Files
pytorch/test/distributed/optim/test_zero_redundancy_optimizer.py
jambayk 133673e8d2 [LTS] CherryPick: Add multi gpu checker for TestZeroRedundancyOptimizer.test_collect_shards (#72923)
* [TestZeroRedundancyOptimizer] Add multi gpu checker (#53564)

Summary:
The test test_collect_shards fails on single GPU setup.
Enabling the multi gpu checker.

Signed-off-by: Jagadish Krishnamoorthy <jagdish.krishna@gmail.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/53564

Reviewed By: H-Huang

Differential Revision: D26952325

Pulled By: rohan-varma

fbshipit-source-id: e8956f9277c7320024bece129767e83fbdf02b2c

* fix skip_if_not_multigpu

Co-authored-by: Jagadish Krishnamoorthy <jagdish.krishna@gmail.com>
2022-03-04 10:13:33 -08:00

563 lines
22 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
# type: ignore
import os
import numpy as np
import unittest
import torch
import torch.distributed as dist
from typing import List, Any, Type, cast
from torch.distributed.optim import ZeroRedundancyOptimizer
from torch.optim import SGD
from torch.testing._internal.common_distributed import skip_if_no_gpu, skip_if_not_multigpu, MultiProcessTestCase
from torch.distributed.optim.zero_redundancy_optimizer import _broadcast_object
from torch.testing._internal.common_distributed import skip_if_rocm
import copy
from torch.nn.parallel import DistributedDataParallel as DDP
from contextlib import suppress
BACKEND = dist.Backend.NCCL if torch.cuda.is_available() else dist.Backend.GLOO # type: ignore
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
class TestZeroRedundancyOptimizer(MultiProcessTestCase):
def setUp(self):
super(TestZeroRedundancyOptimizer, self).setUp()
os.environ["WORLD_SIZE"] = str(self.world_size)
self._spawn_processes()
@property
def device(self):
return torch.device(self.rank) if BACKEND == dist.Backend.NCCL else torch.device("cpu")
@property
def world_size(self):
return 1
def tearDown(self):
try:
torch.distributed.destroy_process_group()
except AssertionError:
pass
try:
os.remove(self.file_name)
except OSError:
pass
def dist_init(self, rank, world_size=-1):
store = dist.FileStore(self.file_name, self.world_size if world_size < 1 else world_size)
return dist.init_process_group(backend=BACKEND, store=store, rank=rank, world_size=self.world_size)
class TestZeroRedundancyOptimizerSingleRank(TestZeroRedundancyOptimizer):
def test_state_dict(self):
"""Check that the ZeroRedundancyOptimizer exposes the expected state dict interface,
irrespective of the sharding.
"""
self.dist_init(self.rank)
x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
o = ZeroRedundancyOptimizer([x], optim=SGD, lr=0.1, momentum=0.9)
x.backward()
o.step()
self.assertEqual(x, torch.tensor([0.9], device=DEVICE))
self.assertEqual(o.optim.state[x]["momentum_buffer"], torch.tensor([1.0], device=DEVICE))
o.zero_grad()
o.consolidate_state_dict() # Sync state dict in between replicas - even if there are none
state_dict = o.state_dict()
# Check that the state dict is pytorch-compliant key wise
self.assertIn("param_groups", state_dict.keys())
self.assertIn("state", state_dict.keys())
# Check that the pulled state is what we expect, and that we have all the expected keys
self.assertEqual(state_dict["param_groups"][0]["lr"], 0.1)
self.assertEqual(state_dict["param_groups"][0]["momentum"], 0.9)
self.assertFalse(state_dict["param_groups"][0]["nesterov"])
self.assertEqual(state_dict["param_groups"][0]["weight_decay"], 0.0)
self.assertEqual(state_dict["param_groups"][0]["dampening"], 0.0)
# Check that the pulled state and the .param_groups attribute are in sync
for k in state_dict["param_groups"][0].keys():
if k != "params":
self.assertEqual(state_dict["param_groups"][0][k], o.param_groups[0][k])
