Files
pytorch/torch/csrc/generic/Tensor.cpp

623 lines
22 KiB
C++

#ifndef TH_GENERIC_FILE
#define TH_GENERIC_FILE "generic/Tensor.cpp"
#else
#ifdef WITH_NUMPY
#ifdef TH_REAL_IS_DOUBLE
#define NUMPY_TYPE_ENUM NPY_DOUBLE
#endif
#ifdef TH_REAL_IS_FLOAT
#define NUMPY_TYPE_ENUM NPY_FLOAT
#endif
#ifdef TH_REAL_IS_LONG
#define NUMPY_TYPE_ENUM NPY_INT64
#endif
#ifdef TH_REAL_IS_INT
#define NUMPY_TYPE_ENUM NPY_INT32
#endif
#ifdef TH_REAL_IS_BYTE
#define NUMPY_TYPE_ENUM NPY_UINT8
#endif
#endif
PyObject *THPTensorClass = NULL;
PyObject * THPTensor_(New)(THTensor *ptr)
{
PyObject *args = PyTuple_New(0);
PyObject *kwargs = NULL;
if (!args) {
PyErr_SetString(PyExc_RuntimeError, "Could not create a new storage object - "
"failed to allocate argument tuple");
return NULL;
}
if (ptr) {
kwargs = Py_BuildValue("{s:N}", "cdata", PyLong_FromVoidPtr(ptr));
if (!kwargs) {
PyErr_SetString(PyExc_RuntimeError, "Could not create a new storage object - "
"failed to allocate keyword argument dictionary");
Py_DECREF(args);
return NULL;
}
}
PyObject *result = PyObject_Call(THPTensorClass, args, kwargs);
Py_DECREF(args);
Py_XDECREF(kwargs);
return result;
}
#include "TensorMethods.cpp"
static void THPTensor_(dealloc)(THPTensor* self)
{
THTensor_(free)(LIBRARY_STATE self->cdata);
Py_TYPE(self)->tp_free((PyObject*)self);
}
static std::string THPTensor_(indicesToString)(std::vector<size_t> &indices,
size_t depth)
{
std::string index = "(";
for (size_t i = 0; i <= depth; ++i) {
index += std::to_string(indices[i]);
index += ", ";
}
index.erase(index.length()-2); // Remove trailing ", "
index += ")";
return index;
}
static void THPTensor_(setInconsistentDepthError)(std::vector<size_t> &sizes,
std::vector<size_t> &indices, size_t depth, size_t length)
{
std::string error = "inconsistent sequence length at index ";
error += THPTensor_(indicesToString)(indices, depth);
error += " - expected ";
error += std::to_string(sizes[depth]);
error += " but got ";
error += std::to_string(length);
THPUtils_setError(error.c_str());
}
static PyObject * THPTensor_(pynew)(PyTypeObject *type, PyObject *args, PyObject *kwargs)
{
HANDLE_TH_ERRORS
Py_ssize_t num_args = args ? PyTuple_Size(args) : 0;
THPTensorPtr self = (THPTensor *)type->tp_alloc(type, 0);
THPUtils_assert(self, "failed to allocate a " THPTensorStr " object");
self->cdata = NULL;
// Internally we allow constructing with a keywoard only argument cdata
if (kwargs != NULL) {
Py_ssize_t num_kwargs = PyDict_Size(kwargs);
if (num_args == 0) {
PyObject *cdata_ptr = PyDict_GetItemString(kwargs, "cdata");
if (num_kwargs == 1 && cdata_ptr && THPUtils_checkLong(cdata_ptr)) {
THTensor *ptr = (THTensor*)PyLong_AsVoidPtr(cdata_ptr);
self->cdata = ptr;
return (PyObject*)self.release();
}
}
// This is an internal option, so we don't want to advertise it.
