mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 21:49:24 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/12101 clean up some duplicate test code Reviewed By: ZolotukhinM Differential Revision: D10051914 fbshipit-source-id: 698ff144a85e8c70572116c5ddb415cd2396b4e3
344 lines
12 KiB
Python
344 lines
12 KiB
Python
# Copyright (c) 2016-present, Facebook, Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
##############################################################################
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
from hypothesis import given
|
|
import hypothesis.strategies as st
|
|
import numpy as np
|
|
|
|
from caffe2.python.transformations import Transformer
|
|
from caffe2.python import core, workspace
|
|
from caffe2.python import test_util as tu
|
|
|
|
transformer = Transformer()
|
|
|
|
|
|
class TestTransformations(tu.TestCase):
|
|
def _base_test_net(self):
|
|
net = core.Net("net")
|
|
net.Conv(["X", "w", "b"], ["Y"], stride=1, pad=0, kernel=3, order="NCHW")
|
|
return net
|
|
|
|
def _add_nnpack(self, net):
|
|
transformer.AddNNPACK(net)
|
|
assert tu.str_compare(net.Proto().op[0].engine, "NNPACK")
|
|
|
|
def _fuse_nnpack_convrelu(self, net, expected_result_num_ops,
|
|
expected_activation_arg=True):
|
|
self._add_nnpack(net)
|
|
transformer.FuseNNPACKConvRelu(net)
|
|
self.assertEquals(tu.numOps(net), expected_result_num_ops)
|
|
has_activation_arg = False
|
|
for arg in net.Proto().op[0].arg:
|
|
if tu.str_compare(arg.name, "activation"):
|
|
assert tu.str_compare(arg.s, "Relu")
|
|
has_activation_arg = True
|
|
if expected_activation_arg:
|
|
assert has_activation_arg
|
|
else:
|
|
assert not has_activation_arg
|
|
|
|
def test_transformer_AddNNPACK(self):
|
|
net = self._base_test_net()
|
|
net.Relu(["Y"], ["Y2"])
|
|
self._add_nnpack(net)
|
|
|
|
def test_transformer_FuseNNPACKConvRelu(self):
|
|
net = self._base_test_net()
|
|
net.Relu(["Y"], ["Y2"])
|
|
self._fuse_nnpack_convrelu(net, 1)
|
|
|
|
def test_noFuseNNPACKConvRelu(self):
|
|
net = self._base_test_net()
|
|
net.Relu(["Y"], ["Y2"])
|
|
net.Relu(["Y"], ["Y3"])
|
|
self._fuse_nnpack_convrelu(net, 3, expected_activation_arg=False)
|
|
|
|
def test_transformer_FuseNNPACKConvReluNoInplace(self):
|
|
net = self._base_test_net()
|
|
net.Relu(["Y"], ["X"])
|
|
self._fuse_nnpack_convrelu(net, 1)
|
|
assert net.Proto().op[0].output[0] != net.Proto().op[0].input[0]
|
|
|
|
def test_transformer_FuseNNPACKConvReluInplaceRelu(self):
|
|
net = self._base_test_net()
|
|
net.Relu(["Y"], ["Y"])
|
|
self._fuse_nnpack_convrelu(net, 1)
|
|
assert net.Proto().op[0].output[0] != net.Proto().op[0].input[0]
|
|
|
|
def test_transformer_FuseNNPACKConvReluPingPongNaming(self):
|
|
net = self._base_test_net()
|
|
net.Relu(["Y"], ["X"])
