Files
pytorch/torch/_dynamo/variables/torch.py

934 lines
38 KiB
Python

import functools
import inspect
import logging
import math
import re
from typing import Dict, List
import torch._C
import torch._refs
import torch.fx
import torch.nn
import torch.onnx.operators
from torch._logging import warning_once
from torch._streambase import _StreamBase
from ..._guards import TracingContext
from .. import config, polyfill, variables
from ..codegen import PyCodegen
from ..create_parameter_op import new_parameter_placeholder, tracable_create_parameter
from ..device_interface import get_registered_device_interfaces
from ..exc import unimplemented
from ..guards import GuardBuilder, install_guard
from ..source import SyntheticLocalSource
from ..utils import (
check_unspec_or_constant_args,
guard_if_dyn,
has_torch_function,
hashable,
product,
proxy_args_kwargs,
unwrap_if_wrapper,
)
from .base import VariableTracker
from .ctx_manager import (
AutocastModeVariable,
NullContextVariable,
TorchFunctionDisableVariable,
)
from .distributed import DistributedVariable, ProcessGroupVariable
from .lists import ListVariable, TupleVariable
from .torch_function import can_dispatch_torch_function, dispatch_torch_function
try:
import numpy as np
except ModuleNotFoundError:
np = None # type: ignore[assignment]
log = logging.getLogger(__name__)
supported_ctx_manager_classes = dict.fromkeys(
[
torch.profiler.profiler.profile,
torch.autograd.forward_ad._set_fwd_grad_enabled,
torch.autograd.forward_ad.dual_level,
torch.autograd.profiler.profile,
torch.autograd.profiler.record_function,
torch._C.DisableTorchFunctionSubclass,
torch._functorch.vmap.vmap_increment_nesting,
torch._functorch.eager_transforms.grad_increment_nesting,
torch._functorch.eager_transforms.jvp_increment_nesting,
torch._functorch.eager_transforms.enable_inplace_requires_grad,
torch.amp.autocast_mode.autocast,
torch.autograd.grad_mode.enable_grad,
torch.autograd.grad_mode.inference_mode,
torch.autograd.grad_mode.no_grad,
torch.autograd.grad_mode.set_grad_enabled,
torch.autograd.graph.disable_saved_tensors_hooks,
torch.cpu.amp.autocast_mode.autocast,
torch.cuda.amp.autocast_mode.autocast,
]
)
REWRITE_OPS_TO_TENSOR_SIZE_METHOD = dict.fromkeys(
[
torch.onnx.operators.shape_as_tensor,
torch._shape_as_tensor,
]
)
constant_fold_functions = [
torch._assert,
torch._utils._get_device_index,
torch._C._get_cublas_allow_tf32,
torch._C._is_any_autocast_enabled,
torch.cuda.get_device_properties,
torch.cuda.is_available,
torch.distributed.is_available,
torch.get_autocast_dtype,
torch.get_autocast_gpu_dtype,
torch.get_default_dtype,
torch.is_autocast_cache_enabled,
torch.is_autocast_cpu_enabled,
torch.is_autocast_enabled,
torch.is_complex,
torch.is_floating_point,
torch.nn.functional._Reduction.get_enum, # type: ignore[attr-defined]
torch.promote_types,
torch._C._get_privateuse1_backend_name,
]
if torch.distributed.is_available():
constant_fold_functions.extend(
[
torch.distributed.is_initialized,
torch.distributed.get_rank,
torch.distributed.get_world_size,
]
)
# Convert to dict for O(1) access times
constant_fold_functions = dict.fromkeys(constant_fold_functions)
tracing_state_functions = {
torch.jit.is_scripting: False,
torch.jit.is_tracing: False,
torch._C._get_tracing_state: None,
torch.fx._symbolic_trace.is_fx_tracing: False,
torch.onnx.is_in_onnx_export: False,
torch._dynamo.external_utils.is_compiling: True,
torch._utils.is_compiling: True,
torch.compiler.is_compiling: True,
torch.compiler.is_dynamo_compiling: True,
