mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
This reverts commit 362ca54f03f9bb72ba7633ed580fb788b1a8dea9. Reverted https://github.com/pytorch/pytorch/pull/137763 on behalf of https://github.com/wdvr due to this change is breaking our prod training pipeline (verified with bisect) by increasing memory consumption 4x and causing OOM ([comment](https://github.com/pytorch/pytorch/pull/137763#issuecomment-2435962833))
920 lines
32 KiB
Python
920 lines
32 KiB
Python
# Owner(s): ["module: c10d"]
|
|
import threading
|
|
import unittest
|
|
from typing import List
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.distributed._functional_collectives as funcol
|
|
from torch._C import FileCheck
|
|
from torch._inductor.utils import fresh_inductor_cache, run_and_get_triton_code
|
|
from torch.distributed._functional_collectives import (
|
|
all_gather_into_tensor_coalesced,
|
|
all_gather_tensor,
|
|
all_reduce,
|
|
all_reduce_coalesced,
|
|
all_to_all_single,
|
|
AsyncCollectiveTensor,
|
|
reduce_scatter_tensor,
|
|
reduce_scatter_tensor_coalesced,
|
|
)
|
|
from torch.testing._internal.common_distributed import (
|
|
MultiProcessTestCase,
|
|
requires_nccl,
|
|
skip_if_lt_x_gpu,
|
|
)
|
|
from torch.testing._internal.common_utils import ( # type: ignore[attr-defined]
|
|
run_tests,
|
|
TestCase,
|
|
)
|
|
from torch.testing._internal.distributed.fake_pg import FakeStore
|
|
from torch.testing._internal.inductor_utils import HAS_GPU
|
|
|
|
|
|
def load_test_module(name):
|
|
import sys
|
|
from importlib.machinery import SourceFileLoader
|
|
from pathlib import Path
|
|
from unittest import mock
|
|
|
|
testdir = Path(__file__).absolute().parent.parent
|
|
with mock.patch("sys.path", [*sys.path, str(testdir)]):
|
|
return SourceFileLoader(
|
|
name, str(testdir / f"{name.replace('.', '/')}.py")
|
|
).load_module()
|
|
|
|
|
|
AOTIRunnerUtil = load_test_module("inductor.test_aot_inductor_utils").AOTIRunnerUtil
|
|
|
|
import sys
|
|
|
|
|
|
if not dist.is_available():
|
|
print("distributed package not available, skipping tests", file=sys.stderr)
|
|
sys.exit(0)
|
|
|
|
|
|
@requires_nccl()
|
|
class TestWithNCCL(MultiProcessTestCase):
|
|
def setUp(self) -> None:
|
|
super().setUp()
|
|
self._spawn_processes()
|
|
|
|
@property
|
|
def world_size(self) -> int:
|
|
return 2
|
|
|
|
@property
|
|
def ranks(self) -> List[int]:
|
|
return list(range(self.world_size))
|
|
|
|
@property
|
|
def device(self) -> torch.device:
|
|
return torch.device(f"cuda:{self.rank}")
|
|
|
|
def _init_process_group(self) -> None:
|
|
# Allow testing aoti after torch.compile
|
|
torch._inductor.config.triton.store_cubin = True
|
|
torch._inductor.config.debug = True
|
|
|
|
torch.cuda.set_device(self.device)
|
|
store = dist.FileStore(self.file_name, self.world_size)
|
|
dist.init_process_group(
|
|
backend="nccl",
|
|
world_size=self.world_size,
|
|
rank=self.rank,
|
|
store=store,
|
|
)
|
|
torch._C._distributed_c10d._register_process_group("default", dist.group.WORLD)
|
|
|
|
@skip_if_lt_x_gpu(2)
|
|
def test_all_reduce_single(self) -> None:
|
|
self._init_process_group()
|
|
|
|
input = torch.full((10, 10), float(self.rank), device=self.device)
|
|
output = torch.ops._c10d_functional.all_reduce(
|
|
input,
|
|
"avg",
|
|
"default",
|
|
)
|
|
output = torch.ops._c10d_functional.wait_tensor(output)
|
|
assert id(output) != id(input)