THPUtils_assert(num_kwargs == 0, THPTensorStr " constructor doesn't "
"accept any keyword arguments");
}
// torch.Tensor()
if (num_args == 0) {
self->cdata = THTensor_(new)(LIBRARY_STATE_NOARGS);
return (PyObject*)self.release();
}
PyObject *first_arg = PyTuple_GET_ITEM(args, 0);
// torch.Tensor(torch.Tensor tensor)
if (num_args == 1 && THPTensor_(Check)(first_arg)) {
THTensor *tensor = ((THPTensor*)first_arg)->cdata;
self->cdata = THTensor_(newWithTensor)(LIBRARY_STATE tensor);
return (PyObject*)self.release();
}
// torch.Tensor(torch.LongStorage sizes)
if (num_args == 1 && THPLongStorage_Check(first_arg)) {
THLongStorage *sizes = ((THPLongStorage*)first_arg)->cdata;
self->cdata = THTensor_(newWithSize)(LIBRARY_STATE sizes, nullptr);
return (PyObject *)self.release();
}
// TODO: implement storageOffset, sizes and strides
// torch.Tensor(torch.Storage data)
if (num_args == 1 && THPStorage_(Check)(first_arg)) {
THStorage *storage = ((THPStorage*)first_arg)->cdata;
self->cdata = THTensor_(newWithStorage1d)(LIBRARY_STATE storage, 0, storage->size, -1);
return (PyObject *)self.release();
}
#ifdef NUMPY_TYPE_ENUM
// torch.Tensor(np.ndarray array)
if (num_args == 1 && PyArray_Check(first_arg) &&
PyArray_TYPE((PyArrayObject*)first_arg) == NUMPY_TYPE_ENUM) {
THPObjectPtr numpy_array =
PyArray_FromArray((PyArrayObject*)first_arg, nullptr, NPY_ARRAY_BEHAVED);
self->cdata = THPTensor_(fromNumpy)(numpy_array.get());
return (PyObject*)self.release();
}
#endif
// torch.Tensor(Sequence data)
if (num_args == 1 && PySequence_Check(first_arg)) {
Py_ssize_t length = PySequence_Length(first_arg);
THPUtils_assert(length >= 0, "couldn't obtain the length of %s",
THPUtils_typename(first_arg));
if (length == 0) {
self->cdata = THTensor_(new)(LIBRARY_STATE_NOARGS);
return (PyObject*)self.release();
}
Py_INCREF(first_arg);
THPObjectPtr item = first_arg;
std::vector<size_t> sizes;
while ((length = PySequence_Length(item)) >= 0) {
sizes.push_back(length);
// TODO: check for string in this case
THPUtils_assert(sizes.size() < 1000000, "already counted a million "
"dimensions in a given sequence. Most likely your items are also "
"sequences and there's no way to infer how many dimension should "
"the tensor have");
THPUtils_assert(length > 0, "given sequence has an invalid size of "
"dimension %ld: %ld", (long)sizes.size(), (long)length);
item = PySequence_GetItem(item, 0);
if (!item)
return NULL;
}
// Last length check has set an error flag, so we need to clear it.
PyErr_Clear();
THLongStoragePtr sizes_storage = THLongStorage_newWithSize(sizes.size());
long *sizes_data = sizes_storage->data;
for (auto size: sizes)
*sizes_data++ = size;
THTensorPtr tensor = THTensor_(newWithSize)(LIBRARY_STATE sizes_storage, NULL);
int ndims = sizes.size();
std::vector<size_t> indices(ndims);
std::vector<THPObjectPtr> sequences(ndims);
Py_INCREF(first_arg);
item = first_arg;
for (size_t i = 0; i < sequences.size(); i++) {
PyObject *item_ptr = item.get();
sequences[i] = std::move(item);
if (i < sequences.size()-1) {
item = PySequence_ITEM(item_ptr, 0);
if (!item)
return NULL;
}
}
#ifndef THC_GENERIC_FILE
#define SET_ITEM *data++ = THPUtils_(unpackReal)(item)
real *data = tensor->storage->data;
#else
#define SET_ITEM item_value = THPUtils_(unpackReal)(item); THStorage_(set)(LIBRARY_STATE storage, item_nr++, item_value)
real item_value;
size_t item_nr = 0;
THStorage *storage = tensor->storage;
#endif
THPObjectPtr final_sequence;
while (true) {