}
bin_ops = dict.fromkeys(["add", "sub", "mul", "div", "sqrt"])
class BaseTorchVariable(VariableTracker):
"""common base for all torch.* functions, classes, modules and other things"""
@classmethod
def create_with_source(cls, value, source):
install_guard(source.make_guard(GuardBuilder.FUNCTION_MATCH))
return cls(
value,
source=source,
)
def __init__(self, value, **kwargs):
super().__init__(**kwargs)
self.value = value
def reconstruct(self, codegen):
try:
name = f"{self.value.__module__}.{self.value.__name__}"
except Exception:
name = f"torch_obj_{id(self.value)}"
unique_var_name = "__" + re.sub(r"[^a-zA-Z0-9_]+", "_", name)
codegen.extend_output(
codegen.setup_globally_cached(unique_var_name, self.value, False)
)
def as_proxy(self):
return self.value
def python_type(self):
return type(self.value)
def as_python_constant(self):
return self.value
def call_hasattr(self, tx, name):
result = hasattr(self.value, name)
return variables.ConstantVariable.create(result)
def can_constant_fold_through(self):
if self.value in constant_fold_functions:
return True
return getattr(self.value, "__module__", None) == "math"
class TorchCtxManagerClassVariable(BaseTorchVariable):
"""Points to a context manager class in torch.* that dynamo has implementations"""
def __repr__(self):
return f"TorchCtxManagerClassVariable({self.value})"
@staticmethod
def is_matching_cls(value):
# Unwrap if it's a functools.lru_cache wrapper
value = unwrap_if_wrapper(value)
# We can't do isinstance(value, type) check because some ctx managers
# are implemented as a function decorated by contextlib.contextmanager,
# E.g., torch._functorch.vmap.vmap_increment_nesting.
return (
# Context manager type or function with @contextmanager is callable
callable(value)
and (
hashable(value) # accesses value.__hash__()
and value in supported_ctx_manager_classes
)
)
def call_function(
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
) -> "VariableTracker":
from . import (
DisabledSavedTensorsHooksVariable,
DualLevelContextManager,
GradIncrementNestingCtxManagerVariable,
GradInplaceRequiresGradCtxManagerVariable,
GradModeVariable,
InferenceModeVariable,
JvpIncrementNestingCtxManagerVariable,
SetFwdGradEnabledContextManager,
StreamVariable,
VmapIncrementNestingCtxManagerVariable,
)
if self.value is torch.no_grad:
if len(args) == 1 and isinstance(
args[0], variables.functions.BaseUserFunctionVariable
):
ctx = GradModeVariable.create(tx, False)
return ctx.call_function(tx, args, kwargs)
else:
return GradModeVariable.create(tx, False)
elif self.value is torch.enable_grad:
if len(args) == 1 and isinstance(
args[0], variables.functions.BaseUserFunctionVariable
):
ctx = GradModeVariable.create(tx, True)
return ctx.call_function(tx, args, kwargs)
return GradModeVariable.create(tx, True)
elif self.value is torch.set_grad_enabled and len(args) == 1:
return GradModeVariable.create(
tx, args[0].as_python_constant(), initialized=True
)
elif self.value is torch.inference_mode:
assert len(args) <= 1 and len(kwargs) == 0
inf_mode = args[0].as_python_constant() if len(args) == 1 else True
return InferenceModeVariable.create(tx, inf_mode)
elif inspect.isclass(self.value) and issubclass(self.value, _StreamBase):
from torch._dynamo.variables.builder import wrap_fx_proxy_cls
return wrap_fx_proxy_cls(
StreamVariable,
tx,
tx.output.create_proxy(
"call_function",
self.value,
(),
{},
),
)
elif self.value in (
torch.amp.autocast_mode.autocast,
torch.cuda.amp.autocast,
torch.cpu.amp.autocast,
):
