mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 13:44:15 +08:00
* Fix gc_refs assertion failure Ensure that each THPVariable -> THPFunction reference contributes one ref count to the THPFunction by creating a new shared_ptr for each ref. Because multiple shared_ptrs can again manage a single THPFunction, it's not safe to use std::weak_ptr where it may point to a PyFunction. It's still safe to use weak_ptr for grad_accumulator since these are never PyFunctions. Fixes #1626 * Remove stale comment
426 lines
14 KiB
C++
426 lines
14 KiB
C++
#include "torch/csrc/autograd/python_variable.h"
|
|
|
|
#include <structmember.h>
|
|
|
|
#include "THP.h"
|
|
#include "torch/csrc/DynamicTypes.h"
|
|
#include "torch/csrc/Types.h"
|
|
#include "torch/csrc/autograd/python_cpp_function.h"
|
|
#include "torch/csrc/autograd/python_hook.h"
|
|
#include "torch/csrc/autograd/functions/accumulate_grad.h"
|
|
#include "torch/csrc/cuda/AutoGPU.h"
|
|
#include "torch/csrc/utils/auto_gil.h"
|
|
#include "torch/csrc/Exceptions.h"
|
|
#include <THPP/tensors/THTensor.hpp>
|
|
|
|
|
|
using namespace torch::autograd;
|
|
|
|
PyObject *THPVariableClass = NULL;
|
|
|
|
static PyObject* THPVariable_NewWithVar(PyTypeObject* type, std::shared_ptr<Variable> var)
|
|
{
|
|
PyObject* obj = type->tp_alloc(type, 0);
|
|
if (obj) {
|
|
auto v = (THPVariable*) obj;
|
|
new (&v->cdata) std::shared_ptr<Variable>(std::move(var));
|
|
if (auto fn = dynamic_cast<PyFunction*>(v->cdata->grad_fn.get())) {
|
|
// Create a new reference to the THPFunction. This ensures that ref count
|
|
// of the THPFunction is at least the number of referring THPVariables.
|
|
v->cdata->grad_fn = THPFunction_asFunction((THPFunction*)fn->obj);
|
|
}
|
|
}
|
|
return obj;
|
|
}
|
|
|
|
PyObject * THPVariable_Wrap(const std::shared_ptr<Variable>& var)
|
|
{
|
|
if (!var) {
|
|
Py_RETURN_NONE;
|
|
} else if (var->pyobj) {
|
|
Py_INCREF(var->pyobj);
|
|
} else {
|
|
var->pyobj = THPVariable_NewWithVar((PyTypeObject *)THPVariableClass, var);
|
|
THPVariable* py_var = (THPVariable*)var->pyobj;
|
|
py_var->data = torch::createPyObject(*var->data);
|
|
}
|
|
return var->pyobj;
|
|
}
|
|
|
|
// This function DOES NOT steal a reference to data
|
|
PyObject * THPVariable_NewWithFunction(PyObject *data, const std::shared_ptr<torch::autograd::Function>& grad_fn)
|
|
{
|
|
THPUtils_assert(THPModule_isTensor(data), "data must be a Tensor");
|
|
auto v = std::make_shared<Variable>(torch::createTensor(data), grad_fn->is_executable, false);
|
|
v->grad_fn = grad_fn;
|
|
PyObject* obj = THPVariable_NewWithVar((PyTypeObject*)THPVariableClass, v);
|
|
if (obj) {
|
|
v->pyobj = obj;
|
|
Py_INCREF(data);
|
|
((THPVariable*)obj)->data = data;
|
|
}
|
|
return obj;
|
|
}
|
|
|
|
// This function DOES NOT steal a reference to data
|
|
PyObject * THPVariable_NewVolatile(PyObject *data)
|
|
{
|
|
auto v = std::make_shared<Variable>(torch::createTensor(data), false, true);
|
|
PyObject* obj = THPVariable_NewWithVar((PyTypeObject*)THPVariableClass, v);
|
|
if (obj) {
|
|
v->pyobj = obj;
|
|
((THPVariable*)obj)->data = data;
|
|
Py_INCREF(data);
|
|
}
|
|
return obj;
|
|
}
|
|
|
|
// This function DOES NOT steal a reference to data
|
|
PyObject * THPVariable_NewLeaf(PyObject *data)
|
