Files
pytorch/torch/legacy/nn/Container.py
Luke Yeager e7c1e6a8e3 [pep8] Fix most lint automatically with autopep8
Here's the command I used to invoke autopep8 (in parallel!):

    git ls-files | grep '\.py$' | xargs -n1 -P`nproc` autopep8 -i

Several rules are ignored in setup.cfg. The goal is to let autopep8
handle everything which it can handle safely, and to disable any rules
which are tricky or controversial to address. We may want to come back
and re-enable some of these rules later, but I'm trying to make this
patch as safe as possible.

Also configures flake8 to match pep8's behavior.

Also configures TravisCI to check the whole project for lint.
2017-01-28 01:15:51 +01:00

67 lines
1.7 KiB
Python

import torch
from .Module import Module
from .utils import clear
from functools import wraps
import sys
class Container(Module):
def __init__(self, *args):
super(Container, self).__init__(*args)
self.modules = []
def add(self, module):
self.modules.append(module)
return self
def get(self, index):
return self.modules[index]
def size(self):
return len(self.modules)
def applyToModules(self, func):
for module in self.modules:
func(module)
def zeroGradParameters(self):
self.applyToModules(lambda m: m.zeroGradParameters())
def updateParameters(self, learningRate):
self.applyToModules(lambda m: m.updateParameters(learningRate))
def training(self):
self.applyToModules(lambda m: m.training())
super(Container, self).training()
def evaluate(self, ):
self.applyToModules(lambda m: m.evaluate())
super(Container, self).evaluate()
def share(self, mlp, *args):
for module, other_module in zip(self.modules, mlp.modules):
module.share(other_module, *args)
def reset(self, stdv=None):
self.applyToModules(lambda m: m.reset(stdv))
def parameters(self):
w = []
gw = []
for module in self.modules:
mparam = module.parameters()
if mparam is not None:
w.extend(mparam[0])
gw.extend(mparam[1])
if not w:
return
return w, gw
def clearState(self):
clear('output')
clear('gradInput')
for module in self.modules:
module.clearState()
return self