return AutocastModeVariable.create(self.value, args, kwargs)
elif self.value in (
torch.profiler.profile,
torch.profiler.record_function,
torch.autograd.profiler.profile,
torch.autograd.profiler.record_function,
):
warning_once(log, "Profiler function %s will be ignored", self.value)
return NullContextVariable()
elif self.value is torch._C.DisableTorchFunctionSubclass:
assert not (args or kwargs)
return TorchFunctionDisableVariable.create(tx)
elif self.value is torch._functorch.vmap.vmap_increment_nesting:
assert len(args) == 2
return VmapIncrementNestingCtxManagerVariable.create(
tx,
[guard_if_dyn(x) for x in args],
)
elif self.value is torch._functorch.eager_transforms.jvp_increment_nesting:
assert len(args) == 0
return JvpIncrementNestingCtxManagerVariable.create(tx)
elif self.value is torch.autograd.forward_ad._set_fwd_grad_enabled:
assert len(args) == 1
return SetFwdGradEnabledContextManager.create(
tx,
[guard_if_dyn(x) for x in args],
)
elif self.value is torch.autograd.forward_ad.dual_level:
assert len(args) == 0
return DualLevelContextManager.create(tx)
elif self.value is torch._functorch.eager_transforms.grad_increment_nesting:
assert len(args) == 0
return GradIncrementNestingCtxManagerVariable.create(tx)
elif (
self.value is torch._functorch.eager_transforms.enable_inplace_requires_grad
):
assert len(args) == 1
return GradInplaceRequiresGradCtxManagerVariable.create(
tx,
[guard_if_dyn(x) for x in args],
)
elif self.value is torch.autograd.graph.disable_saved_tensors_hooks:
assert len(args) == 1
return DisabledSavedTensorsHooksVariable.create(
tx, args[0].as_python_constant()
)
return super().call_function(tx, args, kwargs)
class TorchInGraphFunctionVariable(BaseTorchVariable):
"""Points to a torch function/method that should be put in FX graph"""
def __repr__(self):
return f"TorchInGraphFunctionVariable({self.value})"
def get_function(self):
return self.value
@staticmethod
@functools.lru_cache(None)
def _get_handlers():
"""Build a dict from function -> method to handle it so that we are O(1)
in terms of the number of function with special handling."""
handlers = {}
def register(*fns):
def _register(handler):
for fn in fns:
assert fn not in handlers, fn
handlers[fn] = handler
return handler
assert callable(fns[0])
return _register
from torch.backends.cuda import SDPAParams
from . import (
ConstantVariable,
DeterministicAlgorithmsVariable,
GradModeVariable,
StreamContextVariable,
SymNodeVariable,
TensorVariable,
UserDefinedObjectVariable,
)
from .builder import SourcelessBuilder, wrap_fx_proxy, wrap_fx_proxy_cls
@register(*tracing_state_functions)
def handle_tracing_state_functions(self, tx, *args, **kwargs):
assert not args and not kwargs
# See: https://github.com/pytorch/pytorch/issues/110765
if self.value in (
torch._utils.is_compiling,
torch._dynamo.external_utils.is_compiling,
torch.compiler.is_compiling,
torch.compiler.is_dynamo_compiling,
):
tx.mark_inconsistent_side_effects()
return ConstantVariable.create(tracing_state_functions[self.value])
@register(torch.overrides.get_default_nowrap_functions.__wrapped__)
def handle_get_default_nowrap_functions(self, tx, *args, **kwargs):
# [Note: __torch_function__] we return empty here because we restrict
# the set of functions that we trace __torch_function__ on to
# functions outside of the actual set. Implementing this properly will require implementing
# some variable types to track and compare tensor getset descriptors
return SourcelessBuilder.create(
tx, torch.overrides.get_default_nowrap_functions()
