mirror of
				https://github.com/pytorch/pytorch.git
				synced 2025-11-01 04:54:55 +08:00 
			
		
		
		
	Prune models from TorchInductor dashboard to reduce ci cost. This PR prunes for timm models according to the [doc](https://docs.google.com/document/d/1nLPNNAU-_M9Clx9FMrJ1ycdPxe-xRA54olPnsFzdpoU/edit?tab=t.0), which reduces from 60 to 14 models. Pull Request resolved: https://github.com/pytorch/pytorch/pull/164805 Approved by: https://github.com/anijain2305, https://github.com/seemethere, https://github.com/huydhn, https://github.com/malfet
		
			
				
	
	
		
			143 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			143 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import argparse
 | |
| import os
 | |
| import sys
 | |
| import textwrap
 | |
| 
 | |
| import pandas as pd
 | |
| 
 | |
| 
 | |
| # Hack to have something similar to DISABLED_TEST. These models are flaky.
 | |
| 
 | |
| flaky_models = {
 | |
|     "yolov3",
 | |
|     "detectron2_maskrcnn_r_101_c4",
 | |
|     "XGLMForCausalLM",  # discovered in https://github.com/pytorch/pytorch/pull/128148
 | |
|     "detectron2_fcos_r_50_fpn",
 | |
| }
 | |
| 
 | |
| 
 | |
| def get_field(csv, model_name: str, field: str):
 | |
|     try:
 | |
|         return csv.loc[csv["name"] == model_name][field].item()
 | |
|     except Exception:
 | |
|         return None
 | |
| 
 | |
| 
 | |
| def check_graph_breaks(actual_csv, expected_csv, expected_filename):
 | |
|     failed = []
 | |
|     improved = []
 | |
| 
 | |
|     if "rocm" in expected_filename:
 | |
|         flaky_models.update(
 | |
|             {
 | |
|                 "alexnet",
 | |
|                 "demucs",
 | |
|                 "densenet121",
 | |
|                 "detectron2_fcos_r_50_fpn",
 | |
|                 "doctr_det_predictor",
 | |
|                 "doctr_reco_predictor",
 | |
|                 "hf_BigBird",
 | |
|                 "hf_Longformer",
 | |
|                 "hf_Reformer",
 | |
|                 "hf_Roberta_base",
 | |
|                 "hf_T5",
 | |
|                 "hf_T5_base",
 | |
|                 "llava",
 | |
|                 "microbench_unbacked_tolist_sum",
 | |
|                 "resnet50",
 | |
|                 "resnet152",
 | |
|                 "sam",
 | |
|                 "sam_fast",
 | |
|                 "stable_diffusion_text_encoder",
 | |
|                 "stable_diffusion_unet",
 | |
|                 "timm_efficientdet",
 | |
|                 "timm_nfnet",
 | |
|                 "torchrec_dlrm",
 | |
|                 "vgg16",
 | |
|                 # LLM
 | |
|                 "meta-llama/Llama-3.2-1B",
 | |
|                 "google/gemma-2-2b",
 | |
|                 "google/gemma-3-4b-it",
 | |
|                 "openai/whisper-tiny",
 | |
|                 "Qwen/Qwen3-0.6B",
 | |
|                 "mistralai/Mistral-7B-Instruct-v0.3",
 | |
|                 "openai/gpt-oss-20b",
 | |
|             }
 | |
|         )
 | |
| 
 | |
|     for model in actual_csv["name"]:
 | |
|         graph_breaks = get_field(actual_csv, model, "graph_breaks")
 | |
|         expected_graph_breaks = get_field(expected_csv, model, "graph_breaks")
 | |
|         flaky = model in flaky_models
 | |
| 
 | |
|         if expected_graph_breaks is None:
 | |
|             status = "MISSING:"
 | |
|             improved.append(model)
 | |
|         elif graph_breaks == expected_graph_breaks:
 | |
|             status = "PASS_BUT_FLAKY" if flaky else "PASS"
 | |
|             print(f"{model:34}  {status}")
 | |
|             continue
 | |
|         elif graph_breaks > expected_graph_breaks:
 | |
|             if flaky:
 | |
|                 status = "FAIL_BUT_FLAKY:"
 | |
|             else:
 | |
|                 status = "FAIL:"
 | |
|                 failed.append(model)
 | |
|         elif graph_breaks < expected_graph_breaks:
 | |
|             if flaky:
 | |
|                 status = "IMPROVED_BUT_FLAKY:"
 | |
|             else:
 | |
|                 status = "IMPROVED:"
 | |
|                 improved.append(model)
 | |
|         print(
 | |
|             f"{model:34}  {status:19} graph_breaks={graph_breaks}, expected={expected_graph_breaks}"
 | |
|         )
 | |
| 
 | |
|     msg = ""
 | |
|     if failed or improved:
 | |
|         if failed:
 | |
|             msg += textwrap.dedent(
 | |
|                 f"""
 | |
|             Error: {len(failed)} models have new dynamo graph breaks:
 | |
|                 {" ".join(failed)}
 | |
| 
 | |
|             """
 | |
|             )
 | |
|         if improved:
 | |
|             msg += textwrap.dedent(
 | |
|                 f"""
 | |
|             Improvement: {len(improved)} models have fixed dynamo graph breaks:
 | |
|                 {" ".join(improved)}
 | |
| 
 | |
|             """
 | |
|             )
 | |
|         sha = os.getenv("SHA1", "{your CI commit sha}")
 | |
|         msg += textwrap.dedent(
 | |
|             f"""
 | |
|         If this change is expected, you can update `{expected_filename}` to reflect the new baseline.
 | |
|         from pytorch/pytorch root, run
 | |
|         `python benchmarks/dynamo/ci_expected_accuracy/update_expected.py {sha}`
 | |
|         and then `git add` the resulting local changes to expected CSVs to your commit.
 | |
|         """
 | |
|         )
 | |
|     return failed or improved, msg
 | |
| 
 | |
| 
 | |
| def main():
 | |
|     parser = argparse.ArgumentParser()
 | |
|     parser.add_argument("--actual", type=str, required=True)
 | |
|     parser.add_argument("--expected", type=str, required=True)
 | |
|     args = parser.parse_args()
 | |
| 
 | |
|     actual = pd.read_csv(args.actual)
 | |
|     expected = pd.read_csv(args.expected)
 | |
| 
 | |
|     failed, msg = check_graph_breaks(actual, expected, args.expected)
 | |
|     if failed:
 | |
|         print(msg)
 | |
|         sys.exit(1)
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     main()
 |