|
|
expect = sum(self.ranks) / self.world_size
|
|
assert output.eq(expect).all()
|
|
|
|
# Test Python API and AsyncCollectiveTensor
|
|
output = all_reduce(
|
|
input,
|
|
"avg",
|
|
"default",
|
|
)
|
|
assert isinstance(output, AsyncCollectiveTensor)
|
|
assert not output.completed
|
|
assert output.eq(expect).all()
|
|
assert output.completed
|
|
|
|
@skip_if_lt_x_gpu(2)
|
|
def test_all_reduce_single_(self) -> None:
|
|
self._init_process_group()
|
|
|
|
input = torch.full((10, 10), float(self.rank), device=self.device)
|
|
output = torch.ops._c10d_functional.all_reduce_(
|
|
input,
|
|
"avg",
|
|
"default",
|
|
)
|
|
output = torch.ops._c10d_functional.wait_tensor(output)
|
|
assert id(output) == id(input)
|
|
expect = sum(self.ranks) / self.world_size
|
|
assert output.eq(expect).all()
|
|
|
|
@skip_if_lt_x_gpu(2)
|
|
def test_all_reduce_coalesced(self) -> None:
|
|
self._init_process_group()
|
|
|
|
inputs = [
|
|
torch.full((i, i), float(self.rank * i), device=self.device)
|
|
for i in range(10)
|
|
]
|
|
outputs = torch.ops._c10d_functional.all_reduce_coalesced(
|
|
inputs,
|
|
"avg",
|
|
"default",
|
|
)
|
|
for i, (output, input) in enumerate(zip(outputs, inputs)):
|
|
output = torch.ops._c10d_functional.wait_tensor(output)
|
|
assert id(output) != id(input)
|
|
assert output.eq(sum(self.ranks) / self.world_size * i).all()
|
|
|
|
# Test Python API and AsyncCollectiveTensor
|
|
outputs = all_reduce_coalesced(
|
|
inputs,
|
|
"avg",
|
|
"default",
|
|
)
|
|
for i, (output, input) in enumerate(zip(outputs, inputs)):
|
|
assert not output.completed
|
|
assert output.eq(sum(self.ranks) / self.world_size * i).all()
|
|
assert output.completed
|
|
|
|
@skip_if_lt_x_gpu(2)
|
|
def test_all_reduce_coalesced_(self) -> None:
|
|
self._init_process_group()
|
|
|
|
inputs = [
|
|
torch.full((i, i), float(self.rank * i), device=self.device)
|
|
for i in range(10)
|
|
]
|
|
outputs = torch.ops._c10d_functional.all_reduce_coalesced_(
|
|
inputs,
|
|
"avg",
|
|
"default",
|
|
)
|
|
for i, (output, input) in enumerate(zip(outputs, inputs)):
|
|
output = torch.ops._c10d_functional.wait_tensor(output)
|
|
assert id(output) == id(input)
|
|
assert output.eq(sum(self.ranks) / self.world_size * i).all()
|
|
|
|
@skip_if_lt_x_gpu(2)
|
|
def test_all_gather_into_tensor_single(self) -> None:
|
|
self._init_process_group()
|
|
|
|
input = torch.full((10, 10), float(self.rank), device=self.device)
|
|
output = torch.ops._c10d_functional.all_gather_into_tensor(
|
|
input,
|
|
self.world_size,
|
|
"default",
|
|
)
|
|
output = torch.ops._c10d_functional.wait_tensor(output)
|
|
expect = torch.cat(
|
|
[
|
|
torch.full((10, 10), float(rank), device=self.device)
|
|
for rank in self.ranks
|
|
]
|
|
)
|
|
assert torch.allclose(output, expect)
|
|
assert output.eq(expect).all()
|
|
|
|
# Test out-variant of all_gather_into_tensor
|
|
output = torch.empty(expect.shape, device=self.device)
|
|
output = torch.ops._c10d_functional.all_gather_into_tensor_out(
|
|
input,
|
|
self.world_size,
|
|
"default",
|
|
out=output,
|
|
)
|
|
output = torch.ops._c10d_functional.wait_tensor(output)
|
|
assert torch.allclose(output, expect)
|
|
assert output.eq(expect).all()
|
|
|
|
# Test Python API and AsyncCollectiveTensor
|
|
output = all_gather_tensor(
|
|
input,
|
|
0,
|
|
"default",
|
|
)
|
|
assert isinstance(output, AsyncCollectiveTensor)
