mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Summary: I've written custom parsers and emitters for everything from docstrings to classes and functions. However, I recently came across an issue when I was parsing/generating from the TensorFlow codebase: inconsistent use of `Args:` and `Arguments:` in its docstrings. ```sh (pytorch#c348fae)$ for name in 'Args:' 'Arguments:'; do printf '%-10s %04d\n' "$name" "$(rg -IFtpy --count-matches "$name" | paste -s -d+ -- | bc)"; done Args: 1095 Arguments: 0336 ``` It is easy enough to extend my parsers to support both variants, however it looks like `Arguments:` is wrong anyway, as per: - https://google.github.io/styleguide/pyguide.html#doc-function-args @ [`ddccc0f`](https://github.com/google/styleguide/blob/ddccc0f/pyguide.md) - https://chromium.googlesource.com/chromiumos/docs/+/master/styleguide/python.md#describing-arguments-in-docstrings @ [`9fc0fc0`](https://chromium.googlesource.com/chromiumos/docs/+/9fc0fc0/styleguide/python.md) - https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html @ [`c0ae8e3`](https://github.com/sphinx-contrib/napoleon/blob/c0ae8e3/docs/source/example_google.rst) Therefore, only `Args:` is valid. This PR replaces them throughout the codebase. PS: For related PRs, see tensorflow/tensorflow/pull/45420 PPS: The trackbacks automatically appearing below are sending the same changes to other repositories in the [PyTorch](https://github.com/pytorch) organisation. Pull Request resolved: https://github.com/pytorch/pytorch/pull/49736 Reviewed By: albanD Differential Revision: D25710534 Pulled By: soumith fbshipit-source-id: 61e8ff01abb433e9f78185c2d1d0cbd7c22c1619
270 lines
11 KiB
Python
270 lines
11 KiB
Python
import torch
|
|
import math
|
|
from torch.nn import Module
|
|
from copy import deepcopy
|
|
from torch.optim.lr_scheduler import _LRScheduler
|
|
|
|
|
|
class AveragedModel(Module):
|
|
r"""Implements averaged model for Stochastic Weight Averaging (SWA).
|
|
|
|
Stochastic Weight Averaging was proposed in `Averaging Weights Leads to
|
|
Wider Optima and Better Generalization`_ by Pavel Izmailov, Dmitrii
|
|
Podoprikhin, Timur Garipov, Dmitry Vetrov and Andrew Gordon Wilson
|
|
(UAI 2018).
|
|
|
|
AveragedModel class creates a copy of the provided module :attr:`model`
|
|
on the device :attr:`device` and allows to compute running averages of the
|
|
parameters of the :attr:`model`.
|
|
|
|
Args:
|
|
model (torch.nn.Module): model to use with SWA
|
|
device (torch.device, optional): if provided, the averaged model will be
|
|
stored on the :attr:`device`
|
|
avg_fn (function, optional): the averaging function used to update
|
|
parameters; the function must take in the current value of the
|
|
:class:`AveragedModel` parameter, the current value of :attr:`model`
|
|
parameter and the number of models already averaged; if None,
|
|
equally weighted average is used (default: None)
|
|
|
|
Example:
|
|
>>> loader, optimizer, model, loss_fn = ...
|
|
>>> swa_model = torch.optim.swa_utils.AveragedModel(model)
|
|
>>> scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer,
|
|
>>> T_max=300)
|
|
>>> swa_start = 160
|
|
>>> swa_scheduler = SWALR(optimizer, swa_lr=0.05)
|
|
>>> for i in range(300):
|
|
>>> for input, target in loader:
|
|
>>> optimizer.zero_grad()
|
|
>>> loss_fn(model(input), target).backward()
|
|
>>> optimizer.step()
|
|
>>> if i > swa_start:
|
|
>>> swa_model.update_parameters(model)
|
|
>>> swa_scheduler.step()
|
|
>>> else:
|
|
>>> scheduler.step()
|
|
>>>
|
|
>>> # Update bn statistics for the swa_model at the end
|
|
>>> torch.optim.swa_utils.update_bn(loader, swa_model)
|
|
|
|
You can also use custom averaging functions with `avg_fn` parameter.
|
|
If no averaging function is provided, the default is to compute
|
|
equally-weighted average of the weights.
|
|
|
|
Example:
|
|
>>> # Compute exponential moving averages of the weights
|
|
>>> ema_avg = lambda averaged_model_parameter, model_parameter, num_averaged:\
|
|
0.1 * averaged_model_parameter + 0.9 * model_parameter
|
|
>>> swa_model = torch.optim.swa_utils.AveragedModel(model, avg_fn=ema_avg)
|
|
|
|
.. note::
|
|
When using SWA with models containing Batch Normalization you may
|
|
need to update the activation statistics for Batch Normalization.
|
|
You can do so by using :meth:`torch.optim.swa_utils.update_bn` utility.
