mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
crossref is a new strategy for performing tests when you want to run a normal PyTorch API call, separately run some variation of the API call (e.g., same thing but all the arguments are meta tensors) and then cross-reference the results to see that they are consistent. Any logic you add to CrossRefMode will get run on *every* PyTorch API call that is called in the course of PyTorch's test suite. This can be a good choice for correctness testing if OpInfo testing is not exhaustive enough. For now, the crossref test doesn't do anything except verify that we can validly push a mode onto the torch function mode stack for all functions. Signed-off-by: Edward Z. Yang <ezyangfb.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/75988 Approved by: https://github.com/seemethere
853 lines
34 KiB
Python
853 lines
34 KiB
Python
# Owner(s): ["module: unknown"]
|
|
|
|
import io
|
|
import numpy as np
|
|
import os
|
|
import shutil
|
|
import sys
|
|
import unittest
|
|
import uuid
|
|
|
|
TEST_TENSORBOARD = True
|
|
try:
|
|
import tensorboard.summary.writer.event_file_writer # noqa: F401
|
|
from tensorboard.compat.proto.summary_pb2 import Summary
|
|
except ImportError:
|
|
TEST_TENSORBOARD = False
|
|
|
|
HAS_TORCHVISION = True
|
|
try:
|
|
import torchvision
|
|
except ImportError:
|
|
HAS_TORCHVISION = False
|
|
skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision")
|
|
|
|
TEST_CAFFE2 = True
|
|
try:
|
|
import caffe2.python.caffe2_pybind11_state as _caffe2_pybind11_state # noqa: F401
|
|
from caffe2.python import brew, cnn, core, workspace
|
|
from caffe2.python.model_helper import ModelHelper
|
|
except ImportError:
|
|
TEST_CAFFE2 = False
|
|
skipIfNoCaffe2 = unittest.skipIf(not TEST_CAFFE2, "no caffe2")
|
|
|
|
TEST_MATPLOTLIB = True
|
|
try:
|
|
import matplotlib
|
|
if os.environ.get('DISPLAY', '') == '':
|
|
matplotlib.use('Agg')
|
|
import matplotlib.pyplot as plt
|
|
except ImportError:
|
|
TEST_MATPLOTLIB = False
|
|
skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib")
|
|
|
|
import torch
|
|
from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ASAN, TEST_WITH_CROSSREF
|
|
|
|
def tensor_N(shape, dtype=float):
|
|
numel = np.prod(shape)
|
|
x = (np.arange(numel, dtype=dtype)).reshape(shape)
|
|
return x
|
|
|
|
class BaseTestCase(TestCase):
|
|
""" Base class used for all TensorBoard tests """
|
|
def setUp(self):
|
|
if not TEST_TENSORBOARD:
|
|
return self.skipTest("Skip the test since TensorBoard is not installed")
|
|
if TEST_WITH_CROSSREF:
|
|
return self.skipTest("Don't run TensorBoard tests with crossref")
|
|
self.temp_dirs = []
|
|
|
|
def createSummaryWriter(self):
|
|
temp_dir = str(uuid.uuid4())
|
|
self.temp_dirs.append(temp_dir)
|
|
return SummaryWriter(temp_dir)
|
|
|
|
def tearDown(self):
|
|
super(BaseTestCase, self).tearDown()
|
|
# Remove directories created by SummaryWriter
|
|
for temp_dir in self.temp_dirs:
|
|
if os.path.exists(temp_dir):
|
|
shutil.rmtree(temp_dir)
|
|
|
|
|
|
if TEST_TENSORBOARD:
|
|
from tensorboard.compat.proto.graph_pb2 import GraphDef
|
|
from torch.utils.tensorboard import summary, SummaryWriter
|
|
from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC
|
|
from torch.utils.tensorboard._convert_np import make_np
|
|
from torch.utils.tensorboard._pytorch_graph import graph
|
|
from google.protobuf import text_format
|
|
from PIL import Image
|
|
if TEST_TENSORBOARD and TEST_CAFFE2:
|
|
from torch.utils.tensorboard import _caffe2_graph as c2_graph
|
|
|
|
class TestTensorBoardPyTorchNumpy(BaseTestCase):
|
|
def test_pytorch_np(self):
|
|