|
|
assert not output.completed
|
|
assert output.eq(expect).all()
|
|
assert output.completed
|
|
|
|
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
|
|
@skip_if_lt_x_gpu(2)
|
|
# https://github.com/pytorch/pytorch/issues/126338
|
|
def test_inductor_dtypeview_memory_leak(self):
|
|
self._init_process_group()
|
|
|
|
def func(arg: torch.Tensor) -> torch.Tensor:
|
|
ag0 = torch.ops._c10d_functional.all_gather_into_tensor.default(
|
|
arg,
|
|
self.world_size,
|
|
"default",
|
|
)
|
|
ag0_view = torch.ops.aten.view.dtype(ag0, torch.int32)
|
|
return funcol.wait_tensor(ag0_view)
|
|
|
|
arg = torch.full(
|
|
(10, 10),
|
|
float(self.rank),
|
|
device=self.device,
|
|
dtype=torch.float32,
|
|
)
|
|
compiled = torch.compile(func)
|
|
mem_usage = {}
|
|
# check if the aten.view.dtype is compiled to aten.view.dtype
|
|
code = run_and_get_triton_code(compiled, arg)
|
|
(
|
|
FileCheck()
|
|
.check("torch.ops._c10d_functional.wait_tensor.default(aten.view.dtype")
|
|
.run(code)
|
|
)
|
|
# check memory leak
|
|
for i in range(1, 10):
|
|
mem_usage[i] = torch.cuda.max_memory_allocated()
|
|
compiled(arg)
|
|
|
|
assert mem_usage[9] == mem_usage[8]
|
|
|
|
@skip_if_lt_x_gpu(2)
|
|
def test_all_gather_into_tensor_coalesced(self) -> None:
|
|
self._init_process_group()
|
|
|
|
inputs = [
|
|
torch.full((10, 10), float(self.rank * i), device=self.device)
|
|
for i in range(10)
|
|
]
|
|
outputs = torch.ops._c10d_functional.all_gather_into_tensor_coalesced(
|
|
inputs,
|
|
self.world_size,
|
|
"default",
|
|
)
|
|
expect = [
|
|
torch.cat(
|
|
[
|
|
torch.full((10, 10), float(rank) * i, device=self.device)
|
|
for rank in self.ranks
|
|
]
|
|
)
|
|
for i in range(10)
|
|
]
|
|
for i, output in enumerate(outputs):
|
|
output = torch.ops._c10d_functional.wait_tensor(output)
|
|
assert output.eq(expect[i]).all()
|
|
|
|
# Test Python API and AsyncCollectiveTensor
|
|
outputs = all_gather_into_tensor_coalesced(
|
|
inputs,
|
|
"default",
|
|
)
|
|
for i, output in enumerate(outputs):
|
|
assert not output.completed
|
|
assert output.eq(expect[i]).all()
|
|
assert output.completed
|
|
|
|
@skip_if_lt_x_gpu(2)
|
|
def test_reduce_scatter_tensor_single(self) -> None:
|
|
self._init_process_group()
|
|
|
|
input = torch.tensor(self.ranks, device=self.device)
|
|
output = torch.ops._c10d_functional.reduce_scatter_tensor(
|
|
input,
|
|
"avg",
|
|
self.world_size,
|
|
"default",
|
|
)
|
|
output = torch.ops._c10d_functional.wait_tensor(output)
|
|
assert output.eq(self.rank).all()
|
|
|
|
# Test Python API and AsyncCollectiveTensor
|
|
output = reduce_scatter_tensor(
|
|
input,
|
|
"avg",
|
|
0,
|
|
"default",
|
|
)
|
|
assert isinstance(output, AsyncCollectiveTensor)
|
|
assert not output.completed
|
|
assert output.eq(self.rank).all()
|
|
assert output.completed
|
|
|
|
@skip_if_lt_x_gpu(2)
|
|
def test_reduce_scatter_tensor_coalesced(self) -> None:
|
|
self._init_process_group()
|
|
|
|
inputs = [torch.tensor(self.ranks, device=self.device) * i for i in range(10)]
|
|
outputs = torch.ops._c10d_functional.reduce_scatter_tensor_coalesced(
|
|
inputs,
|
|
"avg",
|
|
self.world_size,
|
|
"default",
|
|
)
|
|
for i, output in enumerate(outputs):
|
|
output = torch.ops._c10d_functional.wait_tensor(output)
|
|
assert output.eq(self.rank * i).all()
|
|
|
|
# Test Python API and AsyncCollectiveTensor
|
|