|
|
net.Conv(["X", "w", "b"], ["Y"], stride=1, pad=0, kernel=3, order="NCHW")
|
|
self._fuse_nnpack_convrelu(net, 2)
|
|
assert net.Proto().op[0].output[0] != net.Proto().op[0].input[0]
|
|
assert net.Proto().op[1].output[0] != net.Proto().op[1].input[0]
|
|
|
|
def test_transformer_FuseNNPACKConvReluFollowedByMultipleInputOp(self):
|
|
net = self._base_test_net()
|
|
net.Relu(["Y"], ["Y2"])
|
|
net.Conv(["Y2", "w", "b"], ["Y"], stride=1, pad=0, kernel=3, order="NCHW")
|
|
net.Relu(["Y"], ["Y2"])
|
|
self._fuse_nnpack_convrelu(net, 2)
|
|
assert net.Proto().op[0].output[0] != net.Proto().op[0].input[0]
|
|
assert net.Proto().op[1].output[0] != net.Proto().op[1].input[0]
|
|
|
|
def test_transformer_FuseNNPACKConvReluInplaceFollowedByMultipleInputOp(self):
|
|
net = self._base_test_net()
|
|
net.Relu(["Y"], ["Y"])
|
|
net.Conv(["Y", "w", "b"], ["Y2"], stride=1, pad=0, kernel=3, order="NCHW")
|
|
net.Relu(["Y2"], ["Y2"])
|
|
self._fuse_nnpack_convrelu(net, 2)
|
|
assert net.Proto().op[0].output[0] != net.Proto().op[0].input[0]
|
|
assert net.Proto().op[1].output[0] != net.Proto().op[1].input[0]
|
|
|
|
def test_transformer_SinkMaxPool(self):
|
|
net = self._base_test_net()
|
|
net.MaxPool(["Y"], ["Y1"], kernel=3)
|
|
net.Relu(["Y1"], ["Y1"])
|
|
transformer.SinkMaxPool(net)
|
|
assert tu.str_compare(net.Proto().op[1].type, "Relu")
|
|
assert tu.str_compare(net.Proto().op[2].type, "MaxPool")
|
|
|
|
@given(
|
|
size=st.integers(7, 10),
|
|
input_channels=st.integers(1, 10),
|
|
seed=st.integers(0, 65535),
|
|
order=st.sampled_from(["NCHW", "NHWC"]),
|
|
epsilon=st.floats(min_value=1e-5, max_value=1e-2),
|
|
)
|
|
def test_transformer_FuseConvBN(self, size, input_channels, seed, order, epsilon):
|
|
workspace.ResetWorkspace()
|
|
net = core.Net("net")
|
|
c = input_channels
|
|
h = size
|
|
w = size
|
|
k = 3
|
|
net.Conv(["X", "w", "b"], ["Y"], stride=1, pad=0, kernel=k, order=order)
|
|
net.SpatialBN(
|
|
["Y", "scale", "bias", "mean", "var"],
|
|
["Y2"],
|
|
is_test=True,
|
|
order=order,
|
|
epsilon=epsilon,
|
|
)
|
|
|
|
np.random.seed(seed)
|
|
if order == "NCHW":
|
|
tu.randBlobFloat32("X", 1, c, h, w)
|
|
tu.randBlobFloat32("w", c, c, k, k)
|
|
else:
|
|
tu.randBlobFloat32("X", 1, h, w, c)
|
|
tu.randBlobFloat32("w", c, k, k, c)
|
|
tu.randBlobsFloat32(["b", "scale", "bias", "mean"], c)
|
|
|
|
# This is necessary because 1/sqrt(var) is used and if var is too small
|
|
# we get floating point artifacts that cause test failures
|
|
tu.randBlobFloat32("var", c, offset=0.5)
|
|
workspace.RunNetOnce(net)
|
|
preTransformOutput = workspace.FetchBlob("Y2").flatten()
|
|
workspace.FeedBlob("Y2", np.zeros((1, 1)))
|
|
transformer.FuseConvBN(net)
|
|
|
|
# Ensure fusion
|
|
assert tu.numOps(net) == 1
|
|