final_sequence = std::move(sequences[ndims-1]);
try {
// We're taking a fast-track over the last dimension
for (size_t i = 0; i < sizes[ndims-1]; i++) {
indices[ndims-1] = i;
item = PySequence_ITEM(final_sequence, i);
// We've checked the length earlier, so it must have been an error
if (!item)
return NULL;
SET_ITEM;
}
} catch(std::runtime_error &e) {
std::string index = THPTensor_(indicesToString)(indices, ndims-1);
THPUtils_setError("tried to construct a tensor from a %s%s sequence, "
"but found an item of type %s at index %s",
(ndims > 1 ? "nested " : ""),
THPUtils_typeTraits<real>::python_type_str,
THPUtils_typename(item.get()),
index.c_str());
return NULL;
}
#undef SET_ITEM
// Update the counters
int dim = ndims-2;
size_t last_updated_dim = dim;
while (dim >= 0) {
last_updated_dim = dim;
if (++indices[dim] == sizes[dim])
indices[dim--] = 0;
else
break;
}
// Check if we've just made a full cycle
if ((last_updated_dim == 0 && indices[0] == 0) || ndims == 1)
break;
// Update sequences
for (int i = last_updated_dim+1; i < ndims; i++) {
sequences[i] = PySequence_ITEM(sequences[i-1], indices[i-1]);
if (!sequences[i]) {
THPTensor_(setInconsistentDepthError)(sizes, indices, i, indices[i]);
return NULL;
}
if (!PySequence_Check(sequences[i])) {
std::string index_str = THPTensor_(indicesToString)(indices, i);
THPUtils_setError("an item of time %s at index %s doesn't implement "
"a sequence protocol");
return NULL;
}
Py_ssize_t length = PySequence_Length(sequences[i]);
if (length < 0) {
std::string index_str = THPTensor_(indicesToString)(indices, i);
THPUtils_setError("could not obtain a length of %s at index %s",
THPUtils_typename(sequences[i].get()), index_str.c_str());
return NULL;
}
if ((size_t)length != sizes[i]) {
THPTensor_(setInconsistentDepthError)(sizes, indices, i, length);
return NULL;
}
}
}
self->cdata = tensor.release();
return (PyObject *)self.release();
}
// torch.Tensor(int ...)
try {
THLongStoragePtr sizes = THPUtils_getLongStorage(args);
self->cdata = THTensor_(newWithSize)(LIBRARY_STATE sizes, nullptr);
return (PyObject *)self.release();
} catch(std::exception &e) {};
THPUtils_invalidArguments(args, THPTensorStr " constructor", 6,
"no arguments",
"(int ...)",
"(" THPTensorStr " viewed_tensor)",
"(torch.LongStorage sizes)",
"(" THPStorageStr " data)",
"(Sequence data)");
return NULL;
END_HANDLE_TH_ERRORS
}
#define INDEX_LONG(DIM, IDX_VARIABLE, TENSOR_VARIABLE, CASE_1D, CASE_MD) \
long idx = THPUtils_unpackLong(IDX_VARIABLE); \
long dimsize = THTensor_(size)(LIBRARY_STATE TENSOR_VARIABLE, DIM); \
idx = (idx < 0) ? dimsize + idx : idx; \
\
THPUtils_assert(dimsize > 0, "indexing an empty tensor"); \
THPUtils_assert(idx >= 0 && idx < dimsize, "index %ld is out of range for " \
"dimension %ld (of size %ld)", idx, DIM, dimsize); \
\
if(THTensor_(nDimension)(LIBRARY_STATE TENSOR_VARIABLE) == 1) { \
CASE_1D; \
} else { \
CASE_MD; \
}
#define GET_OFFSET(t, idx) \
t->storageOffset + t->stride[0] * idx;
static bool THPTensor_(_index)(THPTensor *self, PyObject *index,
THTensor * &tresult, THStorage * &sresult, long &storage_offset)
{
tresult = NULL;
sresult = NULL;
try {
// Indexing with an integer
if(PyLong_Check(index) || PyInt_Check(index)) {
THTensor *self_t = self->cdata;
INDEX_LONG(0, index, self_t,
// 1D tensor
sresult = self_t->storage;
storage_offset = GET_OFFSET(self_t, idx),
// >1D tensor
tresult = THTensor_(newWithTensor)(LIBRARY_STATE self_t);
THTensor_(select)(LIBRARY_STATE tresult, NULL, 0, idx)
)
return true;