)
@register(torch.ops.inductor.accumulate_grad_.default)
def handle_accumulate_grad_(self, tx, *args, **kwargs):
return tx.inline_user_function_return(
SourcelessBuilder.create(tx, polyfill.accumulate_grad), args, kwargs
)
@register(math.radians)
def handle_radians(self, tx, *args, **kwargs):
if not check_unspec_or_constant_args(args, kwargs):
# Use polyfill to convert math.radians(x) into math.pi * x / 180.0
return tx.inline_user_function_return(
SourcelessBuilder.create(tx, polyfill.radians), args, kwargs
)
@register(torch.is_tensor, torch.overrides.is_tensor_like)
def handle_is_tensor(self, tx, arg):
if isinstance(arg, TensorVariable) or (
self.value is torch.overrides.is_tensor_like
and isinstance(arg, UserDefinedObjectVariable)
and hasattr(arg.value, "__torch_function__")
):
return ConstantVariable.create(True)
else:
return ConstantVariable.create(False)
@register(
torch.is_floating_point,
torch.is_complex,
)
def handle_is_floating_point(self, tx, input):
input_arg = input
if isinstance(input_arg, TensorVariable) and input_arg.dtype is not None:
if self.value is torch.is_floating_point:
return ConstantVariable.create(input_arg.dtype.is_floating_point)
elif self.value is torch.is_complex:
return ConstantVariable.create(input_arg.dtype.is_complex)
else:
raise AssertionError(f"calling {self.value}")
@register(torch.numel)
def handle_numel(self, tx, input):
if isinstance(input, TensorVariable) and input.size is not None:
return ConstantVariable.create(product(input.size))
elif isinstance(input, TensorVariable):
# Workaround dynamic shapes issue
return input.call_method(tx, "numel", [], {})
@register(*REWRITE_OPS_TO_TENSOR_SIZE_METHOD)
def handle_tensor_size_rewrites(self, tx, input):
assert isinstance(input, TensorVariable)
return input.call_method(tx, "size", [], {})
@register(
torch.nn.modules.utils._single,
torch.nn.modules.utils._pair,
torch.nn.modules.utils._triple,
torch.nn.modules.utils._quadruple,
torch.nn.modules.utils._ntuple,
)
def handle_ntuple(self, tx, *args, **kwargs):
return self._call_ntuple(tx, args, kwargs)
@register(torch.is_grad_enabled)
def handle_is_grad_enabled(self, tx):
install_guard(GradModeVariable._guards_singleton)
return ConstantVariable.create(torch.is_grad_enabled())
@register(torch.use_deterministic_algorithms)
def handle_use_deterministic_algorithms(self, tx, mode, warn_only=False):
if warn_only and warn_only.as_python_constant():
unimplemented("torch.use_deterministic_algorithms(warn_only=True)")
return DeterministicAlgorithmsVariable.create(tx, mode.as_python_constant())
@register(torch.are_deterministic_algorithms_enabled)
def handle_are_deterministic_algorithms_enabled(self, tx):
install_guard(DeterministicAlgorithmsVariable._guards_singleton)
return ConstantVariable.create(torch.are_deterministic_algorithms_enabled())
@register(torch._C._is_torch_function_enabled)
def handle_is_torch_function_enabled(self, tx):
install_guard(TorchFunctionDisableVariable._guards_singleton)
return ConstantVariable.create(tx.output.torch_function_enabled)
@register(
torch.overrides.has_torch_function,
torch.overrides.has_torch_function_variadic,
torch.overrides.has_torch_function_unary,
)
def handle_has_torch_function(self, tx, *args):
elems = (
args[0].unpack_var_sequence(tx)
if len(args) == 1 and isinstance(args[0], TupleVariable)
else args
)
return ConstantVariable.create(
any(has_torch_function(x) for x in elems),
)
@register(
*dict.fromkeys( # remove duplicates
device_interface.stream
