|
),
|
|
ElementwiseUnaryPythonRefInfo(
|
|
"_refs.sqrt",
|
|
torch_opinfo_name="sqrt",
|
|
),
|
|
ElementwiseUnaryPythonRefInfo(
|
|
"_refs.square",
|
|
torch_opinfo_name="square",
|
|
),
|
|
ElementwiseUnaryPythonRefInfo(
|
|
"_refs.tan",
|
|
torch_opinfo_name="tan",
|
|
),
|
|
ElementwiseBinaryPythonRefInfo(
|
|
"_refs.add",
|
|
torch_opinfo_name="add",
|
|
decorators=(
|
|
DecorateInfo(
|
|
toleranceOverride(
|
|
{
|
|
torch.bfloat16: tol(atol=1, rtol=0),
|
|
torch.float16: tol(atol=1e-2, rtol=0),
|
|
}
|
|
),
|
|
"TestCommon",
|
|
"test_python_reference_consistency",
|
|
device_type='cpu'
|
|
),
|
|
),
|
|
),
|
|
ElementwiseBinaryPythonRefInfo(
|
|
"_refs.atan2",
|
|
torch_opinfo_name="atan2",
|
|
),
|
|
ElementwiseBinaryPythonRefInfo(
|
|
"_refs.bitwise_and",
|
|
torch_opinfo_name="bitwise_and",
|
|
),
|
|
ElementwiseBinaryPythonRefInfo(
|
|
"_refs.bitwise_left_shift",
|
|
torch_opinfo_name="bitwise_left_shift",
|
|
),
|
|
ElementwiseBinaryPythonRefInfo(
|
|
"_refs.bitwise_or",
|
|
torch_opinfo_name="bitwise_or",
|
|
),
|
|
ElementwiseBinaryPythonRefInfo(
|
|
"_refs.bitwise_xor",
|
|
torch_opinfo_name="bitwise_xor",
|
|
),
|
|
ElementwiseBinaryPythonRefInfo(
|
|
"_refs.eq",
|
|
torch_opinfo_name="eq",
|
|
),
|
|
ElementwiseBinaryPythonRefInfo(
|
|
"_refs.float_power",
|
|
torch_opinfo_name="float_power",
|
|
),
|
|
ElementwiseBinaryPythonRefInfo(
|
|
"_refs.ge",
|
|
torch_opinfo_name="ge",
|
|
),
|
|
ElementwiseBinaryPythonRefInfo(
|
|
"_refs.gt",
|
|
torch_opinfo_name="gt",
|
|
),
|
|
ElementwiseBinaryPythonRefInfo(
|
|
"_refs.igamma",
|
|
torch_opinfo_name="igamma",
|
|
),
|
|
ElementwiseBinaryPythonRefInfo(
|
|
"_refs.igammac",
|
|
torch_opinfo_name="igammac",
|
|
),
|
|
ElementwiseBinaryPythonRefInfo(
|
|
"_refs.le",
|
|
torch_opinfo_name="le",
|
|
),
|
|
ElementwiseBinaryPythonRefInfo(
|
|
"_refs.lt",
|
|
torch_opinfo_name="lt",
|
|
),
|
|
ElementwiseBinaryPythonRefInfo(
|
|
"_refs.maximum",
|
|
torch_opinfo_name="maximum",
|
|
),
|
|
ElementwiseBinaryPythonRefInfo(
|
|
"_refs.minimum",
|
|
torch_opinfo_name="minimum",
|
|
),
|
|
ElementwiseBinaryPythonRefInfo(
|
|
"_refs.mul",
|
|
torch_opinfo_name="mul",
|
|
skips=(
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_reference_consistency',
|
|
dtypes=(torch.chalf,), device_type='cuda', active_if=(not TEST_WITH_ROCM)),
|
|
)
|
|
),
|
|
ElementwiseBinaryPythonRefInfo(
|
|
"_refs.ne",
|
|
torch_opinfo_name="ne",
|
|
),
|
|
ElementwiseBinaryPythonRefInfo(
|
|
"_refs.nextafter",
|
|
torch_opinfo_name="nextafter",
|
|
),
|
|
ElementwiseBinaryPythonRefInfo(
|
|
"_refs.pow",