|
{
|
|
auto v = std::make_shared<Variable>(torch::createTensor(data), false, false);
|
|
PyObject* obj = THPVariable_NewWithVar((PyTypeObject*)THPVariableClass, v);
|
|
if (obj) {
|
|
v->pyobj = obj;
|
|
((THPVariable*)obj)->data = data;
|
|
Py_INCREF(data);
|
|
}
|
|
return obj;
|
|
}
|
|
|
|
static int THPVariable_traverse(THPVariable *self, visitproc visit, void *arg)
|
|
{
|
|
Py_VISIT(self->data);
|
|
Py_VISIT(self->backward_hooks);
|
|
if (self->cdata) {
|
|
if (auto fn = dynamic_cast<PyFunction*>(self->cdata->grad_fn.get())) {
|
|
Py_VISIT(fn->obj);
|
|
}
|
|
for (auto& hook : self->cdata->hooks) {
|
|
if (auto pyhook = dynamic_cast<PyFunctionPreHook*>(hook.get())) {
|
|
Py_VISIT(pyhook->dict);
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int THPVariable_clear(THPVariable *self)
|
|
{
|
|
Py_CLEAR(self->data);
|
|
Py_CLEAR(self->backward_hooks);
|
|
if (self->cdata) {
|
|
if (auto grad_acc = self->cdata->grad_accumulator.lock()) {
|
|
grad_acc->pre_hooks.clear();
|
|
}
|
|
self->cdata->pyobj = nullptr;
|
|
}
|
|
self->cdata.reset();
|
|
return 0;
|
|
}
|
|
|
|
static void THPVariable_dealloc(THPVariable* self)
|
|
{
|
|
PyObject_GC_UnTrack(self);
|
|
THPVariable_clear(self);
|
|
self->cdata.~shared_ptr<Variable>();
|
|
Py_TYPE(self)->tp_free((PyObject*)self);
|
|
}
|
|
|
|
PyObject *THPVariable_pynew(PyTypeObject *type, PyObject *args, PyObject *kwds)
|
|
{
|
|
THPObjectPtr _data;
|
|
PyObject *data = NULL;
|
|
PyObject *grad_fn = NULL;
|
|
char is_volatile = 0;
|
|
char requires_grad = 0;
|
|
|
|
const char *accepted_args[] = {"data", "requires_grad", "volatile", "_grad_fn", NULL};
|
|
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|ObbO", (char**)accepted_args,
|
|
&data, &requires_grad, &is_volatile, &grad_fn))
|
|
return NULL;
|
|
|
|
if (grad_fn == Py_None)
|
|
grad_fn = NULL;
|
|
|
|
if (data == NULL || data == Py_None) {
|
|
// For legacy serialization code, create an empty tensor temporarily.
|
|
thpp::THTensor<float> tensor;
|
|
_data = torch::createPyObject(tensor);
|
|
data = _data.get();
|
|
}
|
|
|
|
THPUtils_assert(!(is_volatile && requires_grad),
|
|
"Variable can't be volatile and require_grad at the same time!");
|
|
THPUtils_assert(!grad_fn || THPFunction_Check(grad_fn),
|
|
"Variable _grad_fn has to be a Function object or None, but got %s",
|
|
THPUtils_typename(grad_fn));
|
|
THPUtils_assert(THPModule_isTensor(data), "Variable data has to "
|
|
"be a tensor, but got %s", THPUtils_typename(data));
|
|
|
|
std::shared_ptr<Variable> var;
|
|
if (grad_fn) {
|
|
var = std::make_shared<Variable>(torch::createTensor(data), THPFunction_asFunction((THPFunction*)grad_fn));
|
|
} else {
|
|
var = std::make_shared<Variable>(torch::createTensor(data), requires_grad, is_volatile);
|
|
}
|
|
PyObject* self = THPVariable_NewWithVar(type, var);
|
|
if (self) {
|
|
var->pyobj = self;
|
|
((THPVariable*)self)->cdata = var;
|
|
((THPVariable*)self)->data = data;
|
|
Py_INCREF(data);
|
|
}
|
|
|
|
return self;
|
|
}
|
|
|
|
int THPVariable_pyinit(PyObject *self, PyObject *args, PyObject *kwds)
|
|
{
|
|
// Ensures that calls to Variable() and subclasses contain data argument.
|
|
// The 'data' argument is optional in __new__ to handle legacy serialized
|
|
// Variables.