for _, device_interface in get_registered_device_interfaces()
)
)
def handle_device_interface_stream(self, tx, stream):
return StreamContextVariable.create(tx, stream)
@register(torch.from_numpy)
def handle_from_numpy(self, tx, *args):
if not config.trace_numpy:
unimplemented("torch.from_numpy. config.trace_numpy is False")
if not np:
unimplemented("torch.from_numpy. NumPy is not available")
return wrap_fx_proxy_cls(
target_cls=TensorVariable,
tx=tx,
proxy=tx.output.create_proxy(
"call_function",
torch.as_tensor,
*proxy_args_kwargs(args, {}),
),
example_value=None,
)
@register(torch.jit.annotate)
def handle_jit_annotate(self, tx, the_type, the_value):
return the_value
@register(torch.backends.cudnn.is_acceptable)
def handle_cudnn_is_acceptable(self, tx, tensor, *extra):
# is_acceptable(tensor) returns true if
# (a) tensor dtype/device are supported by cudnn
# (b) cudnn is available
# (c) some initialization has completed
# technically, it depends on some global state from (c) (torch.backends.cudnn.__cudnn_version)
assert not extra, "Expect 1 input to cudnn.is_acceptable"
assert isinstance(
tensor, TensorVariable
), "Expect input to cudnn.is_acceptable to be a tensor"
tensor_inp = torch.tensor(0, dtype=tensor.dtype, device=tensor.device)
return ConstantVariable.create(
torch.backends.cudnn.is_acceptable(tensor_inp)
)
@register(torch.utils.hooks.BackwardHook)
def handle_backward_hook(self, tx, *args, **kwargs):
return variables.BackwardHookVariable.create(tx, *args, **kwargs)
@register(torch.nn.Parameter)
def handle_parameter(self, tx, *args, **kwargs):
return self.call_nn_parameter(tx, *args, **kwargs)
@register(torch.ops.aten.sym_size, torch.ops.aten.sym_size.int)
def handle_sym_size(self_, tx, self, dim=None):
# we see this when retracing already traced code
if dim is not None:
return self.call_method(tx, "size", [dim], {})
@register(torch.ops.aten.sym_stride, torch.ops.aten.sym_stride.int)
def handle_sym_stride(self_, tx, self, dim=None):
if dim is not None:
return self.call_method(tx, "stride", [dim], {})
@register(torch.addcdiv)
def handle_addcdiv(self, tx, *args, **kwargs):
if len(args) == 3 and "value" in kwargs and len(kwargs) == 1:
# decompose addcdiv into constituent ops, prevents a graph break due to converting
# value to a scalar
result = TorchInGraphFunctionVariable(torch.div).call_function(
tx, [*args[1:]], {}
)
result = TorchInGraphFunctionVariable(torch.mul).call_function(
tx, [result, kwargs["value"]], {}
)
return TorchInGraphFunctionVariable(torch.add).call_function(
tx, [args[0], result], {}
)
@register(torch._assert)
def handle_assert(self, tx, condition, message):
if (condition.is_python_constant() and condition.as_python_constant()) or (
isinstance(condition, variables.SymNodeVariable)
and condition.evaluate_expr()
):
return ConstantVariable(None)
@register(SDPAParams)
def handle_sdpa_params(self, tx, *args, **kwargs):
return wrap_fx_proxy(
tx,
proxy=tx.output.create_proxy(
"call_function",
torch._C._SDPAParams,
*proxy_args_kwargs(args, kwargs),
),
param_vars=args,
)
if DistributedVariable.is_available():
from torch.distributed._tensor import DTensor
from torch.distributed.distributed_c10d import (
_get_group_size_by_name,
_get_group_tag,
_rank_not_in_group,
_resolve_group_name_by_ranks_and_tag,
get_process_group_ranks,
)
@register(
_get_group_size_by_name,
_get_group_tag,
_rank_not_in_group,
get_process_group_ranks,
_resolve_group_name_by_ranks_and_tag,
)
def handle_constant_processgroup_functions(self, tx, *args):