outputs = reduce_scatter_tensor_coalesced(
|
|
inputs,
|
|
"avg",
|
|
[0] * 10,
|
|
"default",
|
|
)
|
|
for i, output in enumerate(outputs):
|
|
assert not output.completed
|
|
assert output.eq(self.rank * i).all()
|
|
assert output.completed
|
|
|
|
@skip_if_lt_x_gpu(2)
|
|
def test_all_to_all_single(self) -> None:
|
|
self._init_process_group()
|
|
torch.cuda.set_device(self.device)
|
|
|
|
torch.manual_seed(42)
|
|
send_sz_matrix = torch.randint(0, 20, (self.world_size, self.world_size))
|
|
|
|
input_split_sizes = send_sz_matrix[self.rank].tolist()
|
|
output_split_sizes = send_sz_matrix[:, self.rank].tolist()
|
|
input = torch.full((sum(input_split_sizes),), float(self.rank)).cuda()
|
|
|
|
output = torch.ops._c10d_functional.all_to_all_single(
|
|
input,
|
|
output_split_sizes,
|
|
input_split_sizes,
|
|
"default",
|
|
)
|
|
output = torch.ops._c10d_functional.wait_tensor(output)
|
|
expect = torch.cat(
|
|
[
|
|
torch.full((sz,), float(rank)).cuda()
|
|
for rank, sz in enumerate(output_split_sizes)
|
|
]
|
|
)
|
|
assert output.eq(expect).all()
|
|
|
|
# Test Python API and AsyncCollectiveTensor
|
|
output = all_to_all_single(
|
|
input, output_split_sizes, input_split_sizes, "default"
|
|
)
|
|
assert not output.completed
|
|
assert output.eq(expect).all()
|
|
assert output.completed
|
|
|
|
@skip_if_lt_x_gpu(2)
|
|
def test_broadcast(self) -> None:
|
|
self._init_process_group()
|
|
|
|
input = torch.full((10, 10), float(self.rank), device=self.device)
|
|
output = torch.ops._c10d_functional.broadcast(
|
|
input,
|
|
1,
|
|
"default",
|
|
)
|
|
output = torch.ops._c10d_functional.wait_tensor(output)
|
|
assert id(output) != id(input)
|
|
expect = 1
|
|
assert output.eq(expect).all()
|
|
|
|
# Test Python API and AsyncCollectiveTensor
|
|
output = funcol.broadcast(
|
|
input,
|
|
1,
|
|
"default",
|
|
)
|
|
assert isinstance(output, AsyncCollectiveTensor)
|
|
assert not output.completed
|
|
assert output.eq(expect).all()
|
|
assert output.completed
|
|
|
|
@skip_if_lt_x_gpu(2)
|
|
def test_unwaited(self) -> None:
|
|
# Verify that the process can terminate gracefully
|
|
# even with unwaited tensors
|
|
self._init_process_group()
|
|
|
|
input = torch.full((10, 10), float(self.rank), device=self.device)
|
|
output = torch.ops._c10d_functional.all_reduce(
|
|
input,
|
|
"avg",
|
|
"default",
|
|
)
|
|
|
|
@skip_if_lt_x_gpu(2)
|
|
def test_py_work(self) -> None:
|
|
self._init_process_group()
|
|
|
|
wait_called = False
|
|
|
|
class MyWork(dist.Work):
|
|
def wait(self, _):
|
|
nonlocal wait_called
|
|
wait_called = True
|
|
|
|
tensor = torch.rand(2, 2)
|
|
torch._C._distributed_c10d._register_work(tensor, MyWork())
|
|
torch.ops._c10d_functional.wait_tensor(tensor)
|
|
self.assertTrue(wait_called)
|
|
|
|
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
|
|
@skip_if_lt_x_gpu(2)
|
|
@fresh_inductor_cache()
|
|
def test_threading(self):
|
|
self._init_process_group()
|
|
device = torch.device(f"cuda:{self.rank}")
|
|
|
|
def func(arg: torch.Tensor) -> torch.Tensor:
|
|
buf0 = arg + 42
|
|
ar0 = funcol.all_reduce(buf0, "avg", "0")
|
|
ar0 = funcol.wait_tensor(ar0)
|
|
return ar0 + 1
|
|
|
|
arg = torch.rand(4, 4, device=device)
|
|
func(arg)
|
|
|
|
compiled = torch.compile(func, fullgraph=True)
|
|
code = run_and_get_triton_code(compiled, arg)
|
|
FileCheck().check("all_reduce_.default(buf0, 'avg', '0')").run(code)