|
|
PyObject *data;
|
|
PyObject *grad_fn = NULL;
|
|
char is_volatile = 0;
|
|
char requires_grad = 0;
|
|
|
|
const char *accepted_args[] = {"data", "requires_grad", "volatile", "_grad_fn", NULL};
|
|
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|ObbO", (char**)accepted_args,
|
|
&data, &requires_grad, &is_volatile, &grad_fn))
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
typedef PyObject *(*getter)(PyObject *, void *);
|
|
typedef int (*setter)(PyObject *, PyObject *, void *);
|
|
|
|
PyObject *THPVariable_get_version(THPVariable *self)
|
|
{
|
|
auto& var = *self->cdata;
|
|
return PyInt_FromLong(**var.version_counter);
|
|
}
|
|
|
|
PyObject *THPVariable_get_grad_fn(THPVariable *self)
|
|
{
|
|
auto& var = *self->cdata;
|
|
if (!var.grad_fn) {
|
|
Py_RETURN_NONE;
|
|
}
|
|
return functionToPyObject(var.grad_fn);
|
|
}
|
|
|
|
int THPVariable_set_grad_fn(THPVariable *self, PyObject *obj)
|
|
{
|
|
THPUtils_assertRet(-1, obj == Py_None, "_grad_fn can be only set to None");
|
|
self->cdata->grad_fn = nullptr;
|
|
return 0;
|
|
}
|
|
|
|
PyObject *THPVariable_is_leaf(THPVariable *self)
|
|
{
|
|
return PyBool_FromLong(!self->cdata->grad_fn);
|
|
}
|
|
|
|
PyObject * THPVariable_get_data(THPVariable *self)
|
|
{
|
|
if (!self->data) {
|
|
self->data = torch::createPyObject(*self->cdata->data);
|
|
}
|
|
Py_INCREF(self->data);
|
|
return self->data;
|
|
}
|
|
|
|
int THPVariable_set_data(THPVariable *self, PyObject *data)
|
|
{
|
|
THPUtils_assertRet(-1, THPModule_isTensor(data), "Variable data has to "
|
|
"be a tensor, but got %s", THPUtils_typename(data));
|
|
Py_INCREF(data);
|
|
Py_XDECREF(self->data);
|
|
self->data = data;
|
|
auto& var = *self->cdata;
|
|
auto tensor = torch::createTensor(data);
|
|
var.data.swap(tensor);
|
|
return 0;
|
|
}
|
|
|
|
PyObject *THPVariable_get_grad(THPVariable *self)
|
|
{
|
|
auto& var = *self->cdata;
|
|
if (!var.grad) {
|
|
Py_RETURN_NONE;
|
|
}
|
|
return THPVariable_Wrap(var.grad);
|
|
}
|
|
|
|
int THPVariable_set_grad(THPVariable *self, PyObject *other)
|
|
{
|
|
auto& var = *self->cdata;
|
|
if (other == Py_None) {
|
|
var.grad.reset();
|
|
return 0;
|
|
}
|
|
|
|
THPUtils_assertRet(-1, THPVariable_Check(other),
|
|
"expected Variable or None (got %s)", THPUtils_typename(other));
|
|
THPUtils_assertRet(-1, self != (THPVariable*)other,
|
|
"can't assign Variable as its own grad");
|
|
|
|
auto& other_var = ((THPVariable*)other)->cdata;
|
|
|
|
// Make sure the data is ok
|
|
THPUtils_assertRet(-1, other_var->data->type() == var.data->type(),
|
|
"assigned grad has data of a different type");
|
|
THPUtils_assertRet(-1, other_var->data->isCuda() == var.data->isCuda(),
|
|
"assigned grad has data located on a different device");
|
|
THPUtils_assertRet(-1, other_var->data->getDevice() == var.data->getDevice(),
|
|
"assigned grad has data located on a different device");
|
|
THPUtils_assertRet(-1, other_var->data->sizes() == var.data->sizes(),
|
|
"assigned grad has data of a different size");
|
|
|
|
var.grad = other_var;
|
|
if (auto grad_acc = var.grad_accumulator.lock()) {
|
|
((AccumulateGrad*)grad_acc.get())->variable_grad = other_var;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
PyObject *THPVariable_get_volatile(THPVariable *self)
|
|
{
|
|
auto& var = *self->cdata;
|
|
return PyBool_FromLong(var.is_volatile);
|
|
}
|
|
|
|
int THPVariable_set_volatile(THPVariable *self, PyObject *obj)
|
|
{
|
|
THPUtils_assertRet(-1, PyBool_Check(obj), "volatile must be a bool");
|
|
THPUtils_assertRet(-1, !self->cdata->grad_fn,
|
|
"volatile can only be set on leaf variables");
|
|
auto& var = *self->cdata;
|
|
var.is_volatile = (obj == Py_True);
|
|
return 0;
|
|
}
|
|
|
|
PyObject *THPVariable_get_output_nr(THPVariable *self)
|
|
{
|
|
auto& var = *self->cdata;
|
|
return PyInt_FromLong(var.output_nr);
|
|
}
|
|
|
|
PyObject *THPVariable_get_requires_grad(THPVariable *self)