# because the input is a "ProcessGroupVariable", we'll be guarding on its
# ID_MATCH based on how it was constructed.
# We desugar it at trace-time into ranks by directly calling util
# bake the result into the trace
if len(args) == 1:
# group or group name
assert isinstance(args[0], (ProcessGroupVariable, ConstantVariable))
elif len(args) == 2:
# ranks + tag
assert isinstance(args[0], ListVariable) and isinstance(
args[1], ConstantVariable
)
else:
raise AssertionError(
f"Invalid group value ({args}) for constant pg "
f"function {self.value}"
)
args_as_value = [arg.as_python_constant() for arg in args]
invocation_result = self.value(*args_as_value)
# Note - while we *could* cook up sources around invocations, like a FunctionSource
# the space of invoking functions in the middle of the guard chain is very iffy. As such,
# guard propagation via options is the best we can do.
return SourcelessBuilder.create(tx, invocation_result)
@register(DTensor.from_local)
def handle_from_local(self, tx, *args, **kwargs):
# rewrite non-primitive args/kwargs to be included in the on-the-fly prim function
# and rewrite args to have only proxyable args, then insert call_function
args_as_value = [x.as_python_constant() for x in args[1:]]
kwargs_as_value = {k: v.as_python_constant() for k, v in kwargs.items()}
def fn_with_prim_types(x):
return self.value(x, *args_as_value, **kwargs_as_value)
# attach the same function name for better debugging
fn_with_prim_types.__name__ = "prim " + self.value.__name__
return wrap_fx_proxy(
tx=tx,
proxy=tx.output.create_proxy(
"call_function",
fn_with_prim_types,
*proxy_args_kwargs([args[0]], {}),
),
)
@register(torch.nested.nested_tensor)
def handle_nested_tensor(
self, tx, tensor_list=None, *args, layout=None, **kwargs
):
from .lists import BaseListVariable
if layout and layout.as_python_constant() == torch.strided:
unimplemented("torch.compile does not support strided NestedTensor")
if not isinstance(tensor_list, BaseListVariable):
unimplemented("nested_tensor with non-list input")
@register(torch.nn.functional.one_hot)
def handle_one_hot(self, tx, *args, **kwargs):
if len(args) + len(kwargs) == 1 or (
len(args) == 2
and args[1].is_python_constant()
and args[1].as_python_constant() == -1
):
unimplemented(
"torch.nn.functional.one_hot with data-dependent output shape"
)
@register(torch.fx.experimental.symbolic_shapes.guard_size_oblivious)
def handle_guard_size_oblivious(self, tx, expr):
if isinstance(expr, SymNodeVariable):
# TODO: this probably should be folded somewhere else but I'm not sure where
# TODO: some of the other symbolic_shapes special tools can also get this treatment too
return variables.ConstantVariable.create(
torch.fx.experimental.symbolic_shapes.guard_size_oblivious(
expr.sym_num
)
)
elif isinstance(expr, ConstantVariable):
return expr
@register(torch._C._autograd._unsafe_set_version_counter)
def handle_unsafe_set_version_counter(self, tx, *args, **kwargs):
from ..tensor_version_op import _unsafe_set_version_counter
return TorchInGraphFunctionVariable(
_unsafe_set_version_counter
).call_function(tx, [*args], kwargs)
@register(torch.tensor)
def handle_torch_tensor(self, tx, *args, **kwargs):
def check_any_unspec(x):
# NB: This includes UnspecializedPythonVariable
if isinstance(x, (TensorVariable, SymNodeVariable)):
return True
elif isinstance(x, (ListVariable, TupleVariable)):
return any(check_any_unspec(y) for y in x.items)
# TODO: there maybe other recursive structures you need to
# check
else:
return False
data_arg = None
if args:
data_arg = args[0]
elif "data" in kwargs:
data_arg = kwargs["data"]
# NB: OK to pass torch.tensor(tensor), this will trace fine
if not isinstance(data_arg, TensorVariable) and check_any_unspec(data_arg):
# This is slower and less canonical, so only use it if we
# have to
return TorchInGraphFunctionVariable(torch._refs.tensor).call_function(
tx, [*args], kwargs
)
return handlers
def call_function(
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
) -> "VariableTracker":
from . import ConstantVariable, SymNodeVariable, TensorVariable
from .builder import wrap_fx_proxy
if self.can_constant_fold_through() and check_unspec_or_constant_args(
args, kwargs
):
# constant fold
return ConstantVariable.create(
self.as_python_constant()(
*[x.as_python_constant() for x in args],
**{k: v.as_python_constant() for k, v in kwargs.items()},
),
)
special_handler = self._get_handlers().get(self.value)
if special_handler:
result = special_handler(self, tx, *args, **kwargs)
if result:
return result
if can_dispatch_torch_function(tx, args, kwargs):
return dispatch_torch_function(tx, self, args, kwargs)
else:
any_symints_or_symfloats = any(isinstance(x, SymNodeVariable) for x in args)
all_ints_or_floats = all(
isinstance(x, (variables.ConstantVariable, variables.SymNodeVariable))
for x in args
)
if (
getattr(self.value, "__module__", "") == "torch"
and self.value.__name__ in bin_ops
and any_symints_or_symfloats
and all_ints_or_floats
):
msg = f"""\
Calling {str(self.value)} on only torch.SymInt arguments is not yet supported.