workspace.RunNetOnce(net)
|
|
postTransformOutput = workspace.FetchBlob("Y2").flatten()
|
|
# Check that there is no numerical difference
|
|
assert np.allclose(
|
|
preTransformOutput,
|
|
postTransformOutput,
|
|
rtol=5e-02,
|
|
atol=1e-03
|
|
)
|
|
|
|
@given(
|
|
size=st.integers(7, 10),
|
|
input_channels=st.integers(1, 10),
|
|
seed=st.integers(0, 65535),
|
|
order=st.sampled_from(["NCHW", "NHWC"]),
|
|
epsilon=st.floats(min_value=1e-5, max_value=1e-2),
|
|
)
|
|
def test_transformer_FuseConvBNNoConvBias(self, size, input_channels, seed, order, epsilon):
|
|
workspace.ResetWorkspace()
|
|
net = core.Net("net")
|
|
c = input_channels
|
|
h = size
|
|
w = size
|
|
k = 3
|
|
net.Conv(["X", "w"], ["Y"], stride=1, pad=0, kernel=k, order=order)
|
|
net.SpatialBN(
|
|
["Y", "scale", "bias", "mean", "var"],
|
|
["Y2"],
|
|
is_test=True,
|
|
order=order,
|
|
epsilon=epsilon,
|
|
)
|
|
|
|
np.random.seed(seed)
|
|
if order == "NCHW":
|
|
tu.randBlobFloat32("X", 1, c, h, w)
|
|
tu.randBlobFloat32("w", c, c, k, k)
|
|
else:
|
|
tu.randBlobFloat32("X", 1, h, w, c)
|
|
tu.randBlobFloat32("w", c, k, k, c)
|
|
tu.randBlobsFloat32(["scale", "bias", "mean"], c)
|
|
# This is necessary because 1/sqrt(var) is used and if var is too small
|
|
# we get floating point artifacts that cause test failures
|
|
tu.randBlobFloat32("var", c, offset=0.5)
|
|
workspace.RunNetOnce(net)
|
|
preTransformOutput = workspace.FetchBlob("Y2").flatten()
|
|
workspace.FeedBlob("Y2", np.zeros((1, 1)))
|
|
transformer.FuseConvBN(net)
|
|
|
|
# Ensure fusion
|
|
assert tu.numOps(net) == 1
|
|
workspace.RunNetOnce(net)
|
|
postTransformOutput = workspace.FetchBlob("Y2").flatten()
|
|
# Check that there is no numerical difference
|
|
assert np.allclose(
|
|
preTransformOutput,
|
|
postTransformOutput,
|
|
rtol=5e-02,
|
|
atol=1e-03
|
|
)
|
|
|
|
@given(
|
|
size=st.integers(7, 10),
|
|
input_channels=st.integers(1, 10),
|
|
seed=st.integers(0, 65535),
|
|
order=st.sampled_from(["NCHW", "NHWC"]),
|
|
epsilon=st.floats(min_value=1e-5, max_value=1e-2),
|
|
)
|
|
def test_transformer_FuseConvBNNoConvBiasDuplicatedName(self, size, input_channels, seed, order, epsilon):
|
|
workspace.ResetWorkspace()
|
|
net = core.Net("net")
|
|
c = input_channels
|
|
h = size
|
|
w = size
|
|
k = 3
|
|
net.Conv(["X", "w"], ["Y"], stride=1, pad=0, kernel=k, order=order)
|
|
net.SpatialBN(
|
|
["Y", "scale", "_bias0", "mean", "var"],
|
|
["Y2"],
|
|
is_test=True,
|
|
order=order,
|
|
epsilon=epsilon,
|
|
)
|
|
|
|
np.random.seed(seed)
|
|
if order == "NCHW":
|
|
tu.randBlobFloat32("X", 1, c, h, w)
|
|
tu.randBlobFloat32("w", c, c, k, k)
|
|
else:
|
|
tu.randBlobFloat32("X", 1, h, w, c)
|
|
tu.randBlobFloat32("w", c, k, k, c)
|
|
tu.randBlobsFloat32(["scale", "_bias0", "mean"], c)
|
|