tensors = [torch.rand(3, 10, 10), torch.rand(1), torch.rand(1, 2, 3, 4, 5)]
|
|
for tensor in tensors:
|
|
# regular tensor
|
|
self.assertIsInstance(make_np(tensor), np.ndarray)
|
|
|
|
# CUDA tensor
|
|
if torch.cuda.device_count() > 0:
|
|
self.assertIsInstance(make_np(tensor.cuda()), np.ndarray)
|
|
|
|
# regular variable
|
|
self.assertIsInstance(make_np(torch.autograd.Variable(tensor)), np.ndarray)
|
|
|
|
# CUDA variable
|
|
if torch.cuda.device_count() > 0:
|
|
self.assertIsInstance(make_np(torch.autograd.Variable(tensor).cuda()), np.ndarray)
|
|
|
|
# python primitive type
|
|
self.assertIsInstance(make_np(0), np.ndarray)
|
|
self.assertIsInstance(make_np(0.1), np.ndarray)
|
|
|
|
def test_pytorch_autograd_np(self):
|
|
x = torch.autograd.Variable(torch.empty(1))
|
|
self.assertIsInstance(make_np(x), np.ndarray)
|
|
|
|
def test_pytorch_write(self):
|
|
with self.createSummaryWriter() as w:
|
|
w.add_scalar('scalar', torch.autograd.Variable(torch.rand(1)), 0)
|
|
|
|
def test_pytorch_histogram(self):
|
|
with self.createSummaryWriter() as w:
|
|
w.add_histogram('float histogram', torch.rand((50,)))
|
|
w.add_histogram('int histogram', torch.randint(0, 100, (50,)))
|
|
|
|
def test_pytorch_histogram_raw(self):
|
|
with self.createSummaryWriter() as w:
|
|
num = 50
|
|
floats = make_np(torch.rand((num,)))
|
|
bins = [0.0, 0.25, 0.5, 0.75, 1.0]
|
|
counts, limits = np.histogram(floats, bins)
|
|
sum_sq = floats.dot(floats).item()
|
|
w.add_histogram_raw('float histogram raw',
|
|
min=floats.min().item(),
|
|
max=floats.max().item(),
|
|
num=num,
|
|
sum=floats.sum().item(),
|
|
sum_squares=sum_sq,
|
|
bucket_limits=limits[1:].tolist(),
|
|
bucket_counts=counts.tolist())
|
|
|
|
ints = make_np(torch.randint(0, 100, (num,)))
|
|
bins = [0, 25, 50, 75, 100]
|
|
counts, limits = np.histogram(ints, bins)
|
|
sum_sq = ints.dot(ints).item()
|
|
w.add_histogram_raw('int histogram raw',
|
|
min=ints.min().item(),
|
|
max=ints.max().item(),
|
|
num=num,
|
|
sum=ints.sum().item(),
|
|
sum_squares=sum_sq,
|
|
bucket_limits=limits[1:].tolist(),
|
|
bucket_counts=counts.tolist())
|
|
|
|
ints = torch.tensor(range(0, 100)).float()
|
|
nbins = 100
|
|
counts = torch.histc(ints, bins=nbins, min=0, max=99)
|
|
limits = torch.tensor(range(nbins))
|
|
sum_sq = ints.dot(ints).item()
|
|
w.add_histogram_raw('int histogram raw',
|
|
min=ints.min().item(),
|
|
max=ints.max().item(),
|
|
num=num,
|
|
sum=ints.sum().item(),
|
|
sum_squares=sum_sq,
|
|
bucket_limits=limits.tolist(),
|
|
bucket_counts=counts.tolist())
|
|
|
|
class TestTensorBoardUtils(BaseTestCase):
|
|
def test_to_HWC(self):
|
|
test_image = np.random.randint(0, 256, size=(3, 32, 32), dtype=np.uint8)
|
|
converted = convert_to_HWC(test_image, 'chw')
|
|
self.assertEqual(converted.shape, (32, 32, 3))
|
|
test_image = np.random.randint(0, 256, size=(16, 3, 32, 32), dtype=np.uint8)
|
|
converted = convert_to_HWC(test_image, 'nchw')
|
|
self.assertEqual(converted.shape, (64, 256, 3))
|
|
test_image = np.random.randint(0, 256, size=(32, 32), dtype=np.uint8)
|
|
converted = convert_to_HWC(test_image, 'hw')
|
|
self.assertEqual(converted.shape, (32, 32, 3))
|
|
|
|
def test_convert_to_HWC_dtype_remains_same(self):
|
|
# test to ensure convert_to_HWC restores the dtype of input np array and
|
|
# thus the scale_factor calculated for the image is 1
|
|
test_image = torch.tensor([[[[1, 2, 3], [4, 5, 6]]]], dtype=torch.uint8)
|
|
tensor = make_np(test_image)
|
|
tensor = convert_to_HWC(tensor, 'NCHW')
|
|
scale_factor = summary._calc_scale_factor(tensor)
|
|
self.assertEqual(scale_factor, 1, msg='Values are already in [0, 255], scale factor should be 1')
|
|
|
|
|
|
def test_prepare_video(self):