// Indexing with a slice
} else if (PySlice_Check(index)) {
tresult = THTensor_(newWithTensor)(LIBRARY_STATE self->cdata);
Py_ssize_t start, end, length;
if (!THPUtils_parseSlice(index, THTensor_(size)(LIBRARY_STATE tresult, 0), &start, &end, &length))
return false;
THTensor_(narrow)(LIBRARY_STATE tresult, NULL, 0, start, length);
return true;
// Indexing multiple dimensions
} else if(PyTuple_Check(index)) {
long num_index_dim = (long)PyTuple_Size(index);
long num_tensor_dim = THTensor_(nDimension)(LIBRARY_STATE self->cdata);
THPUtils_assert(num_index_dim <= num_tensor_dim, "trying to index %ld "
"dimensions of a %ld dimensional tensor", num_index_dim,
num_tensor_dim);
tresult = THTensor_(newWithTensor)(LIBRARY_STATE self->cdata);
int t_dim = 0;
for(int dim = 0; dim < num_index_dim; dim++) {
PyObject *dimidx = PyTuple_GET_ITEM(index, dim);
if(THPUtils_checkLong(dimidx)) {
INDEX_LONG(t_dim, dimidx, tresult,
// 1D tensor
sresult = tresult->storage;
storage_offset = GET_OFFSET(tresult, idx);
THTensor_(free)(LIBRARY_STATE tresult);
tresult = NULL;
return true,
// >1D tensor
THTensor_(select)(LIBRARY_STATE tresult, NULL, t_dim, idx)
)
} else if (PySlice_Check(dimidx)) {
Py_ssize_t start, end, length;
if (!THPUtils_parseSlice(dimidx, THTensor_(size)(LIBRARY_STATE tresult, t_dim), &start, &end, &length))
return false;
THTensor_(narrow)(LIBRARY_STATE tresult, NULL, t_dim++, start, length);
} else {
THTensor_(free)(LIBRARY_STATE tresult);
goto invalid_index_type;
}
}
return true;
}
} catch(...) {
if (tresult) {
THTensor_(free)(LIBRARY_STATE tresult);
tresult = NULL;
}
throw;
}
invalid_index_type:
THPUtils_setError("indexing a tensor with an object of type %s. The only "
"supported types are integers, slices and "
#ifndef THC_GENERIC_FILE
"torch.ByteTensor.",
#else
"torch.cuda.ByteTensor.",
#endif
THPUtils_typename(index));
return false;
}
#undef INDEX_LONG
#undef GET_OFFSET
static PyObject * THPTensor_(getValue)(THPTensor *self, PyObject *index)
{
HANDLE_TH_ERRORS
#ifndef THC_GENERIC_FILE
if(THPByteTensor_Check(index)) {
THTensor *t = THTensor_(new)(LIBRARY_STATE_NOARGS);
THTensor_(maskedSelect)(LIBRARY_STATE t, self->cdata, ((THPByteTensor*)index)->cdata);
return THPTensor_(New)(t);
}
#else
if(THCPByteTensor_Check(index)) {
THTensor *t = THTensor_(new)(LIBRARY_STATE_NOARGS);
THTensor_(maskedSelect)(LIBRARY_STATE t, self->cdata, ((THCPByteTensor*)index)->cdata);
return THPTensor_(New)(t);
}
#endif
THTensor *tresult;
THStorage *sresult;
long storage_offset;
if (!THPTensor_(_index)(self, index, tresult, sresult, storage_offset))
return NULL;
try {
if (tresult)
return THPTensor_(New)(tresult);
if (sresult)
return THPUtils_(newReal)(THStorage_(get)(LIBRARY_STATE sresult, storage_offset));
} catch (...) {
if (tresult) {
THTensor_(free)(LIBRARY_STATE tresult);
tresult = NULL;
}
throw;
}
THPUtils_setError("An unknown error has occured when indexing a tensor "
"in THPTensor_(getValue). Please report this in a github issue at: "
"https://github.com/pytorch/pytorch");
return NULL;
END_HANDLE_TH_ERRORS
}
int THPTensor_(setValue)(THPTensor *self, PyObject *index, PyObject *value)
{
HANDLE_TH_ERRORS
#ifndef THC_GENERIC_FILE
if (THPByteTensor_Check(index)) {
THPByteTensor *mask = (THPByteTensor*)index;
#else
if (THCPByteTensor_Check(index)) {
THCPByteTensor *mask = (THCPByteTensor*)index;
#endif
if (THPUtils_(checkReal)(value)) {
real v = THPUtils_(unpackReal)(value);
THTensor_(maskedFill)(LIBRARY_STATE self->cdata, mask->cdata, v);