|
|
{
|
|
auto& var = *self->cdata;
|
|
return PyBool_FromLong(var.requires_grad);
|
|
}
|
|
|
|
int THPVariable_set_requires_grad(THPVariable *self, PyObject *obj)
|
|
{
|
|
THPUtils_assertRet(-1, PyBool_Check(obj), "requires_grad must be a bool");
|
|
auto& var = *self->cdata;
|
|
if (var.grad_fn) {
|
|
const char *hint = "";
|
|
if (obj == Py_False) {
|
|
hint = " If you want to use a computed variable in a subgraph "
|
|
"that doesn't require differentiation use "
|
|
"var_no_grad = var.detach().";
|
|
}
|
|
THPUtils_setError("you can only change requires_grad flags of leaf variables.%s", hint);
|
|
return -1;
|
|
}
|
|
var.requires_grad = obj == Py_True;
|
|
if (auto grad_accumulator = var.grad_accumulator.lock()) {
|
|
grad_accumulator->is_executable = var.requires_grad;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
PyObject *THPVariable_get_backwards_hooks(THPVariable *self)
|
|
{
|
|
if (self->backward_hooks) {
|
|
Py_INCREF(self->backward_hooks);
|
|
return self->backward_hooks;
|
|
}
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
int THPVariable_set_backwards_hooks(THPVariable *self, PyObject *obj)
|
|
{
|
|
if (obj == Py_None) {
|
|
obj = nullptr;
|
|
}
|
|
Py_XINCREF(obj);
|
|
Py_XDECREF(self->backward_hooks);
|
|
self->backward_hooks = obj;
|
|
self->cdata->hooks.clear();
|
|
if (obj) {
|
|
self->cdata->hooks.emplace_back(new PyFunctionPreHook(obj, 0));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct PyGetSetDef THPVariable_properties[] = {
|
|
{"_version", (getter)THPVariable_get_version, NULL, NULL, NULL},
|
|
{"grad_fn", (getter)THPVariable_get_grad_fn, NULL, NULL, NULL},
|
|
{"_grad_fn", (getter)THPVariable_get_grad_fn, (setter)THPVariable_set_grad_fn, NULL, NULL},
|
|
{"is_leaf", (getter)THPVariable_is_leaf, NULL, NULL, NULL},
|
|
{"data", (getter)THPVariable_get_data, (setter)THPVariable_set_data, NULL, NULL},
|
|
{"_grad", (getter)THPVariable_get_grad, (setter)THPVariable_set_grad, NULL, NULL}, // only for legacy reasons
|
|
{"grad", (getter)THPVariable_get_grad, (setter)THPVariable_set_grad, NULL, NULL},
|
|
{"volatile", (getter)THPVariable_get_volatile, (setter)THPVariable_set_volatile, NULL, NULL},
|
|
{"output_nr", (getter)THPVariable_get_output_nr, NULL, NULL, NULL},
|
|
{"requires_grad", (getter)THPVariable_get_requires_grad, (setter)THPVariable_set_requires_grad, NULL, NULL},
|
|
{"_backward_hooks", (getter)THPVariable_get_backwards_hooks, (setter)THPVariable_set_backwards_hooks, NULL, NULL},
|
|
{NULL}
|
|
};
|
|
|
|
PyTypeObject THPVariableType = {
|
|
PyVarObject_HEAD_INIT(NULL, 0)
|
|
"torch._C._VariableBase", /* tp_name */
|
|
sizeof(THPVariable), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
(destructor)THPVariable_dealloc, /* tp_dealloc */
|
|
0, /* tp_print */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_reserved */
|
|
0, /* tp_repr */
|
|
0, /* tp_as_number */
|
|
0, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
0, /* tp_hash */
|
|
0, /* tp_call */
|
|
0, /* tp_str */
|
|
0, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC, /* tp_flags */
|
|
NULL, /* tp_doc */
|
|
(traverseproc)THPVariable_traverse, /* tp_traverse */
|
|
(inquiry)THPVariable_clear, /* tp_clear */
|
|
0, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
0, /* tp_iter */
|
|
0, /* tp_iternext */
|
|
0, /* tp_methods */
|
|
0, /* tp_members */
|
|
THPVariable_properties, /* tp_getset */
|
|
0, /* tp_base */
|
|
0, /* tp_dict */
|
|
0, /* tp_descr_get */
|
|
0, /* tp_descr_set */
|
|
0, /* tp_dictoffset */
|
|
THPVariable_pyinit, /* tp_init */
|
|
0, /* tp_alloc */
|
|
THPVariable_pynew /* tp_new */
|
|
};
|
|
|
|
bool THPVariable_initModule(PyObject *module)
|
|
{
|
|
if (PyType_Ready(&THPVariableType) < 0)
|
|
return false;
|
|
Py_INCREF(&THPVariableType);
|
|
PyModule_AddObject(module, "_VariableBase", (PyObject *)&THPVariableType);
|
|
return true;
|
|
}
|