|
|
# At each timeframe, the sum over all other
|
|
# dimensions of the video should be the same.
|
|
shapes = [
|
|
(16, 30, 3, 28, 28),
|
|
(36, 30, 3, 28, 28),
|
|
(19, 29, 3, 23, 19),
|
|
(3, 3, 3, 3, 3)
|
|
]
|
|
for s in shapes:
|
|
V_input = np.random.random(s)
|
|
V_after = _prepare_video(np.copy(V_input))
|
|
total_frame = s[1]
|
|
V_input = np.swapaxes(V_input, 0, 1)
|
|
for f in range(total_frame):
|
|
x = np.reshape(V_input[f], newshape=(-1))
|
|
y = np.reshape(V_after[f], newshape=(-1))
|
|
np.testing.assert_array_almost_equal(np.sum(x), np.sum(y))
|
|
|
|
def test_numpy_vid_uint8(self):
|
|
V_input = np.random.randint(0, 256, (16, 30, 3, 28, 28)).astype(np.uint8)
|
|
V_after = _prepare_video(np.copy(V_input)) * 255
|
|
total_frame = V_input.shape[1]
|
|
V_input = np.swapaxes(V_input, 0, 1)
|
|
for f in range(total_frame):
|
|
x = np.reshape(V_input[f], newshape=(-1))
|
|
y = np.reshape(V_after[f], newshape=(-1))
|
|
np.testing.assert_array_almost_equal(np.sum(x), np.sum(y))
|
|
|
|
freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440]
|
|
|
|
true_positive_counts = [75, 64, 21, 5, 0]
|
|
false_positive_counts = [150, 105, 18, 0, 0]
|
|
true_negative_counts = [0, 45, 132, 150, 150]
|
|
false_negative_counts = [0, 11, 54, 70, 75]
|
|
precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0]
|
|
recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0]
|
|
|
|
class TestTensorBoardWriter(BaseTestCase):
|
|
def test_writer(self):
|
|
with self.createSummaryWriter() as writer:
|
|
sample_rate = 44100
|
|
|
|
n_iter = 0
|
|
writer.add_hparams(
|
|
{'lr': 0.1, 'bsize': 1},
|
|
{'hparam/accuracy': 10, 'hparam/loss': 10}
|
|
)
|
|
writer.add_scalar('data/scalar_systemtime', 0.1, n_iter)
|
|
writer.add_scalar('data/scalar_customtime', 0.2, n_iter, walltime=n_iter)
|
|
writer.add_scalar('data/new_style', 0.2, n_iter, new_style=True)
|
|
writer.add_scalars('data/scalar_group', {
|
|
"xsinx": n_iter * np.sin(n_iter),
|
|
"xcosx": n_iter * np.cos(n_iter),
|
|
"arctanx": np.arctan(n_iter)
|
|
}, n_iter)
|
|
x = np.zeros((32, 3, 64, 64)) # output from network
|
|
writer.add_images('Image', x, n_iter) # Tensor
|
|
writer.add_image_with_boxes('imagebox',
|
|
np.zeros((3, 64, 64)),
|
|
np.array([[10, 10, 40, 40], [40, 40, 60, 60]]),
|
|
n_iter)
|
|
x = np.zeros(sample_rate * 2)
|
|
|
|
writer.add_audio('myAudio', x, n_iter)
|
|
writer.add_video('myVideo', np.random.rand(16, 48, 1, 28, 28).astype(np.float32), n_iter)
|
|
writer.add_text('Text', 'text logged at step:' + str(n_iter), n_iter)
|
|
writer.add_text('markdown Text', '''a|b\n-|-\nc|d''', n_iter)
|
|
writer.add_histogram('hist', np.random.rand(100, 100), n_iter)
|
|
writer.add_pr_curve('xoxo', np.random.randint(2, size=100), np.random.rand(
|
|
100), n_iter) # needs tensorboard 0.4RC or later
|
|
writer.add_pr_curve_raw('prcurve with raw data', true_positive_counts,
|
|
false_positive_counts,
|
|
true_negative_counts,
|
|
false_negative_counts,
|
|
precision,
|
|
recall, n_iter)
|
|
|
|
v = np.array([[[1, 1, 1], [-1, -1, 1], [1, -1, -1], [-1, 1, -1]]], dtype=float)
|
|
c = np.array([[[255, 0, 0], [0, 255, 0], [0, 0, 255], [255, 0, 255]]], dtype=int)
|
|
f = np.array([[[0, 2, 3], [0, 3, 1], [0, 1, 2], [1, 3, 2]]], dtype=int)
|
|
writer.add_mesh('my_mesh', vertices=v, colors=c, faces=f)
|
|
|
|
class TestTensorBoardSummaryWriter(BaseTestCase):
|
|
def test_summary_writer_ctx(self):
|
|
# after using a SummaryWriter as a ctx it should be closed
|
|
with self.createSummaryWriter() as writer:
|
|
writer.add_scalar('test', 1)
|
|
self.assertIs(writer.file_writer, None)
|
|
|
|
def test_summary_writer_close(self):
|
|
# Opening and closing SummaryWriter a lot should not run into
|
|
# OSError: [Errno 24] Too many open files
|
|
passed = True
|
|
try:
|
|
writer = self.createSummaryWriter()
|
|
writer.close()
|
|
except OSError:
|
|
passed = False
|
|
|
|
self.assertTrue(passed)
|
|
|
|
def test_pathlib(self):
|
|
import pathlib
|
|
p = pathlib.Path('./pathlibtest' + str(uuid.uuid4()))
|
|
with SummaryWriter(p) as writer:
|
|
writer.add_scalar('test', 1)
|
|
import shutil
|
|
shutil.rmtree(str(p))
|
|
|
|
class TestTensorBoardEmbedding(BaseTestCase):
|
|
def test_embedding(self):
|
|
w = self.createSummaryWriter()
|
|
all_features = torch.tensor([[1., 2., 3.], [5., 4., 1.], [3., 7., 7.]])
|
|
all_labels = torch.tensor([33., 44., 55.])
