mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Closes: https://github.com/pytorch/pytorch/issues/15060 Differential Revision: D13528014 Pulled By: ezyang fbshipit-source-id: 5a18689a4c5638d92f9390c91517f741e5396293
99 lines
3.3 KiB
Python
99 lines
3.3 KiB
Python
import torch
|
|
from torch.distributions import constraints
|
|
from torch.distributions.categorical import Categorical
|
|
from torch.distributions.distribution import Distribution
|
|
|
|
|
|
class OneHotCategorical(Distribution):
|
|
r"""
|
|
Creates a one-hot categorical distribution parameterized by :attr:`probs` or
|
|
:attr:`logits`.
|
|
|
|
Samples are one-hot coded vectors of size ``probs.size(-1)``.
|
|
|
|
.. note:: :attr:`probs` must be non-negative, finite and have a non-zero sum,
|
|
and it will be normalized to sum to 1.
|
|
|
|
See also: :func:`torch.distributions.Categorical` for specifications of
|
|
:attr:`probs` and :attr:`logits`.
|
|
|
|
Example::
|
|
|
|
>>> m = OneHotCategorical(torch.tensor([ 0.25, 0.25, 0.25, 0.25 ]))
|
|
>>> m.sample() # equal probability of 0, 1, 2, 3
|
|
tensor([ 0., 0., 0., 1.])
|
|
|
|
Args:
|
|
probs (Tensor): event probabilities
|
|
logits (Tensor): event log probabilities
|
|
"""
|
|
arg_constraints = {'probs': constraints.simplex,
|
|
'logits': constraints.real}
|
|
support = constraints.simplex
|
|
has_enumerate_support = True
|
|
|
|
def __init__(self, probs=None, logits=None, validate_args=None):
|
|
self._categorical = Categorical(probs, logits)
|
|
batch_shape = self._categorical.batch_shape
|
|
event_shape = self._categorical.param_shape[-1:]
|
|
super(OneHotCategorical, self).__init__(batch_shape, event_shape, validate_args=validate_args)
|
|
|
|
def expand(self, batch_shape, _instance=None):
|
|
new = self._get_checked_instance(OneHotCategorical, _instance)
|
|
batch_shape = torch.Size(batch_shape)
|
|
new._categorical = self._categorical.expand(batch_shape)
|
|
super(OneHotCategorical, new).__init__(batch_shape, self.event_shape, validate_args=False)
|
|
new._validate_args = self._validate_args
|
|
return new
|
|
|
|
def _new(self, *args, **kwargs):
|
|
return self._categorical._new(*args, **kwargs)
|
|
|
|
@property
|
|
def _param(self):
|
|
return self._categorical._param
|
|
|
|
@property
|
|
def probs(self):
|
|
return self._categorical.probs
|
|
|
|
@property
|
|
def logits(self):
|
|
return self._categorical.logits
|
|
|
|
@property
|
|
def mean(self):
|
|
return self._categorical.probs
|
|
|
|
@property
|
|
def variance(self):
|
|
return self._categorical.probs * (1 - self._categorical.probs)
|
|
|
|
@property
|
|
def param_shape(self):
|
|
return self._categorical.param_shape
|
|
|
|
def sample(self, sample_shape=torch.Size()):
|
|
sample_shape = torch.Size(sample_shape)
|
|
probs = self._categorical.probs
|
|
num_events = self._categorical._num_events
|
|
indices = self._categorical.sample(sample_shape)
|
|
return torch.nn.functional.one_hot(indices, num_events).to(probs)
|
|
|
|
def log_prob(self, value):
|
|
if self._validate_args:
|
|
self._validate_sample(value)
|
|
indices = value.max(-1)[1]
|
|
return self._categorical.log_prob(indices)
|
|
|
|
def entropy(self):
|
|
return self._categorical.entropy()
|
|
|
|
def enumerate_support(self, expand=True):
|
|
n = self.event_shape[0]
|
|
values = torch.eye(n, dtype=self._param.dtype, device=self._param.device)
|
|
values = values.view((n,) + (1,) * len(self.batch_shape) + (n,))
|
|
if expand:
|
|
values = values.expand((n,) + self.batch_shape + (n,))
|
|
return values
|