# Check that it's correctly loaded
o = ZeroRedundancyOptimizer([x], optim=SGD, lr=0.01)
o.load_state_dict(state_dict)
# Check that state is correct and on proper device
self.assertEqual(o.optim.state[x]["momentum_buffer"], torch.tensor([1.0], device=DEVICE))
# We should now be using a lr of 0.1, both within the optimizer
# and as exposed by the .param_groups attribute
assert o.param_groups[0]["lr"] == 0.1
x.backward()
o.step()
self.assertEqual(x, torch.tensor([0.71], device=DEVICE))
self.assertEqual(o.optim.state[x]["momentum_buffer"], torch.tensor([1.9], device=DEVICE))
# Check that the exposed param_groups are on the proper device
self.assertEqual(o.param_groups[0]["params"][0].device, x.device)
def test_lr_scheduler(self):
""" Check that a normal torch lr_scheduler is usable with ZeroRedundancyOptimizer"""
self.dist_init(self.rank)
x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
x2 = torch.tensor([1.0], device=DEVICE, requires_grad=True)
o = ZeroRedundancyOptimizer([x], optim=SGD, lr=0.01)
o2 = torch.optim.SGD([x2], lr=0.01)
s = torch.optim.lr_scheduler.StepLR(o, 1)
s2 = torch.optim.lr_scheduler.StepLR(o2, 1)
for _ in range(5):
x.backward()
o.zero_grad()
o.step()
s.step()
x2.backward()
o2.zero_grad()
o2.step()
s2.step()
self.assertEqual(x, x2)
def test_step_with_kwargs(self):
""" Check that the `step(**kwargs)` interface is properly exposed"""
self.dist_init(self.rank)
class SGDWithStepKWArg(torch.optim.SGD):
def step(self, closure=None, kwarg=None):
super().step()
kwarg.append(5)
kwarg: List[Any] = []
x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
o = ZeroRedundancyOptimizer([x], optim=SGDWithStepKWArg, lr=0.1)
x.backward()
o.step(0, kwarg=kwarg)
self.assertEqual(kwarg, [5])
self.assertEqual(x, torch.tensor([0.9], device=DEVICE))
def test_step_with_extra_inner_key(self):
"""Check that an optimizer adding extra keys to the param_groups
is properly handled, in that the new key is exposed to the user
"""
self.dist_init(self.rank)
class SGDWithNewKey(torch.optim.SGD):
# Dummy optimizer which adds a new key to the param groups
def step(self, closure=None):
super().step()
self.param_groups[0]["new_key"] = 0.1
x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
o = ZeroRedundancyOptimizer([x], optim=SGDWithNewKey, lr=0.1)
x.backward()
o.step()
self.assertEqual(o.param_groups[0]["new_key"], 0.1)
self.assertEqual(x, torch.tensor([0.9], device=DEVICE))
def test_step_without_closure(self):
"""Check that the step() method (without closure) is handlded as expected"""
self.dist_init(self.rank)
class SGDWithoutClosure(torch.optim.SGD):
def step(self):
return super().step()
x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
o = ZeroRedundancyOptimizer([x], optim=SGDWithoutClosure, lr=0.1)
x.backward()
o.step()
self.assertEqual(x, torch.tensor([0.9], device=DEVICE))
def test_local_state_dict(self):
"""Check that it's possible to pull a local state dict
.. warning: probably deprecated in the near future
"""
self.dist_init(self.rank)
x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
o = ZeroRedundancyOptimizer([x], optim=SGD, lr=0.1)
local_state_dict = o.local_state_dict()
o = ZeroRedundancyOptimizer([x], optim=SGD, lr=0.01)
o.load_local_state_dict(local_state_dict)
# We should now be using a lr of 0.1.
self.assertEqual(o.optim.param_groups[0]["lr"], 0.1)
self.assertEqual(o.param_groups[0]["lr"], 0.1)
x.backward()
o.step()
self.assertEqual(x, torch.tensor([0.9], device=DEVICE))
def test_implicit_local_state_dict(self):
"""Check that it's possible to pull a local state dict
.. warning: probably deprecated in the near future
"""
self.dist_init(self.rank)
x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
o = ZeroRedundancyOptimizer([x], optim=SGD, lr=0.1)
