mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 13:44:15 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/18886 Expose tensor filler util to Python and add a unit test (both C++/Python) Reviewed By: salexspb Differential Revision: D14784470 fbshipit-source-id: bb8e013d1755c27c166e87d5a8491a97c65d3d8d
21 lines
854 B
Python
21 lines
854 B
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from caffe2.python import core, test_util, workspace
|
|
|
|
|
|
class TestFiller(test_util.TestCase):
|
|
def test_filler(self):
|
|
net = core.Net("test_filler")
|
|
net.Concat(["X0", "X1", "X2"], ["concat_out", "split_info"])
|
|
self.assertFalse(workspace.HasBlob("X0"))
|
|
input_dim = (30, 20)
|
|
workspace.FillRandomNetworkInputs(net, [[input_dim, input_dim, input_dim]], [["float", "float", "float"]])
|
|
self.assertTrue(workspace.HasBlob("X0"))
|
|
self.assertEqual(workspace.FetchBlob("X0").shape, input_dim)
|
|
|
|
with self.assertRaises(RuntimeError):
|
|
# Filler should throw if number of input dims/types is mismatched.
|
|
workspace.FillRandomNetworkInputs(net, [[input_dim]], [["float"]])
|