Files
pytorch/torch/nativert/executor/SerialGraphExecutor.cpp
Yiming Zhou e98dd95446 [nativert] Move SerialGraphExecutor to PyTorch core (#156459)
Summary: `SerialGraphExecutor` inherits from `GraphExecutorBase` and executes all nodes in the graph in a serial manner

Test Plan:
CI

Rollback Plan:

Differential Revision: D76917966

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156459
Approved by: https://github.com/zhxchen17, https://github.com/jingsh
2025-06-21 01:32:06 +00:00

34 lines
1.1 KiB
C++

#include <torch/nativert/executor/ExecutionPlanner.h>
#include <torch/nativert/executor/ExecutorConfig.h>
#include <torch/nativert/executor/SerialGraphExecutor.h>
namespace torch::nativert {
std::vector<c10::IValue> SerialGraphExecutor::execute(
ExecutionFrame& executionFrame,
std::vector<c10::IValue> inputs) {
fillUserInputs(executionFrame, std::move(inputs));
return executeWithPrefilledFrame(executionFrame);
}
std::vector<c10::IValue> SerialGraphExecutor::executeWithPrefilledFrame(
ExecutionFrame& executionFrame) {
// Execute kernels for all nodes except prim.Input and prim.Output
for (NodeIndex nodeIdx = 1; nodeIdx < nodeKernels_.size() - 1; ++nodeIdx) {
nodeKernels_[nodeIdx]->compute(executionFrame);
// don't free intermediate values when static memory planning is enabled
if (!executorConfig_.enableStaticMemoryPlanning) {
// Free the intermediate values that are no used anymore
for (const auto& valueKey : execPlan_->valuesToFree[nodeIdx]) {
executionFrame.releaseValue(valueKey);
}
}
}
return executionFrame.tryMoveUserOutputs();
}
} // namespace torch::nativert