local_state_dict = o.state_dict()
o = ZeroRedundancyOptimizer([x], optim=SGD, lr=0.01)
o.load_state_dict(local_state_dict)
# We should now be using a lr of 0.1.
self.assertEqual(o.optim.param_groups[0]["lr"], 0.1)
self.assertEqual(o.param_groups[0]["lr"], 0.1)
x.backward()
o.step()
self.assertEqual(x, torch.tensor([0.9], device=DEVICE))
def test_zero_grad(self):
"""Check that the zero_grad attribute is properly handled"""
self.dist_init(self.rank)
x = torch.rand(1)
m = torch.nn.Linear(1, 1)
o = ZeroRedundancyOptimizer(m.parameters(), optim=SGD, lr=0.1)
y = m(x)
y.backward(x)
self.assertNotEqual(m.weight.grad, torch.zeros_like(m.weight))
self.assertNotEqual(m.weight.grad, torch.zeros_like(m.weight))
o.zero_grad()
self.assertFalse(m.weight.grad)
self.assertFalse(m.bias.grad)
class TestZeroRedundancyOptimizerDistributed(TestZeroRedundancyOptimizer):
@property
def world_size(self):
return max(2, torch.cuda.device_count())
@skip_if_rocm
def test_step(self):
""" Check that the ZeroRedundancyOptimizer wrapper properly exposes the `.step()` interface"""
if self.rank > 1 or (BACKEND == dist.Backend.NCCL and torch.cuda.device_count() < 2):
return
self.dist_init(self.rank, world_size=2)
context = suppress() if not torch.cuda.is_available() else torch.cuda.device(self.rank)
with context:
x = torch.tensor([float(self.rank + 1)], device=self.device)
m = torch.nn.Linear(1, 1)
m.weight.data = torch.tensor([[1.0]])
m.bias.data = torch.tensor([2.0])
m.to(self.device)
o = ZeroRedundancyOptimizer(m.parameters(), optim=SGD, lr=0.1)
y = m(x)
y.backward(x)
for p in m.parameters():
dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
p.grad.data /= self.world_size
o.step()
self.assertEqual(m.weight, torch.tensor([[0.75]], device=self.device))
self.assertEqual(m.bias, torch.tensor([1.85], device=self.device))
@skip_if_rocm
def test_step_with_closure(self):
""" Check that the ZeroRedundancyOptimizer wrapper properly exposes the `.step(closure)` interface"""
if self.rank > 1 or (BACKEND == dist.Backend.NCCL and torch.cuda.device_count() < 2):
return
self.dist_init(self.rank, world_size=2)
context = suppress() if not torch.cuda.is_available() else torch.cuda.device(self.rank)
with context:
x_val = self.rank + 1
weight = 1.0
bias = 2.0
error = 1.0
target = torch.tensor([x_val * weight + bias + error], device=self.device)
loss_fn = torch.nn.L1Loss()
x = torch.tensor([float(x_val)], device=self.device)
m = torch.nn.Linear(1, 1)
m.weight.data = torch.tensor([[weight]])
m.bias.data = torch.tensor([bias])
m.to(self.device)
o = ZeroRedundancyOptimizer(m.parameters(), optim=SGD, lr=0.1)
y = m(x)
y.backward(x)
for p in m.parameters():
dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
p.grad.data /= self.world_size
def closure():
o.zero_grad()
output = m(x)
loss = loss_fn(output, target)
loss.backward()
return loss
loss = o.step(closure=closure)
self.assertEqual(loss, torch.tensor(error))
self.assertEqual(m.weight, torch.tensor([[1.1]]))
self.assertEqual(m.bias, torch.tensor([2.1]))
def test_sharding(self):
""" Check the sharding at construction time"""
self.dist_init(self.rank)
sizes = [9, 7, 5, 3]
params = []
for size in sizes * self.world_size:
params.append(torch.rand(size, 1))
o = ZeroRedundancyOptimizer(params, optim=SGD, lr=0.1)
self.assertEqual(sum([x.numel() for x in o.optim.param_groups[0]["params"]]), sum(sizes))
def test_add_param_group(self):
"""Check that ZeroRedundancyOptimizer properly handles adding a new param_group a posteriori,
and that all ranks get a shard
"""
self.dist_init(self.rank)
# Test with all parameters trainable to begin with
def all_trainable():
params = []
sizes = [9, 7, 5, 3]
sizes_world = sizes * self.world_size
for size in sizes_world[:-1]:
params.append(torch.rand(size, 1))