|
|
all_images = torch.zeros(3, 3, 5, 5)
|
|
|
|
w.add_embedding(all_features,
|
|
metadata=all_labels,
|
|
label_img=all_images,
|
|
global_step=2)
|
|
|
|
dataset_label = ['test'] * 2 + ['train'] * 2
|
|
all_labels = list(zip(all_labels, dataset_label))
|
|
w.add_embedding(all_features,
|
|
metadata=all_labels,
|
|
label_img=all_images,
|
|
metadata_header=['digit', 'dataset'],
|
|
global_step=2)
|
|
# assert...
|
|
|
|
def test_embedding_64(self):
|
|
w = self.createSummaryWriter()
|
|
all_features = torch.tensor([[1., 2., 3.], [5., 4., 1.], [3., 7., 7.]])
|
|
all_labels = torch.tensor([33., 44., 55.])
|
|
all_images = torch.zeros((3, 3, 5, 5), dtype=torch.float64)
|
|
|
|
w.add_embedding(all_features,
|
|
metadata=all_labels,
|
|
label_img=all_images,
|
|
global_step=2)
|
|
|
|
dataset_label = ['test'] * 2 + ['train'] * 2
|
|
all_labels = list(zip(all_labels, dataset_label))
|
|
w.add_embedding(all_features,
|
|
metadata=all_labels,
|
|
label_img=all_images,
|
|
metadata_header=['digit', 'dataset'],
|
|
global_step=2)
|
|
|
|
class TestTensorBoardSummary(BaseTestCase):
|
|
def test_uint8_image(self):
|
|
'''
|
|
Tests that uint8 image (pixel values in [0, 255]) is not changed
|
|
'''
|
|
test_image = np.random.randint(0, 256, size=(3, 32, 32), dtype=np.uint8)
|
|
scale_factor = summary._calc_scale_factor(test_image)
|
|
self.assertEqual(scale_factor, 1, msg='Values are already in [0, 255], scale factor should be 1')
|
|
|
|
def test_float32_image(self):
|
|
'''
|
|
Tests that float32 image (pixel values in [0, 1]) are scaled correctly
|
|
to [0, 255]
|
|
'''
|
|
test_image = np.random.rand(3, 32, 32).astype(np.float32)
|
|
scale_factor = summary._calc_scale_factor(test_image)
|
|
self.assertEqual(scale_factor, 255, msg='Values are in [0, 1], scale factor should be 255')
|
|
|
|
def test_list_input(self):
|
|
with self.assertRaises(Exception) as e_info:
|
|
summary.histogram('dummy', [1, 3, 4, 5, 6], 'tensorflow')
|
|
|
|
def test_empty_input(self):
|
|
with self.assertRaises(Exception) as e_info:
|
|
summary.histogram('dummy', np.ndarray(0), 'tensorflow')
|
|
|
|
def test_image_with_boxes(self):
|
|
self.assertTrue(compare_image_proto(summary.image_boxes('dummy',
|
|
tensor_N(shape=(3, 32, 32)),
|
|
np.array([[10, 10, 40, 40]])),
|
|
self))
|
|
|
|
def test_image_with_one_channel(self):
|
|
self.assertTrue(compare_image_proto(
|
|
summary.image('dummy',
|
|
tensor_N(shape=(1, 8, 8)),
|
|
dataformats='CHW'),
|
|
self)) # noqa: E131
|
|
|
|
def test_image_with_one_channel_batched(self):
|
|
self.assertTrue(compare_image_proto(
|
|
summary.image('dummy',
|
|
tensor_N(shape=(2, 1, 8, 8)),
|
|
dataformats='NCHW'),
|
|
self)) # noqa: E131
|
|
|
|
def test_image_with_3_channel_batched(self):
|
|
self.assertTrue(compare_image_proto(
|
|
summary.image('dummy',
|
|
tensor_N(shape=(2, 3, 8, 8)),
|
|
dataformats='NCHW'),
|
|
self)) # noqa: E131
|
|
|
|
def test_image_without_channel(self):
|
|
self.assertTrue(compare_image_proto(
|
|
summary.image('dummy',
|
|
tensor_N(shape=(8, 8)),
|
|
dataformats='HW'),
|
|
self)) # noqa: E131
|
|
|
|
def test_video(self):
|
|
try:
|
|
import moviepy # noqa: F401
|
|
except ImportError:
|
|
return
|
|
self.assertTrue(compare_proto(summary.video('dummy', tensor_N(shape=(4, 3, 1, 8, 8))), self))
|
|
summary.video('dummy', np.random.rand(16, 48, 1, 28, 28))
|
|
summary.video('dummy', np.random.rand(20, 7, 1, 8, 8))
|
|
|
|
def test_audio(self):
|
|
self.assertTrue(compare_proto(summary.audio('dummy', tensor_N(shape=(42,))), self))
|
|
|
|
def test_text(self):
|
|
self.assertTrue(compare_proto(summary.text('dummy', 'text 123'), self))
|
|
|
|
def test_histogram_auto(self):
|
|
self.assertTrue(compare_proto(summary.histogram('dummy', tensor_N(shape=(1024,)), bins='auto', max_bins=5), self))
|
|
|
|
def test_histogram_fd(self):
|
|
self.assertTrue(compare_proto(summary.histogram('dummy', tensor_N(shape=(1024,)), bins='fd', max_bins=5), self))
|
|
|
|
def test_histogram_doane(self):
|
|
self.assertTrue(compare_proto(summary.histogram('dummy', tensor_N(shape=(1024,)), bins='doane', max_bins=5), self))
|
|
|
|
def test_custom_scalars(self):
|
|
layout = {
|
|
'Taiwan': {
|
|
'twse': ['Multiline', ['twse/0050', 'twse/2330']]
|
|
},
|
|
'USA': {
|
|
'dow': ['Margin', ['dow/aaa', 'dow/bbb', 'dow/ccc']],
|
|
'nasdaq': ['Margin', ['nasdaq/aaa', 'nasdaq/bbb', 'nasdaq/ccc']]
|
|
}
|
|
}
|
|
summary.custom_scalars(layout) # only smoke test. Because protobuf in python2/3 serialize dictionary differently.