# This is necessary because 1/sqrt(var) is used and if var is too small
|
|
# we get floating point artifacts that cause test failures
|
|
tu.randBlobFloat32("var", c, offset=0.5)
|
|
workspace.RunNetOnce(net)
|
|
preTransformOutput = workspace.FetchBlob("Y2").flatten()
|
|
workspace.FeedBlob("Y2", np.zeros((1, 1)))
|
|
transformer.FuseConvBN(net)
|
|
|
|
# Ensure fusion
|
|
assert tu.numOps(net) == 1
|
|
workspace.RunNetOnce(net)
|
|
postTransformOutput = workspace.FetchBlob("Y2").flatten()
|
|
print("pre")
|
|
print(preTransformOutput)
|
|
print("after")
|
|
print(postTransformOutput)
|
|
# Check that there is no numerical difference
|
|
assert np.allclose(
|
|
preTransformOutput,
|
|
postTransformOutput,
|
|
rtol=5e-02,
|
|
atol=1e-03
|
|
)
|
|
|
|
@given(
|
|
size=st.integers(7, 10),
|
|
input_channels=st.integers(1, 10),
|
|
kt=st.integers(3, 5),
|
|
kh=st.integers(3, 5),
|
|
kw=st.integers(3, 5),
|
|
seed=st.integers(0, 65535),
|
|
epsilon=st.floats(min_value=1e-5, max_value=1e-2),
|
|
)
|
|
def test_transformer_FuseConv3DBN(
|
|
self, size, input_channels, kt, kh, kw, seed, epsilon
|
|
):
|
|
workspace.ResetWorkspace()
|
|
net = core.Net("net")
|
|
c = input_channels
|
|
t = size
|
|
h = size
|
|
w = size
|
|
net.Conv(
|
|
["X", "w", "b"],
|
|
["Y"],
|
|
kernels=[kt, kh, kw],
|
|
)
|
|
net.SpatialBN(
|
|
["Y", "scale", "bias", "mean", "var"],
|
|
["Y2"],
|
|
is_test=True,
|
|
epsilon=epsilon,
|
|
)
|
|
|
|
np.random.seed(seed)
|
|
tu.randBlobFloat32("X", 1, c, t, h, w)
|
|
tu.randBlobFloat32("w", c, c, kt, kh, kw)
|
|
tu.randBlobsFloat32(["b", "scale", "bias", "mean"], c)
|
|
# This is necessary because 1/sqrt(var) is used and if var is too small
|
|
# we get floating point artifacts that cause test failures
|
|
tu.randBlobFloat32("var", c, offset=0.5)
|
|
workspace.RunNetOnce(net)
|
|
preTransformOutput = workspace.FetchBlob("Y2").flatten()
|
|
workspace.FeedBlob("Y2", np.zeros((1, 1)))
|
|
transformer.FuseConvBN(net)
|
|
|
|
# Ensure fusion
|
|
assert tu.numOps(net) == 1
|
|
workspace.RunNetOnce(net)
|
|
postTransformOutput = workspace.FetchBlob("Y2").flatten()
|
|
# Check that there is no numerical difference
|
|
assert np.allclose(
|
|
preTransformOutput,
|
|
postTransformOutput,
|
|
rtol=1e-02,
|
|
atol=1e-04
|
|
)
|
|
|
|
def test_converterEnforceUnusedInputs(self):
|
|
net = core.Net("net")
|
|
net.Relu(["X"], ["Y"])
|
|
net.Proto().external_input.extend(["fake"])
|
|
# This should now work
|
|
transformer.AddNNPACK(net) # just testing the converter
|
|
|
|
def test_converterEnforceUnusedOutputs(self):
|
|
net = core.Net("net")
|
|
net.Relu(["X"], ["Y"])
|
|
net.Proto().external_output.extend(["fake"])
|
|
with self.assertRaises(Exception):
|
|
transformer.AddNNPACK(net) # just testing the converter
|