|
|
torch_opinfo_name="pow",
|
|
),
|
|
ElementwiseBinaryPythonRefInfo(
|
|
"_refs.sub",
|
|
torch_opinfo_name="sub",
|
|
decorators=(
|
|
DecorateInfo(
|
|
toleranceOverride(
|
|
{
|
|
torch.bfloat16: tol(atol=1, rtol=0),
|
|
torch.float16: tol(atol=1e-2, rtol=0),
|
|
}
|
|
),
|
|
"TestCommon",
|
|
"test_python_reference_consistency",
|
|
device_type='cpu'
|
|
),
|
|
),
|
|
),
|
|
ElementwiseBinaryPythonRefInfo(
|
|
"_refs.true_divide",
|
|
torch_opinfo_name="true_divide",
|
|
),
|
|
#
|
|
# View & Shape OpInfos
|
|
#
|
|
PythonRefInfo(
|
|
"_refs.cat",
|
|
torch_opinfo_name="cat",
|
|
skips=(
|
|
# torch function issue:
|
|
# ValueError: Callable cat has no meta function!
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_reference_meta_functions'),
|
|
# torch.cat can't handle chalf or cdouble type promotion properly
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_reference_consistency',
|
|
dtypes=(torch.chalf, torch.cfloat))
|
|
)
|
|
),
|
|
PythonRefInfo(
|
|
"_refs.permute",
|
|
torch_opinfo_name="permute",
|
|
),
|
|
PythonRefInfo(
|
|
"_refs.tensor_split",
|
|
torch_opinfo_name="tensor_split",
|
|
skips=(
|
|
# TensorMeta doesn't support tolist
|
|
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_reference_meta_functions'),
|
|
)
|
|
),
|
|
PythonRefInfo(
|
|
"_refs.transpose",
|
|
torch_opinfo_name="transpose",
|
|
),
|
|
#
|
|
# Reduction OpInfos
|
|
#
|
|
ReductionPythonRefInfo(
|
|
"_refs.sum",
|
|
torch_opinfo_name="sum",
|
|
supports_out=True
|
|
)
|
|
]
|
|
|
|
# Common operator groupings
|
|
ops_and_refs = op_db + python_ref_db
|
|
unary_ufuncs = [op for op in op_db if isinstance(op, UnaryUfuncInfo)]
|
|
binary_ufuncs = [op for op in op_db if isinstance(op, BinaryUfuncInfo)]
|
|
spectral_funcs = [op for op in op_db if isinstance(op, SpectralFuncInfo)]
|
|
sparse_unary_ufuncs = [op for op in op_db if isinstance(op, UnaryUfuncInfo) and op.supports_sparse]
|
|
sparse_csr_unary_ufuncs = [op for op in op_db if isinstance(op, UnaryUfuncInfo) and op.supports_sparse_csr]
|
|
sparse_reduction_ops = [op for op in op_db if isinstance(op, ReductionOpInfo) and op.supports_sparse]
|
|
shape_funcs = [op for op in op_db if isinstance(op, ShapeFuncInfo)]
|
|
reduction_ops = [op for op in op_db if isinstance(op, ReductionOpInfo)]
|
|
reference_filtered_ops = [op for op in reduction_ops if op.ref not in (_NOTHING, None)]
|
|
reference_masked_ops = [op for op in reference_filtered_ops if op.name.startswith('_masked.')]
|
|
sparse_masked_reduction_ops = [op for op in sparse_reduction_ops if op.name.startswith('_masked.')]