|
|
|
|
# Unless explicitly specified (e.g. in a custom runtime), the process
|
|
# group registry is shared among all threads in a process. Here we
|
|
# verify that a process group registered in main thread can be resolved
|
|
# in a different thread.
|
|
class TestThread(threading.Thread):
|
|
def run(self):
|
|
self.exc = None
|
|
try:
|
|
func(arg)
|
|
compiled(arg)
|
|
except BaseException as exc:
|
|
self.exc = exc
|
|
|
|
def join(self):
|
|
threading.Thread.join(self)
|
|
if self.exc:
|
|
raise self.exc
|
|
|
|
t = TestThread()
|
|
t.start()
|
|
t.join()
|
|
|
|
|
|
class CompileTest(TestCase):
|
|
def setUp(self):
|
|
# Allow testing aoti after torch.compile
|
|
torch._inductor.config.triton.store_cubin = True
|
|
torch._inductor.config.debug = True
|
|
|
|
self.rank = 0
|
|
self.world_size = 2
|
|
torch.cuda.set_device("cuda:0")
|
|
|
|
store = FakeStore()
|
|
dist.init_process_group(
|
|
backend="fake",
|
|
world_size=self.world_size,
|
|
rank=self.rank,
|
|
store=store,
|
|
)
|
|
|
|
def tearDown(self):
|
|
dist.destroy_process_group()
|
|
|
|
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
|
|
@fresh_inductor_cache()
|
|
def test_inductor_all_reduce_single(self):
|
|
def func(arg: torch.Tensor) -> torch.Tensor:
|
|
buf0 = arg + 42
|
|
# Expect in-place with inductor allocated buf
|
|
ar0 = funcol.all_reduce(buf0, "avg", "0")
|
|
ar0 = funcol.wait_tensor(ar0)
|
|
# Expect no in-place with graph input
|
|
ar1 = funcol.all_reduce(arg, "avg", "0")
|
|
ar1 = funcol.wait_tensor(ar1)
|
|
return ar0, ar1
|
|
|
|
arg = torch.rand(4, 4, device="cuda")
|
|
compiled = torch.compile(func)
|
|
|
|
code = run_and_get_triton_code(compiled, arg)
|
|
(
|
|
FileCheck()
|
|
.check("buf0 = empty")
|
|
.check("buf7 = empty")
|
|
# Expect in-place with inductor allocated buf
|
|
.check("torch.ops._c10d_functional.all_reduce_.default(buf0")
|
|
.check("torch.ops._c10d_functional.wait_tensor.default(buf0")
|
|
# Expect no in-place with graph input (buf5 is a clone)
|
|
.check("torch.ops._c10d_functional.all_reduce_.default(buf7")
|
|
.check("torch.ops._c10d_functional.wait_tensor.default(buf7")
|
|
# Expect no extra copy on return
|
|
.check("return (buf0, buf7, )")
|
|
.run(code)
|
|
)
|
|
assert "= torch.ops._c10d_functional.wait_tensor.default" not in code
|
|
|
|
# Test aoti
|
|
out = AOTIRunnerUtil.run("cuda", func, (arg,))
|
|
torch.cuda.synchronize()
|
|
|
|
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
|
|
@fresh_inductor_cache()
|
|
def test_inductor_all_reduce_coalesced(self):
|
|
def func(args: List[torch.Tensor]) -> torch.Tensor:
|
|
bufs = [arg + 42 for arg in args]
|
|
# Expect in-place with inductor allocated buf
|
|
ar0 = funcol.all_reduce_coalesced(bufs, "avg", "0")
|
|
ar0 = [funcol.wait_tensor(out) for out in ar0]
|
|
# Expect no in-place with graph input
|
|
ar1 = funcol.all_reduce_coalesced(args, "avg", "0")
|
|
ar1 = [funcol.wait_tensor(out) for out in ar1]
|
|
return ar0, ar1
|
|
|
|
args = [torch.rand(4, 4, device="cuda") for _ in range(2)]
|
|
compiled = torch.compile(func)
|
|
code = run_and_get_triton_code(compiled, args)
|
|
(
|
|
FileCheck()
|
|
.check("buf0 = empty")
|
|
.check("buf5 = empty")
|
|
.check("buf1 = empty")
|
|
.check("buf6 = empty")
|
|
# Expect in-place with inductor allocated buf
|
|
.check(
|
|
"torch.ops._c10d_functional.all_reduce_coalesced_"
|
|
".default([buf0, buf1]"
|
|
)
|
|
# Expect no in-place with graph input (buf5, buf6 are clones)
|
|
.check(
|
|
"torch.ops._c10d_functional.all_reduce_coalesced_"
|
|
".default([buf5, buf6]"
|
|
)
|
|
.check("torch.ops._c10d_functional.wait_tensor.default(buf0")
|
|
.check("torch.ops._c10d_functional.wait_tensor.default(buf1")
|
|
.check("torch.ops._c10d_functional.wait_tensor.default(buf5")
|
|
.check("torch.ops._c10d_functional.wait_tensor.default(buf6")
|
|
# Expect no extra copy on return
|
|
.check("return (buf0, buf1, buf5, buf6, )")
|
|
.run(code)
|
|
)
|
|
assert "= torch.ops._c10d_functional.wait_tensor.default" not in code
|
|
|
|
# Test aoti
|
|
out = AOTIRunnerUtil.run("cuda", func, (args,))
|
|
torch.cuda.synchronize()
|
|
|
|
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
|
|
@fresh_inductor_cache()
|
|
def test_inductor_inplace_op_on_view(self):
|
|
def func(arg: torch.Tensor) -> torch.Tensor:
|
|
buf0 = (arg + 10)[:2]
|
|
ar0 = funcol.all_reduce(buf0, "avg", "0")
|
|
ar0 = funcol.wait_tensor(ar0)
|
|
return ar0
|
|
|
|
arg = torch.rand(4, 4, device="cuda")
|
|
compiled = torch.compile(func)
|
|
|
|
code = run_and_get_triton_code(compiled, arg)
|
|
(
|
|
FileCheck()
|
|
.check("buf0 = empty")