|
|
|
|
.. note::
|
|
:attr:`avg_fn` is not saved in the :meth:`state_dict` of the model.
|
|
|
|
.. note::
|
|
When :meth:`update_parameters` is called for the first time (i.e.
|
|
:attr:`n_averaged` is `0`) the parameters of `model` are copied
|
|
to the parameters of :class:`AveragedModel`. For every subsequent
|
|
call of :meth:`update_parameters` the function `avg_fn` is used
|
|
to update the parameters.
|
|
|
|
.. _Averaging Weights Leads to Wider Optima and Better Generalization:
|
|
https://arxiv.org/abs/1803.05407
|
|
.. _There Are Many Consistent Explanations of Unlabeled Data: Why You Should
|
|
Average:
|
|
https://arxiv.org/abs/1806.05594
|
|
.. _SWALP: Stochastic Weight Averaging in Low-Precision Training:
|
|
https://arxiv.org/abs/1904.11943
|
|
.. _Stochastic Weight Averaging in Parallel: Large-Batch Training That
|
|
Generalizes Well:
|
|
https://arxiv.org/abs/2001.02312
|
|
"""
|
|
def __init__(self, model, device=None, avg_fn=None):
|
|
super(AveragedModel, self).__init__()
|
|
self.module = deepcopy(model)
|
|
if device is not None:
|
|
self.module = self.module.to(device)
|
|
self.register_buffer('n_averaged',
|
|
torch.tensor(0, dtype=torch.long, device=device))
|
|
if avg_fn is None:
|
|
def avg_fn(averaged_model_parameter, model_parameter, num_averaged):
|
|
return averaged_model_parameter + \
|
|
(model_parameter - averaged_model_parameter) / (num_averaged + 1)
|
|
self.avg_fn = avg_fn
|
|
|
|
def forward(self, *args, **kwargs):
|
|
return self.module(*args, **kwargs)
|
|
|
|
def update_parameters(self, model):
|
|
for p_swa, p_model in zip(self.parameters(), model.parameters()):
|
|
device = p_swa.device
|
|
p_model_ = p_model.detach().to(device)
|
|
if self.n_averaged == 0:
|
|
p_swa.detach().copy_(p_model_)
|
|
else:
|
|
p_swa.detach().copy_(self.avg_fn(p_swa.detach(), p_model_,
|
|
self.n_averaged.to(device)))
|
|
self.n_averaged += 1
|
|
|
|
|
|
def update_bn(loader, model, device=None):
|
|
r"""Updates BatchNorm running_mean, running_var buffers in the model.
|
|
|
|
It performs one pass over data in `loader` to estimate the activation
|
|
statistics for BatchNorm layers in the model.
|
|
Args:
|
|
loader (torch.utils.data.DataLoader): dataset loader to compute the
|
|
activation statistics on. Each data batch should be either a
|
|
tensor, or a list/tuple whose first element is a tensor
|
|
containing data.
|
|
model (torch.nn.Module): model for which we seek to update BatchNorm
|
|
statistics.
|
|
device (torch.device, optional): If set, data will be transferred to
|
|
:attr:`device` before being passed into :attr:`model`.
|
|
|
|
Example:
|
|
>>> loader, model = ...
|
|
>>> torch.optim.swa_utils.update_bn(loader, model)
|
|
|
|
.. note::
|
|
The `update_bn` utility assumes that each data batch in :attr:`loader`
|
|
is either a tensor or a list or tuple of tensors; in the latter case it
|
|
is assumed that :meth:`model.forward()` should be called on the first
|
|
element of the list or tuple corresponding to the data batch.
|
|
"""
|
|
momenta = {}
|
|
for module in model.modules():
|
|
if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
|
|
module.running_mean = torch.zeros_like(module.running_mean)
|
|
module.running_var = torch.ones_like(module.running_var)
|
|
momenta[module] = module.momentum
|
|
|
|
if not momenta:
|
|
return
|
|
|
|
was_training = model.training
|
|
model.train()
|
|
for module in momenta.keys():
|
|
module.momentum = None
|
|
module.num_batches_tracked *= 0
|
|
|
|
for input in loader:
|
|
if isinstance(input, (list, tuple)):
|
|
input = input[0]
|
|
if device is not None:
|
|
input = input.to(device)
|
|
|
|
model(input)
|
|
|
|
for bn_module in momenta.keys():
|
|
bn_module.momentum = momenta[bn_module]
|
|
model.train(was_training)
|
|
|
|
|
|
class SWALR(_LRScheduler):
|
|
r"""Anneals the learning rate in each parameter group to a fixed value.
|
|
|
|
This learning rate scheduler is meant to be used with Stochastic Weight
|
|
Averaging (SWA) method (see `torch.optim.swa_utils.AveragedModel`).