|
|
|
|
# TODO: review porting these to make_tensor
|
|
def index_variable(shape, max_indices, device=torch.device('cpu')):
|
|
if not isinstance(shape, tuple):
|
|
shape = (shape,)
|
|
index = torch.rand(*shape, dtype=torch.double, device=device).mul_(max_indices).floor_().long()
|
|
return index
|
|
|
|
def gather_variable(shape, index_dim, max_indices, duplicate=False, device=torch.device('cpu')):
|
|
assert len(shape) == 2
|
|
assert index_dim < 2
|
|
batch_dim = 1 - index_dim
|
|
index = torch.zeros(*shape, dtype=torch.long, device=device)
|
|
for i in range(shape[index_dim]):
|
|
index.select(index_dim, i).copy_(
|
|
torch.randperm(max_indices, device=device)[:shape[batch_dim]])
|
|
if duplicate:
|
|
index.select(batch_dim, 0).copy_(index.select(batch_dim, 1))
|
|
return index
|
|
|
|
def bernoulli_scalar():
|
|
return torch.tensor(0, dtype=torch.bool).bernoulli_()
|
|
|
|
def mask_not_all_zeros(shape):
|
|
assert len(shape) > 0
|
|
while True:
|
|
result = torch.randn(shape).gt(0)
|
|
if result.sum() > 0:
|
|
return result
|
|
|
|
|
|
# TODO: move all tri/tril/triu testing to tensor creation op test suite and remove
|
|
# these from here
|
|
def _compare_trilu_indices(
|
|
self, row, col, offset=0, dtype=torch.long, device='cpu'):
|
|
if row == 0 or col == 0:
|
|
# have to handle this separately as tril and triu does not take
|
|
# empty matrix as input
|
|
self.assertEqual(
|
|
torch.empty(0, 2, dtype=dtype, device=device).transpose(0, 1),
|
|
torch.tril_indices(row, col, offset, dtype=dtype, device=device))
|
|
|
|
self.assertEqual(
|
|
torch.empty(0, 2, dtype=dtype, device=device).transpose(0, 1),
|
|
torch.triu_indices(row, col, offset, dtype=dtype, device=device))
|
|
|
|
else:
|
|
# TODO(#38095): Replace assertEqualIgnoreType. See issue #38095
|
|
self.assertEqualIgnoreType(
|
|
torch.ones(row, col, device='cpu')
|
|
.tril(offset).nonzero().to(dtype).transpose(0, 1),
|
|
torch.tril_indices(row, col, offset, dtype=dtype, device=device))
|
|
|
|
# TODO(#38095): Replace assertEqualIgnoreType. See issue #38095
|
|
self.assertEqualIgnoreType(
|
|
torch.ones(row, col, device='cpu')
|
|
.triu(offset).nonzero().to(dtype).transpose(0, 1),
|
|
torch.triu_indices(row, col, offset, dtype=dtype, device=device))
|
|
|
|
|
|
def _compare_large_trilu_indices(
|
|
self, row, col, offset=0, dtype=torch.long, device='cpu'):
|
|
l = torch.ones(row, col, dtype=dtype, device='cpu').tril(offset) \
|
|
.nonzero()[-100:-1, :].transpose(0, 1).to(device)
|
|
torch.cuda.empty_cache()
|
|
|
|
r = torch.tril_indices(
|
|
row, col, offset, dtype=dtype, device=device)[:, -100:-1]
|
|
self.assertEqual(l, r)
|
|
torch.cuda.empty_cache()
|
|
|
|
