Files
pytorch/caffe2/python/model_helper_test.py
Yiming Wu d1b920b44f keep net type info when generating model complete net (#11032)
Summary:
keep net type info when generating model complete net. This will keep the performance optimization option
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11032

Reviewed By: wat3rBro

Differential Revision: D9564125

Pulled By: harouwu

fbshipit-source-id: c6546af9b1d4ff5eddf6124e24a5da1b8baf47df
2018-09-04 21:10:06 -07:00

70 lines
2.3 KiB
Python

"""unittest for ModelHelper class"""
from __future__ import absolute_import, division, print_function
import unittest
from caffe2.python import brew, model_helper
class ModelHelperTest(unittest.TestCase):
def test_get_complete_net_type(self):
model = model_helper.ModelHelper("test_orig")
brew.conv(
model,
"input",
"conv",
dim_in=3,
dim_out=16,
weight_init=("MSRAFill", {}),
kernel=3,
stride=1,
pad=0,
)
model.net.Proto().type = "async_scheduling"
net = model.GetCompleteNet()
model2 = model_helper.ModelHelper("test_new")
model2.ConstructInitTrainNetfromNet(net)
self.assertTrue(model2.net.Proto().type, "async_scheduling")
self.assertTrue(model2.param_init_net.Proto().type, "async_scheduling")
def test_get_complete_net(self):
model = model_helper.ModelHelper("test_orig")
conv = brew.conv(
model,
"input",
"conv",
dim_in=3,
dim_out=16,
weight_init=("MSRAFill", {}),
kernel=3,
stride=1,
pad=0,
)
conv = brew.spatial_bn(model, conv, "conv_bn", 16, epsilon=1e-3, is_test=False)
conv = brew.relu(model, conv, "conv_relu")
pred = brew.fc(model, conv, "pred", dim_in=16 * 3 * 3, dim_out=10)
brew.softmax(model, pred, "softmax")
net = model.GetCompleteNet()
model2 = model_helper.ModelHelper("test_new")
model2.ConstructInitTrainNetfromNet(net)
net = model.param_init_net
net2 = model2.param_init_net
for op1, op2 in zip(net.Proto().op, net2.Proto().op):
op1.debug_info = op1.debug_info + "/param_init_net"
self.assertEqual(
op1, op2, "op mismatch between {}\n and {}\n".format(op1, op2)
)
net = model.net
net2 = model2.net
for op1, op2 in zip(net.Proto().op, net2.Proto().op):
self.assertEqual(
op1, op2, "op mismatch between {}\n and {}\n".format(op1, op2)
)
# this is not guaranteed in other situations where user define own net
self.assertEqual(
sorted(map(str, net.external_inputs)),
sorted(map(str, net2.external_inputs)),
)