|
|
|
|
def test_hparams_smoke(self):
|
|
hp = {'lr': 0.1, 'bsize': 4}
|
|
mt = {'accuracy': 0.1, 'loss': 10}
|
|
summary.hparams(hp, mt) # only smoke test. Because protobuf in python2/3 serialize dictionary differently.
|
|
|
|
hp = {'use_magic': True, 'init_string': "42"}
|
|
mt = {'accuracy': 0.1, 'loss': 10}
|
|
summary.hparams(hp, mt)
|
|
|
|
mt = {'accuracy': torch.zeros(1), 'loss': torch.zeros(1)}
|
|
summary.hparams(hp, mt)
|
|
|
|
def test_hparams_wrong_parameter(self):
|
|
with self.assertRaises(TypeError):
|
|
summary.hparams([], {})
|
|
with self.assertRaises(TypeError):
|
|
summary.hparams({}, [])
|
|
with self.assertRaises(ValueError):
|
|
res = summary.hparams({'pytorch': [1, 2]}, {'accuracy': 2.0})
|
|
# metric data is used in writer.py so the code path is different, which leads to different exception type.
|
|
with self.assertRaises(NotImplementedError):
|
|
with self.createSummaryWriter() as writer:
|
|
writer.add_hparams({'pytorch': 1.0}, {'accuracy': [1, 2]})
|
|
|
|
def test_hparams_number(self):
|
|
hp = {'lr': 0.1}
|
|
mt = {'accuracy': 0.1}
|
|
self.assertTrue(compare_proto(summary.hparams(hp, mt), self))
|
|
|
|
def test_hparams_bool(self):
|
|
hp = {'bool_var': True}
|
|
mt = {'accuracy': 0.1}
|
|
self.assertTrue(compare_proto(summary.hparams(hp, mt), self))
|
|
|
|
def test_hparams_string(self):
|
|
hp = {'string_var': "hi"}
|
|
mt = {'accuracy': 0.1}
|
|
self.assertTrue(compare_proto(summary.hparams(hp, mt), self))
|
|
|
|
def test_hparams_domain_discrete(self):
|
|
hp = {"lr": 0.1, "bool_var": True, "string_var": "hi"}
|
|
mt = {"accuracy": 0.1}
|
|
hp_domain = {"lr": [0.1], "bool_var": [True], "string_var": ["hi"]}
|
|
|
|
# hparam_domain_discrete keys needs to be subset of hparam_dict keys
|
|
with self.assertRaises(TypeError):
|
|
summary.hparams(hp, mt, hparam_domain_discrete={"wrong_key": []})
|
|
|
|
# hparam_domain_discrete values needs to be same type as hparam_dict values
|
|
with self.assertRaises(TypeError):
|
|
summary.hparams(hp, mt, hparam_domain_discrete={"lr": [True]})
|
|
|
|
# only smoke test. Because protobuf map serialization is nondeterministic.
|
|
summary.hparams(hp, mt, hparam_domain_discrete=hp_domain)
|
|
|
|
def test_mesh(self):
|
|
v = np.array([[[1, 1, 1], [-1, -1, 1], [1, -1, -1], [-1, 1, -1]]], dtype=float)
|
|
c = np.array([[[255, 0, 0], [0, 255, 0], [0, 0, 255], [255, 0, 255]]], dtype=int)
|
|
f = np.array([[[0, 2, 3], [0, 3, 1], [0, 1, 2], [1, 3, 2]]], dtype=int)
|
|
mesh = summary.mesh('my_mesh', vertices=v, colors=c, faces=f, config_dict=None)
|
|
self.assertTrue(compare_proto(mesh, self))
|
|
|
|
def test_scalar_new_style(self):
|
|
scalar = summary.scalar('test_scalar', 1.0, new_style=True)
|
|
self.assertTrue(compare_proto(scalar, self))
|
|
|
|
def remove_whitespace(string):
|
|
return string.replace(' ', '').replace('\t', '').replace('\n', '')
|
|
|
|
def get_expected_file(function_ptr):
|
|
module_id = function_ptr.__class__.__module__
|
|
test_file = sys.modules[module_id].__file__
|
|
# Look for the .py file (since __file__ could be pyc).
|
|
test_file = ".".join(test_file.split('.')[:-1]) + '.py'