l = torch.ones(row, col, dtype=dtype, device='cpu').triu(offset) \
|
|
.nonzero()[-100:-1, :].transpose(0, 1).to(device)
|
|
torch.cuda.empty_cache()
|
|
|
|
r = torch.triu_indices(
|
|
row, col, offset, dtype=dtype, device=device)[:, -100:-1]
|
|
self.assertEqual(l, r)
|
|
torch.cuda.empty_cache()
|
|
|
|
# (
|
|
# row
|
|
# col
|
|
# offset (optional)
|
|
# dtype (optional)
|
|
# )
|
|
tri_tests_args = [
|
|
(1, 1),
|
|
(3, 3),
|
|
(3, 3, 1),
|
|
(3, 3, 2),
|
|
(3, 3, 200),
|
|
(3, 3, -1),
|
|
(3, 3, -2),
|
|
(3, 3, -200),
|
|
(0, 3, 0),
|
|
(0, 3, 1),
|
|
(0, 3, -1),
|
|
(0, 1, 2),
|
|
(1, 0, 2),
|
|
(3, 0, 0),
|
|
(3, 0, 1),
|
|
(3, 0, -1),
|
|
(0, 0, 0),
|
|
(0, 0, 1),
|
|
(0, 0, -1),
|
|
(3, 6, 0),
|
|
(3, 6, 1),
|
|
(3, 6, 3),
|
|
(3, 6, 9),
|
|
(3, 6, -1),
|
|
(3, 6, -3),
|
|
(3, 6, -9),
|
|
(6, 3, 0),
|
|
(6, 3, 1),
|
|
(6, 3, 3),
|
|
(6, 3, 9),
|
|
(6, 3, -1),
|
|
(6, 3, -3),
|
|
(6, 3, -9),
|
|
(258, 253, 1, torch.float32),
|
|
(257, 258, 1, torch.float64),
|
|
(258, 258, 1, torch.short),
|
|
(3, 513, 1, torch.long),
|
|
(513, 3, 1, torch.int),
|
|
(513, 0, 1, torch.double),
|
|
(1024, 1024),
|
|
(1024, 1024, 500, torch.float32),
|
|
(1024, 1024, 1023),
|
|
(1024, 1024, -500),
|
|
(1023, 1025),
|
|
(1025, 1023, 1022),
|
|
(1024, 1024, -500),
|
|
(3, 2028),
|
|
(3, 2028, 1),
|
|
(3, 2028, -1),
|
|
(2028, 3),
|
|
(2028, 1),
|
|
(2028, 1, -1)
|
|
]
|
|
|
|
tri_large_tests_args: List[Tuple[int, ...]] = [
|
|
# Large test cases below are deliberately commented out to speed up CI
|
|
# tests and to avoid OOM error. When modifying implementations of
|
|
# tril_indices and triu_indices, please enable these tests and make sure
|
|
# they pass.
|
|
#
|
|
# (1, 268435455),
|
|
# (5000, 5000),
|
|
# (10000, 10000),
|
|
# (268435455, 1),
|
|
# (134217727, 2, 1),
|
|
# (2, 134217727, 1),
|
|
# (536870901, 1),
|
|
# (1, 536870901),
|
|
# (268435455, 2, 1),
|
|
# (2, 268435455, 1)
|
|
]
|
|
|
|
|
|
def run_additional_tri_tests(self, device):
|
|
x = torch.ones(
|
|
3, 3, dtype=torch.long, device=device, layout=torch.strided)
|
|
l = x.tril(0).nonzero().transpose(0, 1)
|
|
u = x.triu(0).nonzero().transpose(0, 1)
|
|
self.assertEqual(l, torch.tril_indices(3, 3, device=device))
|
|
self.assertEqual(
|
|
l, torch.tril_indices(3, 3, device=device, layout=torch.strided))
|
|
|
|
self.assertEqual(u, torch.triu_indices(3, 3, device=device))
|
|
self.assertEqual(
|
|
u, torch.triu_indices(3, 3, device=device, layout=torch.strided))
|
|
|
|
self.assertRaises(
|
|
RuntimeError,
|
|
lambda: torch.triu_indices(
|
|
1, 1, device=device, layout=torch.sparse_coo))
|
|
|
|
self.assertRaises(
|
|
RuntimeError,
|
|
lambda: torch.tril_indices(
|
|
1, 1, device=device, layout=torch.sparse_coo))
|