To support this behavior, we need to allow const-propping tensors that store symint data.
For now, dynamo will explicitly graph break when it encounters user code with this behavior.
"""
log.warning(msg)
unimplemented(msg)
# TODO(voz): Replace w/ dynamic shape rewrite table.
# Ideally, we would be able to do this at ctor time, but alas we need a combination
# of value + args to determine this.
fn_ = self.value
if any_symints_or_symfloats:
torch_sym_op = f"_sym_{self.value.__name__}"
if getattr(self.value, "__module__", None) == "math" and hasattr(
torch, torch_sym_op
):
fn_ = getattr(torch, torch_sym_op)
tensor_variable = wrap_fx_proxy(
tx=tx,
proxy=tx.output.create_proxy(
"call_function",
fn_,
*proxy_args_kwargs(args, kwargs),
),
)
if (
isinstance(tensor_variable, TensorVariable)
and "requires_grad" in kwargs
and kwargs["requires_grad"].as_python_constant()
):
unimplemented(
"""factory functions that return tensors that require grad are not supported.
Either create the tensor outside the compiled region, or do not set the tensor to require_grad"""
)
if "out" in kwargs and not (
isinstance(kwargs["out"], variables.ConstantVariable)
and kwargs["out"].as_python_constant() is None
):
# out variants of torch operators like torch.sort and
# torch.sigmoid mutate the tensors in the out field. Track such
# tensors and rewrite the symbolic locals.
if isinstance(tensor_variable, TupleVariable):
assert isinstance(kwargs["out"], (TupleVariable, ListVariable))
output_tensor_names = [
tx.find_symbolic_locals_name(x) for x in kwargs["out"].items
]
for idx, name in enumerate(output_tensor_names):
if name in tx.symbolic_locals:
tx.symbolic_locals[name] = tensor_variable.items[idx]
for out_tensor, result_tensor in zip(
kwargs["out"].items, tensor_variable.items
):
if (
out_tensor.source
and out_tensor in tx.output.graphargs
and isinstance(out_tensor, variables.TensorVariable)
and isinstance(result_tensor, variables.TensorVariable)
and out_tensor.size != result_tensor.size
):
# It's hard to get out variants with resizing on graph inputs work
# properly across dynamo/aot/inductor, just fall back.
unimplemented("out variants with resizing on graph inputs")
elif isinstance(tensor_variable, TensorVariable):
assert isinstance(kwargs["out"], TensorVariable)
assert "example_value" in kwargs["out"].proxy.node.meta
fake_tensor = tensor_variable.proxy.node.meta["example_value"]
fake_out = kwargs["out"].proxy.node.meta["example_value"]
if (
kwargs["out"].source
and kwargs["out"] in tx.output.graphargs
and fake_out.shape != fake_tensor.shape
):