|
|
|
|
# Use realpath to follow symlinks appropriately.
|
|
test_dir = os.path.dirname(os.path.realpath(test_file))
|
|
functionName = function_ptr.id().split('.')[-1]
|
|
return os.path.join(test_dir,
|
|
"expect",
|
|
'TestTensorBoard.' + functionName + ".expect")
|
|
|
|
def read_expected_content(function_ptr):
|
|
expected_file = get_expected_file(function_ptr)
|
|
assert os.path.exists(expected_file)
|
|
with open(expected_file, "r") as f:
|
|
return f.read()
|
|
|
|
def compare_image_proto(actual_proto, function_ptr):
|
|
expected_str = read_expected_content(function_ptr)
|
|
expected_proto = Summary()
|
|
text_format.Parse(expected_str, expected_proto)
|
|
|
|
[actual, expected] = [actual_proto.value[0], expected_proto.value[0]]
|
|
actual_img = Image.open(io.BytesIO(actual.image.encoded_image_string))
|
|
expected_img = Image.open(io.BytesIO(expected.image.encoded_image_string))
|
|
|
|
return (
|
|
actual.tag == expected.tag and
|
|
actual.image.height == expected.image.height and
|
|
actual.image.width == expected.image.width and
|
|
actual.image.colorspace == expected.image.colorspace and
|
|
actual_img == expected_img
|
|
)
|
|
|
|
def compare_proto(str_to_compare, function_ptr):
|
|
expected = read_expected_content(function_ptr)
|
|
str_to_compare = str(str_to_compare)
|
|
return remove_whitespace(str_to_compare) == remove_whitespace(expected)
|
|
|
|
def write_proto(str_to_compare, function_ptr):
|
|
expected_file = get_expected_file(function_ptr)
|
|
with open(expected_file, 'w') as f:
|
|
f.write(str(str_to_compare))
|
|
|
|
class TestTensorBoardPytorchGraph(BaseTestCase):
|
|
def test_pytorch_graph(self):
|
|
dummy_input = (torch.zeros(1, 3),)
|
|
|
|
class myLinear(torch.nn.Module):
|
|
def __init__(self):
|
|
super(myLinear, self).__init__()
|
|
self.l = torch.nn.Linear(3, 5)
|
|
|
|
def forward(self, x):
|
|
return self.l(x)
|
|
|
|
with self.createSummaryWriter() as w:
|
|
w.add_graph(myLinear(), dummy_input)
|
|
|
|
actual_proto, _ = graph(myLinear(), dummy_input)
|
|
|
|
expected_str = read_expected_content(self)
|
|
expected_proto = GraphDef()
|
|
text_format.Parse(expected_str, expected_proto)
|
|
|
|
self.assertEqual(len(expected_proto.node), len(actual_proto.node))
|
|
for i in range(len(expected_proto.node)):
|
|
expected_node = expected_proto.node[i]
|
|
actual_node = actual_proto.node[i]
|
|
self.assertEqual(expected_node.name, actual_node.name)
|
|
self.assertEqual(expected_node.op, actual_node.op)
|
|
self.assertEqual(expected_node.input, actual_node.input)
|
|
self.assertEqual(expected_node.device, actual_node.device)
|
|
self.assertEqual(
|
|
sorted(expected_node.attr.keys()), sorted(actual_node.attr.keys()))
|
|
|
|
def test_nested_nn_squential(self):
|
|
|
|
dummy_input = torch.randn(2, 3)
|
|
|
|
class InnerNNSquential(torch.nn.Module):
|
|
def __init__(self, dim1, dim2):
|
|
super().__init__()
|
|
self.inner_nn_squential = torch.nn.Sequential(
|
|
torch.nn.Linear(dim1, dim2),
|
|
torch.nn.Linear(dim2, dim1),
|
|
)
|
|
|
|
def forward(self, x):
|
|
x = self.inner_nn_squential(x)
|
|
return x
|
|
|
|
class OuterNNSquential(torch.nn.Module):
|
|
def __init__(self, dim1=3, dim2=4, depth=2):
|
|
super().__init__()
|
|
layers = []
|
|
for _ in range(depth):
|
|
layers.append(InnerNNSquential(dim1, dim2))
|
|
self.outer_nn_squential = torch.nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
x = self.outer_nn_squential(x)
|
|
return x
|
|
|
|
with self.createSummaryWriter() as w:
|
|
w.add_graph(OuterNNSquential(), dummy_input)
|
|
|
|
actual_proto, _ = graph(OuterNNSquential(), dummy_input)
|
|
|
|
expected_str = read_expected_content(self)
|
|
expected_proto = GraphDef()
|
|
text_format.Parse(expected_str, expected_proto)
|
|
|
|
self.assertEqual(len(expected_proto.node), len(actual_proto.node))
|
|
for i in range(len(expected_proto.node)):
|
|
expected_node = expected_proto.node[i]
|
|
actual_node = actual_proto.node[i]
|
|
self.assertEqual(expected_node.name, actual_node.name)
|
|
self.assertEqual(expected_node.op, actual_node.op)
|
|
self.assertEqual(expected_node.input, actual_node.input)
|
|
self.assertEqual(expected_node.device, actual_node.device)
|
|
self.assertEqual(
|
|
sorted(expected_node.attr.keys()), sorted(actual_node.attr.keys()))
|
|
|
|
def test_pytorch_graph_dict_input(self):
|
|
class Model(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.l = torch.nn.Linear(3, 5)
|
|
|
|
def forward(self, x):
|
|
return self.l(x)
|
|
|
|
class ModelDict(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.l = torch.nn.Linear(3, 5)
|
|
|
|
def forward(self, x):
|
|
return {"out": self.l(x)}
|
|
|
|
|
|
dummy_input = torch.zeros(1, 3)
|
|
|
|
with self.createSummaryWriter() as w:
|
|
w.add_graph(Model(), dummy_input)
|
|
|
|
with self.createSummaryWriter() as w:
|
|
w.add_graph(Model(), dummy_input, use_strict_trace=True)