# Make sure that the params are trainable, enforces size-based partitioning
for p in params:
p.requires_grad = True
o = ZeroRedundancyOptimizer(params, optim=SGD, lr=0.1)
assert len(o.param_groups) == 1
o.add_param_group({"params": [torch.rand(3, 1)]})
assert len(o.param_groups) == 2
# Verify that added group is added to the correct partition making all have the same elements.
assert sum([x.numel() for g in o.optim.param_groups for x in g["params"]]) == sum(sizes)
assert len(o.optim.param_groups) == 2
# Test a pathological config with a first big non-trainable param
def some_trainable():
params = []
for size in [100, 3, 5, 2, 6, 4]:
params.append(torch.rand(size, 1))
# Make sure that the params are trainable, enforces size-based partitioning
for p in params[1:]:
p.requires_grad = True
o = ZeroRedundancyOptimizer(params, optim=SGD, lr=0.1)
assert len(o.param_groups) == 1
o.add_param_group({"params": [torch.rand(3, 1)]})
assert len(o.param_groups) == 2
assert len(o.optim.param_groups) == 2
all_trainable()
some_trainable()
@skip_if_not_multigpu
def test_collect_shards(self):
""" Check the state consolidation mechanism, and the state dict exposed by ZeroRedundancyOptimizer"""
self.dist_init(self.rank)
RECIPIENT_RANK = 0
# Run a dummy step so that the optimizer state dict exists
batch, input_width, hidden, target_width = 3, 20, 10, 5
target = torch.rand((batch, target_width), device=self.device)
inputs = torch.rand((batch, input_width), device=self.device)
model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width))
model.to(self.device)
loss_fn = torch.nn.L1Loss()
loss_fn.to(self.device)
# With SGD, Momentum is required to get a state to shard
optimizer = ZeroRedundancyOptimizer(model.parameters(), optim=SGD, lr=0.1, momentum=0.99)
def closure():
optimizer.zero_grad()
output = model(inputs)
loss = loss_fn(output, target)
loss.backward()
return loss
_ = optimizer.step(closure=closure)
# Update the optimizer state on the reference rank
optimizer.consolidate_state_dict(recipient_rank=RECIPIENT_RANK)
# Fetch the state on the reference rank
# - check that it has the correct size
# - load it again
if self.rank == RECIPIENT_RANK:
optimizer_state_dict = optimizer.state_dict()
self.assertEqual(len(optimizer_state_dict["state"]), self.world_size)
else:
optimizer_state_dict = {}
optimizer_state_dict = _broadcast_object(
optimizer_state_dict, src_rank=RECIPIENT_RANK, group=dist.group.WORLD, dist_device=self.device
)
# Load the optimizer state dict, check that no exception is raised
optimizer.load_state_dict(optimizer_state_dict)
def test_multiple_groups(self):
""" Check that the ZeroRedundancyOptimizer handles working with multiple process groups"""
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(backend="gloo", store=store, rank=self.rank, world_size=self.world_size)
# Only work with the even ranks, to check that the global_rank indexing is properly used
sub_group_ranks = list(filter(lambda x: x % 2 == 0, range(self.world_size)))
process_group = torch.distributed.new_group(ranks=sub_group_ranks, backend="gloo")
# Make sure that all the ranks get different training data
# So that the sync check in between their models is meaningful
torch.manual_seed(self.rank)
np.random.seed(self.rank)
# Standard deep learning setup
epochs, batch, input_width, hidden, target_width = 5, 3, 20, 10, 5
loss_fn = torch.nn.L1Loss().to(self.device)
def check(optimizer):
# Just run a couple of epochs, check that the model is properly updated
for _ in range(epochs):
target = torch.rand((batch, target_width), device=self.device)
inputs = torch.rand((batch, input_width), device=self.device)
def closure():
optimizer.zero_grad()
output = model(inputs)
loss = loss_fn(output, target)