|
|
# We always call .contiguous() on the input to all_reduce_,
|
|
# so input will not be a view anymore.
|
|
.check("torch.ops._c10d_functional.all_reduce_.default(buf0")
|
|
.check("torch.ops._c10d_functional.wait_tensor.default(buf0")
|
|
.check("return (buf0")
|
|
.run(code)
|
|
)
|
|
|
|
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
|
|
@fresh_inductor_cache()
|
|
def test_inductor_all_reduce_non_contig_input(self):
|
|
def func(arg: torch.Tensor) -> torch.Tensor:
|
|
ar0 = funcol.all_reduce(arg, "avg", "0")
|
|
ar0 = funcol.wait_tensor(ar0)
|
|
# Expect allocation
|
|
return ar0
|
|
|
|
arg = torch.rand(4, 4, device="cuda").T
|
|
compiled = torch.compile(func)
|
|
|
|
code = run_and_get_triton_code(compiled, arg)
|
|
# clone induced by non contig input
|
|
assert "torch.ops._c10d_functional.wait_tensor.default" in code
|
|
|
|
def func2(arg: torch.Tensor) -> torch.Tensor:
|
|
torch.ops._c10d_functional.all_reduce_(arg, "avg", "0")
|
|
return arg
|
|
|
|
compiled = torch.compile(func)
|
|
|
|
code = run_and_get_triton_code(compiled, arg)
|
|
# clone induced by non contig input
|
|
assert "torch.ops._c10d_functional.wait_tensor.default" in code
|
|
|
|
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
|
|
@fresh_inductor_cache()
|
|
def test_inductor_reuse_buffer_after_inplace_collective(self):
|
|
def func(arg: torch.Tensor) -> torch.Tensor:
|
|
# Expect allocation
|
|
buf0 = arg + 42
|
|
ar0 = funcol.all_reduce(buf0, "avg", "0")
|
|
ar0 = funcol.wait_tensor(ar0)
|
|
# Expect allocation
|
|
buf1 = torch.mm(arg, ar0)
|
|
# Expect buf0 to be reused
|
|
buf2 = torch.mm(arg, buf1)
|
|
return buf1, buf2
|
|
|
|
arg = torch.rand(4, 4, device="cuda")
|
|
compiled = torch.compile(func)
|
|
code = run_and_get_triton_code(compiled, arg)
|
|
(
|
|
FileCheck()
|
|
# Expect allocation
|
|
.check("buf0 = empty")
|
|
.check("torch.ops._c10d_functional.all_reduce_.default(buf0")
|
|
.check("torch.ops._c10d_functional.wait_tensor.default(buf0")
|
|
# Expect allocation
|
|
.check("buf7 = empty")
|
|
.check("extern_kernels.mm(arg0_1, buf0, out=buf7")
|
|
# Expect buf0 to be reused
|
|
.check("buf8 = buf0; del buf0 # reuse")
|
|
.check("extern_kernels.mm(arg0_1, buf7, out=buf8")
|
|
# Expect no extra copy on return
|
|
.check("return (buf7, buf8, )")
|
|
.run(code)
|
|
)
|
|
assert "= torch.ops._c10d_functional.wait_tensor.default" not in code
|
|
|
|
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
|
|
@fresh_inductor_cache()
|
|
def test_inductor_all_gather_into_tensor_single(self):
|
|
def func(arg: torch.Tensor) -> torch.Tensor:
|
|
ag0 = funcol.all_gather_tensor(arg, 0, "0")
|
|
ag0 = funcol.wait_tensor(ag0)
|
|
return ag0
|
|
|
|
arg = torch.rand(4, 4, device="cuda")
|
|
compiled = torch.compile(func)
|
|
code = run_and_get_triton_code(compiled, arg)
|
|
(
|
|
FileCheck()
|
|
.check(
|
|
"buf0 = torch.ops._c10d_functional.all_gather_into_tensor.default(arg0_1"
|
|
)
|
|
.check("torch.ops._c10d_functional.wait_tensor.default(buf0")
|
|
# Expect no extra copy on return
|
|
.check("return (buf0, )")
|
|
.run(code)
|
|
)
|
|
assert "= torch.ops._c10d_functional.wait_tensor.default" not in code
|
|
|
|
# Test aoti
|
|
out = AOTIRunnerUtil.run("cuda", func, (arg,))
|
|
torch.cuda.synchronize()
|
|
|
|
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
|
|
@fresh_inductor_cache()
|
|
def test_inductor_all_gather_into_tensor_coalesced(self):
|
|
def func(args: List[torch.Tensor]) -> torch.Tensor:
|
|
ag0 = funcol.all_gather_into_tensor_coalesced(args, "0")
|
|
ag0 = [funcol.wait_tensor(out) for out in ag0]
|
|
return ag0
|
|
|
|
args = [torch.rand(4, 4, device="cuda") for _ in range(4)]
|
|
compiled = torch.compile(func)
|
|
code = run_and_get_triton_code(compiled, args)
|
|
(
|
|
FileCheck()
|
|
.check(
|
|
"buf0 = torch.ops._c10d_functional.all_gather_into_tensor_coalesced"
|
|
".default([arg3_1, arg2_1, arg1_1, arg0_1]"
|
|
)
|
|
.check("buf1 = buf0[0]")
|
|
.check("buf2 = buf0[1]")
|
|
.check("buf3 = buf0[2]")
|
|
.check("buf4 = buf0[3]")
|
|
.check("torch.ops._c10d_functional.wait_tensor.default(buf1")
|
|
.check("torch.ops._c10d_functional.wait_tensor.default(buf2")
|
|
.check("torch.ops._c10d_functional.wait_tensor.default(buf3")
|
|
.check("torch.ops._c10d_functional.wait_tensor.default(buf4")
|
|
# Expect no extra copy on return
|
|
.check("return (buf1, buf2, buf3, buf4, )")
|
|
.run(code)
|
|
)
|
|
|
|
# Test aoti
|
|
out = AOTIRunnerUtil.run("cuda", func, (args,))
|
|
torch.cuda.synchronize()
|
|
|
|
@unittest.skipIf(not HAS_GPU, "This is a GPU test!")