# It's hard to get out variants with resizing on graph inputs work
# properly across dynamo/aot/inductor, just fall back.
unimplemented("out variants with resizing on graph inputs")
if not torch._prims_common.is_contiguous(fake_out):
# It's difficult to handle strides correctly in functionalization
# when calling an out= op with a non-contiguous out argument
unimplemented(
"out= op was called where output tensor was non-contiguous"
)
name = tx.find_symbolic_locals_name(kwargs["out"])
if name in tx.symbolic_locals:
tx.symbolic_locals[name] = tensor_variable
else:
unimplemented(f"out variant of {type(kwargs['out'])}")
return tensor_variable
def _call_ntuple(self, tx, args, kwargs):
"""inline behavior of torch.nn.modules.utils._ntuple"""
if self.value is torch.nn.modules.utils._ntuple:
count = args[0].as_python_constant()
else:
count = self.value.__closure__[0].cell_contents
assert isinstance(count, int)
assert not kwargs
def handle_ntuple(value):
if value.has_unpack_var_sequence(tx):
return variables.TupleVariable(
list(value.unpack_var_sequence(tx)),
)
elif value.is_python_constant():
# constant prop through it
return variables.ConstantVariable.create(
torch.nn.modules.utils._ntuple(count)(value.as_python_constant()),
)
else:
unimplemented(f"torch.nn.modules.utils._ntuple({value})")
if self.value is torch.nn.modules.utils._ntuple:
return variables.LambdaVariable(handle_ntuple)
else:
return handle_ntuple(args[0])
@classmethod
def call_nn_parameter(cls, tx, data=None, requires_grad=True):
"""A call to torch.nn.Parameter() gets lifted to before the graph"""
if isinstance(requires_grad, variables.VariableTracker):
try:
requires_grad = requires_grad.as_python_constant()
except NotImplementedError:
unimplemented("Parameter(requires_grad=...) not constant")
if not isinstance(data, variables.TensorVariable):
unimplemented(f"Parameter(data={data}) not implemented")
# this results in cleaner graphs, but only works for inputs
if data.source:
return cls._nn_param_via_prefix_insert(tx, data, requires_grad)
try:
shape = tuple(data.var_getattr(tx, "shape").as_python_constant())
dtype = data.var_getattr(tx, "dtype").as_python_constant()
device = data.var_getattr(tx, "device").as_python_constant()
except NotImplementedError as e:
unimplemented(f"Parameter not python_constant: {e}")
placeholder = tx.output.synthetic_graph_input(
new_parameter_placeholder, [shape, dtype, device, requires_grad]
)
if data.requires_grad:
data = data.call_method(tx, "detach", [], {})
from .builder import wrap_fx_proxy
result = wrap_fx_proxy(
tx,
tx.output.create_proxy(
"call_function",
tracable_create_parameter,
(data.as_proxy(), placeholder.as_proxy()),
{},
),
)
assert isinstance(result, variables.TensorVariable)
result.class_type = torch.nn.Parameter
# In reconstruct() should use the original parameter. The one returned by the graph will be an alias.
result.source = placeholder.source
# TODO(jansel): if the new param falls out of scope, currently it won't get freed until
# the end of the graph. We should fix this.
return result
@staticmethod
def _nn_param_via_prefix_insert(tx, data, requires_grad):
# Alternate version if we have a .source
from .builder import VariableBuilder
varname = tx.output.new_var()
# construct the nn.Parmeter before the graph save it to varname
cg = PyCodegen(tx)
cg.load_import_from("torch.nn", "Parameter")
cg(data.source)
cg(variables.ConstantVariable(requires_grad))
cg.call_function(2, True)
cg.store(varname)
tx.output.pregraph_bytecode.extend(cg.get_instructions())
# add the newly constructed nn.Parameter as a graph input
source = SyntheticLocalSource(varname)
example_value = torch.nn.Parameter(
tx.output.example_value_from_input_node(data.as_proxy().node)
)
result = VariableBuilder(tx, source)(example_value)
# No need to guard on this since we already guarded on `data`.
# These guards would fail since varname doesn't exist until after the function starts
TracingContext.get().guards_context.dynamo_guards.remove_guards_with_source(
source
)
return result