loss /= self.world_size
loss.backward()
dist.all_reduce(loss, group=process_group) # Not strictly needed for the test below
return loss
_ = optimizer.step(closure=closure)
# Check that all the params are the same on all ranks
for pg in optimizer.param_groups:
for p in pg["params"]:
receptacle = [p.clone() for _ in sub_group_ranks] if self.rank == 0 else []
dist.gather(p, receptacle, dst=0, group=process_group)
if self.rank == 0:
for sync_p in receptacle[1:]:
assert torch.all(torch.eq(receptacle[0], sync_p)), "Models differ in between ranks"
if self.rank in sub_group_ranks:
# Model fitting in the broadcast bucket
model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width)).to(
self.device
)
# With SGD, Momentum is required to get a state to shard
optimizer = ZeroRedundancyOptimizer(
model.parameters(), optim=SGD, lr=0.1, momentum=0.99, group=process_group, bucket_cap_kb=2 ** 10
)
check(optimizer)
# Model not-fitting in the broadcast bucket
model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width)).to(
self.device
)
# With SGD, Momentum is required to get a state to shard
optimizer = ZeroRedundancyOptimizer(
model.parameters(), optim=SGD, lr=0.1, momentum=0.99, group=process_group, bucket_cap_kb=0
)
check(optimizer)
@skip_if_no_gpu
def test_pytorch_parity(self):
"""When combined with DDP, check that ZeroRedundancyOptimizer(optimizer) and the same monolithic optimizer
give the exact same results
"""
self.dist_init(self.rank)
with torch.cuda.device(self.rank):
torch.manual_seed(self.rank)
np.random.seed(self.rank)
def check_optimizer_equivalence(optimizer: Type[torch.optim.Optimizer]):
# Any model works. Add one different buffer per rank
model = torch.nn.Sequential(
torch.nn.Linear(2, 3),
torch.nn.Linear(3, 3),
torch.nn.Linear(3, 3),
)
model.register_buffer("test_buffer", torch.ones((1)) * self.rank)
model.to(self.device)
sharded_optimizer = ZeroRedundancyOptimizer(params=model.parameters(), optim=optimizer, lr=1e-3)
sharded_ddp_model = DDP(module=model, device_ids=[self.rank], broadcast_buffers=True)
ddp_model_single = copy.deepcopy(model)
ddp_model_single.to(self.device)
ddp_optimizer = optimizer(ddp_model_single.parameters(), lr=1e-3)
ddp_model = DDP(ddp_model_single, device_ids=[self.rank], broadcast_buffers=True)
def check_same_model_params():
for pg, ddp_pg in zip(sharded_optimizer.param_groups, ddp_optimizer.param_groups):
for p, ddp_p in zip(pg["params"], ddp_pg["params"]):
assert torch.allclose(
p, ddp_p, atol=1e-3
), f"Model parameters differ in between Pytorch optim and ZeroRedundancyOptimizer \n{p} {ddp_p}"
for b, ddp_b in zip(sharded_ddp_model.buffers(), ddp_model.buffers()):
assert torch.allclose(
b, ddp_b
), "Model buffers differ in between Pytorch optim and ZeroRedundancyOptimizer"
# The model should be synchronized in between the ranks at construction time, check that
check_same_model_params()
# The models should stay the same in between the ranks
for i in range(20):
input_tensor = torch.rand((64, 2))
def closure_ddp(input_tensor=input_tensor):
ddp_optimizer.zero_grad()
ddp_loss = ddp_model(input_tensor).abs().sum()
ddp_loss.backward()
return ddp_loss
def closure_sharded(input_tensor=input_tensor):
sharded_optimizer.zero_grad()
sharded_loss = sharded_ddp_model(input_tensor).abs().sum()
sharded_loss.backward()
return sharded_loss
loss_ddp = cast(torch.Tensor, ddp_optimizer.step(closure=closure_ddp))
loss_sharded_optim = cast(torch.Tensor, sharded_optimizer.step(closure=closure_sharded))
assert torch.allclose(
loss_ddp, loss_sharded_optim
), "Losses differ in between Pytorch optim and ZeroRedundancyOptimizer"
check_same_model_params()
for opt in [torch.optim.SGD, torch.optim.Adam]:
check_optimizer_equivalence(opt)
if __name__ == "__main__":
unittest.main()