|
|
@fresh_inductor_cache()
|
|
def test_wait_tensor(self):
|
|
def func(arg: torch.Tensor) -> torch.Tensor:
|
|
t = torch.ops._c10d_functional.all_reduce(arg, "avg", "0")
|
|
return funcol.wait_tensor(t)
|
|
|
|
# Test aoti
|
|
arg = torch.rand(4, 4, device="cuda")
|
|
compiled = torch.compile(func)
|
|
code = run_and_get_triton_code(compiled, arg)
|
|
(
|
|
FileCheck()
|
|
.check("torch.ops._c10d_functional.wait_tensor.default(buf0")
|
|
.check("return (buf0, )")
|
|
.run(code)
|
|
)
|
|
|
|
# Test aoti
|
|
out = AOTIRunnerUtil.run("cuda", func, (arg,))
|
|
torch.cuda.synchronize()
|
|
|
|
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
|
|
@fresh_inductor_cache()
|
|
def test_inductor_reduce_scatter_tensor_single(self):
|
|
def func(arg: torch.Tensor) -> torch.Tensor:
|
|
rs0 = funcol.reduce_scatter_tensor(arg, "avg", 0, "0")
|
|
rs0 = funcol.wait_tensor(rs0)
|
|
return rs0
|
|
|
|
arg = torch.rand(4, 4, device="cuda")
|
|
compiled = torch.compile(func)
|
|
code = run_and_get_triton_code(compiled, arg)
|
|
(
|
|
FileCheck()
|
|
.check(
|
|
"buf0 = torch.ops._c10d_functional.reduce_scatter_tensor.default(arg0_1"
|
|
)
|
|
.check("torch.ops._c10d_functional.wait_tensor.default(buf0")
|
|
# Expect no extra copy on return
|
|
.check("return (buf0, )")
|
|
.run(code)
|
|
)
|
|
|
|
# Test aoti
|
|
out = AOTIRunnerUtil.run("cuda", func, (arg,))
|
|
torch.cuda.synchronize()
|
|
|
|
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
|
|
@fresh_inductor_cache()
|
|
def test_inductor_reduce_scatter_tensor_coalesced(self):
|
|
def func(args: List[torch.Tensor]) -> torch.Tensor:
|
|
rs0 = funcol.reduce_scatter_tensor_coalesced(
|
|
args, "avg", [0] * len(args), "0"
|
|
)
|
|
rs0 = [funcol.wait_tensor(out) for out in rs0]
|
|
return rs0
|
|
|
|
args = [torch.rand(4, 4, device="cuda") for _ in range(4)]
|
|
compiled = torch.compile(func)
|
|
code = run_and_get_triton_code(compiled, args)
|
|
(
|
|
FileCheck()
|
|
.check(
|
|
"buf0 = torch.ops._c10d_functional.reduce_scatter_tensor_coalesced"
|
|
".default([arg0_1, arg1_1, arg2_1, arg3_1]"
|
|
)
|
|
.check("buf1 = buf0[0]")
|
|
.check("buf2 = buf0[1]")
|
|
.check("buf3 = buf0[2]")
|
|
.check("buf4 = buf0[3]")
|
|
.check("torch.ops._c10d_functional.wait_tensor.default(buf1")
|
|
.check("torch.ops._c10d_functional.wait_tensor.default(buf2")
|
|
.check("torch.ops._c10d_functional.wait_tensor.default(buf3")
|
|
.check("torch.ops._c10d_functional.wait_tensor.default(buf4")
|
|
# Expect no extra copy on return
|
|
.check("return (buf1, buf2, buf3, buf4, )")
|
|
.run(code)
|
|
)
|
|
|
|
# Test aoti
|
|
AOTIRunnerUtil.run("cuda", func, (args,))
|
|
torch.cuda.synchronize()
|
|
|
|
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
|
|
@fresh_inductor_cache()
|
|
def test_inductor_all_to_all_single(self):
|
|
def _tolist_with_constrain_as_size(tensor):
|
|
lst = tensor.tolist()
|
|
for elem in lst:
|
|
torch._check_is_size(elem)
|
|
return lst
|
|
|
|
def func(
|
|
input: torch.Tensor,
|
|
output_split_sizes: torch.Tensor,
|
|
input_split_sizes: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