|
|
|
|
Args:
|
|
optimizer (torch.optim.Optimizer): wrapped optimizer
|
|
swa_lrs (float or list): the learning rate value for all param groups
|
|
together or separately for each group.
|
|
annealing_epochs (int): number of epochs in the annealing phase
|
|
(default: 10)
|
|
annealing_strategy (str): "cos" or "linear"; specifies the annealing
|
|
strategy: "cos" for cosine annealing, "linear" for linear annealing
|
|
(default: "cos")
|
|
last_epoch (int): the index of the last epoch (default: 'cos')
|
|
|
|
The :class:`SWALR` scheduler is can be used together with other
|
|
schedulers to switch to a constant learning rate late in the training
|
|
as in the example below.
|
|
|
|
Example:
|
|
>>> loader, optimizer, model = ...
|
|
>>> lr_lambda = lambda epoch: 0.9
|
|
>>> scheduler = torch.optim.lr_scheduler.MultiplicativeLR(optimizer,
|
|
>>> lr_lambda=lr_lambda)
|
|
>>> swa_scheduler = torch.optim.swa_utils.SWALR(optimizer,
|
|
>>> anneal_strategy="linear", anneal_epochs=20, swa_lr=0.05)
|
|
>>> swa_start = 160
|
|
>>> for i in range(300):
|
|
>>> for input, target in loader:
|
|
>>> optimizer.zero_grad()
|
|
>>> loss_fn(model(input), target).backward()
|
|
>>> optimizer.step()
|
|
>>> if i > swa_start:
|
|
>>> swa_scheduler.step()
|
|
>>> else:
|
|
>>> scheduler.step()
|
|
|
|
.. _Averaging Weights Leads to Wider Optima and Better Generalization:
|
|
https://arxiv.org/abs/1803.05407
|
|
"""
|
|
def __init__(self, optimizer, swa_lr, anneal_epochs=10, anneal_strategy='cos', last_epoch=-1):
|
|
swa_lrs = self._format_param(optimizer, swa_lr)
|
|
for swa_lr, group in zip(swa_lrs, optimizer.param_groups):
|
|
group['swa_lr'] = swa_lr
|
|
if anneal_strategy not in ['cos', 'linear']:
|
|
raise ValueError("anneal_strategy must by one of 'cos' or 'linear', "
|
|
"instead got {}".format(anneal_strategy))
|
|
elif anneal_strategy == 'cos':
|
|
self.anneal_func = self._cosine_anneal
|
|
elif anneal_strategy == 'linear':
|
|
self.anneal_func = self._linear_anneal
|
|
if not isinstance(anneal_epochs, int) or anneal_epochs < 0:
|
|
raise ValueError("anneal_epochs must be equal or greater than 0, got {}".format(
|
|
anneal_epochs))
|
|
self.anneal_epochs = anneal_epochs
|
|
|
|
super(SWALR, self).__init__(optimizer, last_epoch)
|
|
|
|
@staticmethod
|
|
def _format_param(optimizer, swa_lrs):
|
|
if isinstance(swa_lrs, (list, tuple)):
|
|
if len(swa_lrs) != len(optimizer.param_groups):
|
|
raise ValueError("swa_lr must have the same length as "
|
|
"optimizer.param_groups: swa_lr has {}, "
|
|
"optimizer.param_groups has {}".format(
|
|
len(swa_lrs), len(optimizer.param_groups)))
|
|
return swa_lrs
|
|
else:
|
|
return [swa_lrs] * len(optimizer.param_groups)
|
|
|
|
@staticmethod
|
|
def _linear_anneal(t):
|
|
return t
|
|
|
|
@staticmethod
|
|
def _cosine_anneal(t):
|
|
return (1 - math.cos(math.pi * t)) / 2
|
|
|
|
@staticmethod
|
|
def _get_initial_lr(lr, swa_lr, alpha):
|
|
if alpha == 1:
|
|
return swa_lr
|
|
return (lr - alpha * swa_lr) / (1 - alpha)
|
|
|
|
def get_lr(self):
|
|
if not self._get_lr_called_within_step:
|
|
warnings.warn("To get the last learning rate computed by the scheduler, "
|
|
"please use `get_last_lr()`.", UserWarning)
|
|
step = self._step_count - 1
|
|
if self.anneal_epochs == 0:
|
|
step = max(1, step)
|
|
prev_t = max(0, min(1, (step - 1) / max(1, self.anneal_epochs)))
|
|
prev_alpha = self.anneal_func(prev_t)
|
|
prev_lrs = [self._get_initial_lr(group['lr'], group['swa_lr'], prev_alpha)
|
|
for group in self.optimizer.param_groups]
|
|
t = max(0, min(1, step / max(1, self.anneal_epochs)))
|
|
alpha = self.anneal_func(t)
|
|
return [group['swa_lr'] * alpha + lr * (1 - alpha)
|
|
for group, lr in zip(self.optimizer.param_groups, prev_lrs)]
|