} else if (THPTensor_(Check)(value)) {
THTensor_(maskedCopy)(LIBRARY_STATE self->cdata, mask->cdata, ((THPTensor*)value)->cdata);
} else {
THPUtils_setError("can't assign %s to a " THPTensorStr " using a mask "
"(only " THPTensorStr " or %s are supported)",
THPUtils_typename(value), THPUtils_typeTraits<real>::python_type_str);
// TODO
}
return 0;
}
THTensor *tresult;
THStorage *sresult;
long storage_offset;
if (!THPTensor_(_index)(self, index, tresult, sresult, storage_offset))
return -1;
THTensorPtr tresult_ptr = tresult;
if (sresult) {
if (!THPUtils_(checkReal)(value)) {
THPUtils_setError("can't assign a %s to a scalar value of type %s",
THPUtils_typename(value), THPUtils_typeTraits<real>::python_type_str);
return -1;
}
THStorage_(set)(LIBRARY_STATE sresult, storage_offset, THPUtils_(unpackReal)(value));
return 0;
} else if (tresult) {
if (THPUtils_(checkReal)(value)) {
THTensor_(fill)(LIBRARY_STATE tresult, THPUtils_(unpackReal)(value));
} else {
// TODO: try to do this without creating a temporary object
THPTensorPtr tmp = (THPTensor*)THPTensor_(New)(tresult_ptr.get());
if (!tmp)
return -1;
tresult_ptr.release();
if (!THPModule_tensorCopy((PyObject*)tmp.get(), value))
return -1;
}
return 0;
}
THPUtils_setError("An unknown error has occured when indexing a tensor "
"in THPTensor_(setValue). Please report this in a github issue at: "
"https://github.com/pytorch/pytorch");
return -1;
END_HANDLE_TH_ERRORS_RET(-1)
}
static PyMappingMethods THPTensor_(mappingmethods) = {
NULL,
(binaryfunc)THPTensor_(getValue),
(objobjargproc)THPTensor_(setValue)
};
// TODO: implement equality
PyTypeObject THPTensorType = {
PyVarObject_HEAD_INIT(NULL, 0)
"torch._C." THPTensorBaseStr, /* tp_name */
sizeof(THPTensor), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)THPTensor_(dealloc), /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
&THPTensor_(mappingmethods), /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
NULL, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
0, /* will be assigned in init */ /* tp_methods */
0, /* will be assigned in init */ /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
THPTensor_(pynew), /* tp_new */
};
static struct PyMemberDef THPTensor_(members)[] = {
{(char*)"_cdata", T_ULONGLONG, offsetof(THPTensor, cdata), READONLY, NULL},
{NULL}
};
typedef struct {
PyObject_HEAD
} THPTensorStateless;
PyTypeObject THPTensorStatelessType = {
PyVarObject_HEAD_INIT(NULL, 0)
"torch._C." THPTensorBaseStr ".stateless", /* tp_name */
sizeof(THPTensorStateless), /* tp_basicsize */
0, /* tp_itemsize */
0, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved / tp_compare */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
NULL, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
THPTensor_stateless_(methods), /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
0, /* tp_new */
0, /* tp_free */
0, /* tp_is_gc */
0, /* tp_bases */
0, /* tp_mro */
0, /* tp_cache */
0, /* tp_subclasses */
0, /* tp_weaklist */
};
bool THPTensor_(init)(PyObject *module)
{
#ifndef THC_GENERIC_FILE
THVector_(vectorDispatchInit)();
#endif
THPTensorType.tp_methods = THPTensor_(methods);
THPTensorType.tp_members = THPTensor_(members);
if (PyType_Ready(&THPTensorType) < 0)
return false;
THPTensorStatelessType.tp_new = PyType_GenericNew;
if (PyType_Ready(&THPTensorStatelessType) < 0)
return false;
PyModule_AddObject(module, THPTensorBaseStr, (PyObject *)&THPTensorType);
return true;
}
#undef NUMPY_TYPE_ENUM
#endif