output = funcol.all_to_all_single(
|
|
input,
|
|
_tolist_with_constrain_as_size(output_split_sizes),
|
|
_tolist_with_constrain_as_size(input_split_sizes),
|
|
"0",
|
|
)
|
|
return funcol.wait_tensor(output)
|
|
|
|
torch.manual_seed(42)
|
|
send_sz_matrix = torch.randint(0, 20, (self.world_size, self.world_size))
|
|
|
|
input_split_sizes = send_sz_matrix[self.rank]
|
|
output_split_sizes = send_sz_matrix[:, self.rank].contiguous()
|
|
input = torch.full((input_split_sizes.sum().item(),), float(self.rank)).cuda()
|
|
|
|
with torch._dynamo.config.patch(
|
|
dynamic_shapes=True,
|
|
capture_dynamic_output_shape_ops=True,
|
|
capture_scalar_outputs=True,
|
|
):
|
|
compiled = torch.compile(func, dynamic=True)
|
|
code = run_and_get_triton_code(
|
|
compiled, input, output_split_sizes, input_split_sizes
|
|
)
|
|
(
|
|
FileCheck()
|
|
.check_regex(
|
|
"torch.ops._c10d_functional.all_to_all_single.default\\("
|
|
"arg\\d+_\\d+, \\[u\\d+, u\\d+\\], \\[u\\d+, u\\d+\\]"
|
|
)
|
|
.check("torch.ops._c10d_functional.wait_tensor.default(")
|
|
.run(code)
|
|
)
|
|
|
|
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
|
|
@fresh_inductor_cache()
|
|
def test_inductor_broadcast(self):
|
|
def func(arg: torch.Tensor) -> torch.Tensor:
|
|
buf0 = arg + 42
|
|
# Expect in-place with inductor allocated buf
|
|
br0 = funcol.broadcast(buf0, 1, "0")
|
|
br0 = funcol.wait_tensor(br0)
|
|
# Expect no in-place with graph input
|
|
br1 = funcol.broadcast(arg, 0, "0")
|
|
br1 = funcol.wait_tensor(br1)
|
|
return br0, br1
|
|
|
|
arg = torch.rand(4, 4, device="cuda")
|
|
compiled = torch.compile(func)
|
|
|
|
code = run_and_get_triton_code(compiled, arg)
|
|
(
|
|
FileCheck()
|
|
.check("buf0 = empty")
|
|
.check("buf7 = empty")
|
|
# Expect in-place with inductor allocated buf
|
|
.check("torch.ops._c10d_functional.broadcast_.default(buf0")
|
|
.check("torch.ops._c10d_functional.wait_tensor.default(buf0")
|
|
# Expect no in-place with graph input (buf5 is a clone)
|
|
.check("torch.ops._c10d_functional.broadcast_.default(buf7")
|
|
.check("torch.ops._c10d_functional.wait_tensor.default(buf7")
|
|
# Expect no extra copy on return
|
|
.check("return (buf0, buf7, )")
|
|
.run(code)
|
|
)
|
|
|
|
# Test aoti
|
|
out = AOTIRunnerUtil.run("cuda", func, (arg,))
|
|
torch.cuda.synchronize()
|
|
|
|
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
|
|
@fresh_inductor_cache()
|
|
def test_ranks_and_tag(self):
|
|
def func(arg: torch.Tensor) -> torch.Tensor:
|
|
buf0 = arg + 42
|
|
# Expect in-place with inductor allocated buf
|
|
ar0 = funcol.all_reduce(buf0, "avg", [0, 1], "")
|
|
ar0 = funcol.wait_tensor(ar0)
|
|
# Expect no in-place with graph input
|
|
ar1 = funcol.all_reduce(arg, "avg", [0, 1], "")
|
|
ar1 = funcol.wait_tensor(ar1)
|
|
return ar0, ar1
|
|
|
|
arg = torch.rand(4, 4, device="cuda")
|
|
compiled = torch.compile(func, fullgraph=True)
|
|
|
|
code = run_and_get_triton_code(compiled, arg)
|
|
(FileCheck().check("all_reduce_.default(buf0, 'avg', '0')").run(code))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|