mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 13:44:15 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/34230 This PR adds some benchmarks that we used to assess tensor expressions performance. Differential Revision: D20251830 Test Plan: Imported from OSS Pulled By: ZolotukhinM fbshipit-source-id: bafd66ce32f63077e3733112d854f5c750d5b1af
43 lines
1.1 KiB
Python
43 lines
1.1 KiB
Python
import framework
|
|
import scipy.special
|
|
|
|
|
|
class SoftmaxBench(framework.Benchmark):
|
|
def __init__(self, mode, device, M, N):
|
|
super().__init__(mode, device)
|
|
self.M = M
|
|
self.N = N
|
|
self.data = self.rand([M, N], device=device, requires_grad=self.requires_grad)
|
|
|
|
def forward(self):
|
|
y = self.softmax(self.data, dim=1)
|
|
return y
|
|
|
|
def reference(self):
|
|
return scipy.special.softmax(self.numpy(self.data), axis=1)
|
|
|
|
def config(self):
|
|
return [self.M, self.N]
|
|
|
|
@staticmethod
|
|
def module():
|
|
return 'softmax'
|
|
|
|
def memory_workload(self):
|
|
if self.mode == 'fwd':
|
|
sol_count = 1 + 1
|
|
algorithmic_count = 3 + 1
|
|
else:
|
|
sol_count = (1 + 1) + (1 + 1)
|
|
algorithmic_count = (3 + 1) + (3 + 1)
|
|
|
|
buffer_size = self.M * self.N * 4
|
|
return {'sol': buffer_size * sol_count, 'algorithmic': buffer_size * algorithmic_count}
|
|
|
|
@staticmethod
|
|
def default_configs():
|
|
return [[128, 1<<16]]
|
|
|
|
|
|
framework.register_benchmark_class(SoftmaxBench)
|