|
|
|
|
# expect error: Encountering a dict at the output of the tracer...
|
|
with self.assertRaises(RuntimeError):
|
|
with self.createSummaryWriter() as w:
|
|
w.add_graph(ModelDict(), dummy_input, use_strict_trace=True)
|
|
|
|
with self.createSummaryWriter() as w:
|
|
w.add_graph(ModelDict(), dummy_input, use_strict_trace=False)
|
|
|
|
|
|
def test_mlp_graph(self):
|
|
dummy_input = (torch.zeros(2, 1, 28, 28),)
|
|
|
|
# This MLP class with the above input is expected
|
|
# to fail JIT optimizations as seen at
|
|
# https://github.com/pytorch/pytorch/issues/18903
|
|
#
|
|
# However, it should not raise an error during
|
|
# the add_graph call and still continue.
|
|
class myMLP(torch.nn.Module):
|
|
def __init__(self):
|
|
super(myMLP, self).__init__()
|
|
self.input_len = 1 * 28 * 28
|
|
self.fc1 = torch.nn.Linear(self.input_len, 1200)
|
|
self.fc2 = torch.nn.Linear(1200, 1200)
|
|
self.fc3 = torch.nn.Linear(1200, 10)
|
|
|
|
def forward(self, x, update_batch_stats=True):
|
|
h = torch.nn.functional.relu(
|
|
self.fc1(x.view(-1, self.input_len)))
|
|
h = self.fc2(h)
|
|
h = torch.nn.functional.relu(h)
|
|
h = self.fc3(h)
|
|
return h
|
|
|
|
with self.createSummaryWriter() as w:
|
|
w.add_graph(myMLP(), dummy_input)
|
|
|
|
def test_wrong_input_size(self):
|
|
with self.assertRaises(RuntimeError) as e_info:
|
|
dummy_input = torch.rand(1, 9)
|
|
model = torch.nn.Linear(3, 5)
|
|
with self.createSummaryWriter() as w:
|
|
w.add_graph(model, dummy_input) # error
|
|
|
|
@skipIfNoTorchVision
|
|
def test_torchvision_smoke(self):
|
|
model_input_shapes = {
|
|
'alexnet': (2, 3, 224, 224),
|
|
'resnet34': (2, 3, 224, 224),
|
|
'resnet152': (2, 3, 224, 224),
|
|
'densenet121': (2, 3, 224, 224),
|
|
'vgg16': (2, 3, 224, 224),
|
|
'vgg19': (2, 3, 224, 224),
|
|
'vgg16_bn': (2, 3, 224, 224),
|
|
'vgg19_bn': (2, 3, 224, 224),
|
|
'mobilenet_v2': (2, 3, 224, 224),
|
|
}
|
|
for model_name, input_shape in model_input_shapes.items():
|
|
with self.createSummaryWriter() as w:
|
|
model = getattr(torchvision.models, model_name)()
|
|
w.add_graph(model, torch.zeros(input_shape))
|
|
|
|
class TestTensorBoardFigure(BaseTestCase):
|
|
@skipIfNoMatplotlib
|
|
def test_figure(self):
|
|
writer = self.createSummaryWriter()
|
|
|
|
figure, axes = plt.figure(), plt.gca()
|
|
circle1 = plt.Circle((0.2, 0.5), 0.2, color='r')
|
|
circle2 = plt.Circle((0.8, 0.5), 0.2, color='g')
|
|
axes.add_patch(circle1)
|
|
axes.add_patch(circle2)
|
|
plt.axis('scaled')
|
|
plt.tight_layout()
|
|
|
|
writer.add_figure("add_figure/figure", figure, 0, close=False)
|
|
self.assertTrue(plt.fignum_exists(figure.number))
|
|
|
|
writer.add_figure("add_figure/figure", figure, 1)
|
|
if matplotlib.__version__ != '3.3.0':
|
|
self.assertFalse(plt.fignum_exists(figure.number))
|
|
else:
|
|
print("Skipping fignum_exists, see https://github.com/matplotlib/matplotlib/issues/18163")
|
|
|
|
writer.close()
|
|
|
|
@skipIfNoMatplotlib
|
|
def test_figure_list(self):
|
|
writer = self.createSummaryWriter()
|
|
|
|
figures = []
|
|
for i in range(5):
|
|
figure = plt.figure()
|
|
plt.plot([i * 1, i * 2, i * 3], label="Plot " + str(i))
|
|
plt.xlabel("X")
|
|
plt.xlabel("Y")
|
|
plt.legend()
|
|
plt.tight_layout()
|
|
figures.append(figure)
|
|
|
|
writer.add_figure("add_figure/figure_list", figures, 0, close=False)
|
|
self.assertTrue(all([plt.fignum_exists(figure.number) is True for figure in figures])) # noqa: F812
|
|
|
|
writer.add_figure("add_figure/figure_list", figures, 1)
|
|
if matplotlib.__version__ != '3.3.0':
|
|
self.assertTrue(all([plt.fignum_exists(figure.number) is False for figure in figures])) # noqa: F812
|
|
else:
|
|
print("Skipping fignum_exists, see https://github.com/matplotlib/matplotlib/issues/18163")
|
|
|
|
writer.close()
|
|
|
|
class TestTensorBoardNumpy(BaseTestCase):
|
|
def test_scalar(self):
|
|
res = make_np(1.1)
|
|
self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,))
|
|
res = make_np(1 << 64 - 1) # uint64_max
|
|
self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,))
|
|
res = make_np(np.float16(1.00000087))
|
|
self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,))
|
|
res = make_np(np.float128(1.00008 + 9))
|
|
self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,))
|
|
res = make_np(np.int64(100000000000))
|
|
self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,))
|
|
|
|
@skipIfNoCaffe2
|
|
def test_caffe2_np(self):
|
|
workspace.FeedBlob("testBlob", tensor_N(shape=(1, 3, 64, 64)))
|
|
self.assertIsInstance(make_np('testBlob'), np.ndarray)
|
|
|
|
@skipIfNoCaffe2
|
|
def test_caffe2_np_expect_fail(self):
|
|
with self.assertRaises(RuntimeError):
|
|
res = make_np('This_blob_does_not_exist')
|
|
|
|
def test_pytorch_np_expect_fail(self):
|
|
with self.assertRaises(NotImplementedError):
|
|
res = make_np({'pytorch': 1.0})
|
|
|
|
@skipIfNoCaffe2
|
|
@unittest.skipIf(TEST_WITH_ASAN, "Caffe2 failure with ASAN")
|
|
def test_caffe2_simple_model(self):
|
|
model = ModelHelper(name="mnist")
|
|
# how come those inputs don't break the forward pass =.=a
|
|
workspace.FeedBlob("data", np.random.randn(1, 3, 64, 64).astype(np.float32))
|
|
workspace.FeedBlob("label", np.random.randn(1, 1000).astype(np.int))
|
|
|
|
with core.NameScope("conv1"):
|
|
conv1 = brew.conv(model, "data", 'conv1', dim_in=1, dim_out=20, kernel=5)
|
|
# Image size: 24 x 24 -> 12 x 12
|
|
pool1 = brew.max_pool(model, conv1, 'pool1', kernel=2, stride=2)
|
|
# Image size: 12 x 12 -> 8 x 8
|
|
conv2 = brew.conv(model, pool1, 'conv2', dim_in=20, dim_out=100, kernel=5)
|
|
# Image size: 8 x 8 -> 4 x 4
|
|
pool2 = brew.max_pool(model, conv2, 'pool2', kernel=2, stride=2)
|
|
with core.NameScope("classifier"):
|
|
# 50 * 4 * 4 stands for dim_out from previous layer multiplied by the image size
|
|
fc3 = brew.fc(model, pool2, 'fc3', dim_in=100 * 4 * 4, dim_out=500)
|
|
relu = brew.relu(model, fc3, fc3)
|
|
pred = brew.fc(model, relu, 'pred', 500, 10)
|
|
softmax = brew.softmax(model, pred, 'softmax')
|
|
xent = model.LabelCrossEntropy([softmax, "label"], 'xent')
|
|
# compute the expected loss
|
|
loss = model.AveragedLoss(xent, "loss")
|
|
model.net.RunAllOnMKL()
|
|
model.param_init_net.RunAllOnMKL()
|
|
model.AddGradientOperators([loss], skip=1)
|
|
blob_name_tracker = {}
|
|
graph = c2_graph.model_to_graph_def(
|
|
model,
|
|
blob_name_tracker=blob_name_tracker,
|
|
shapes={},
|
|
show_simplified=False,
|
|
)
|
|
compare_proto(graph, self)
|
|
|
|
@skipIfNoCaffe2
|
|
def test_caffe2_simple_cnnmodel(self):
|
|
model = cnn.CNNModelHelper("NCHW", name="overfeat")
|
|
workspace.FeedBlob("data", np.random.randn(1, 3, 64, 64).astype(np.float32))
|
|
workspace.FeedBlob("label", np.random.randn(1, 1000).astype(np.int))
|
|
with core.NameScope("conv1"):
|
|
conv1 = model.Conv("data", "conv1", 3, 96, 11, stride=4)
|
|
relu1 = model.Relu(conv1, conv1)
|
|
pool1 = model.MaxPool(relu1, "pool1", kernel=2, stride=2)
|
|
with core.NameScope("classifier"):
|
|
fc = model.FC(pool1, "fc", 4096, 1000)
|
|
pred = model.Softmax(fc, "pred")
|
|
xent = model.LabelCrossEntropy([pred, "label"], "xent")
|
|
loss = model.AveragedLoss(xent, "loss")
|
|
|
|
blob_name_tracker = {}
|
|
graph = c2_graph.model_to_graph_def(
|
|
model,
|
|
blob_name_tracker=blob_name_tracker,
|
|
shapes={},
|
|
show_simplified=False,
|
|
)
|
|
compare_proto(graph, self)
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|