Files
pytorch/test/inductor/test_torchinductor_opinfo.py

1385 lines
50 KiB
Python

# Owner(s): ["module: inductor"]
import atexit
import contextlib
import functools
import math
import os
import sys
import unittest
from collections import defaultdict
from enum import Enum
from functools import partial
from unittest.mock import patch
import torch
from torch._dispatch.python import enable_python_dispatcher
from torch._inductor.test_case import run_tests, TestCase
from torch._subclasses.fake_tensor import (
DataDependentOutputException,
DynamicOutputShapeException,
FakeTensorMode,
)
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyNativeDeviceTypes,
OpDTypes,
ops,
skipCPUIf,
skipXPUIf,
)
from torch.testing._internal.common_methods_invocations import op_db, skipOps
from torch.testing._internal.common_utils import (
IS_CI,
IS_MACOS,
IS_WINDOWS,
IS_X86,
skipCUDAMemoryLeakCheckIf,
skipIfCrossRef,
skipIfTorchDynamo,
suppress_warnings,
TEST_MKL,
TEST_WITH_ASAN,
TEST_WITH_ROCM,
)
from torch.testing._internal.inductor_utils import (
GPU_TYPE,
HAS_CPU,
has_triton,
HAS_XPU_AND_TRITON,
maybe_skip_size_asserts,
)
from torch.testing._internal.triton_utils import requires_gpu_and_triton
from torch.utils._dtype_abbrs import dtype_abbrs
from torch.utils._python_dispatch import TorchDispatchMode
from torch.utils._pytree import tree_map
try:
try:
from .test_torchinductor import check_model, check_model_gpu
except ImportError:
from test_torchinductor import ( # @manual=fbcode//caffe2/test/inductor:test_inductor-library
check_model,
check_model_gpu,
)
except (unittest.SkipTest, ImportError) as e:
sys.stderr.write(f"{type(e)}: {e}\n")
if __name__ == "__main__":
sys.exit(0)
raise
if IS_WINDOWS and IS_CI:
# TODO(xuhancn) : improve the compiler build performance on windows.
sys.stderr.write(
"This UT is too slow on windows, and will cause out of time in CI. So skip it now.\n"
)
if __name__ == "__main__":
sys.exit(0)
raise unittest.SkipTest("skip slow test")
bf16 = torch.bfloat16 # not tested
f64 = torch.float64
f32 = torch.float32
f16 = torch.float16
i8 = torch.int8 # not tested
i16 = torch.int16 # not tested
i32 = torch.int32
i64 = torch.int64
b8 = torch.bool
u8 = torch.uint8 # not tested except upsampling and interpolate ops
u16 = torch.uint16 # not tested
u32 = torch.uint32 # not tested
u64 = torch.uint64 # not tested
_ops = partial(
ops,
dtypes=OpDTypes.supported,
allowed_dtypes=[f16, f32, f64, i32, i64, b8, u8, u16, u32, u64],
)
# Success forces pass; failure forces fail; skip unconditionally skips testing
ExpectedTestResult = Enum("ExpectedTestResult", ("SUCCESS", "XFAILURE", "SKIP"))
COLLECT_EXPECT = os.getenv("PYTORCH_COLLECT_EXPECT", "0") == "1"
ALL_SAMPLES = os.getenv("PYTORCH_ALL_SAMPLES", "0") == "1"
START = os.getenv("PYTORCH_TEST_RANGE_START", None)
END = os.getenv("PYTORCH_TEST_RANGE_END", None)
if START is not None or END is not None:
assert END is not None
assert START is not None
START = int(START)
END = int(END)
assert START < END
else:
START = 0
END = len(op_db)
seen_failed = defaultdict(set)
failed_reasons = defaultdict(set)
def print_seen():
expected_failures = defaultdict(list)
def fmt_dtypes(dtypes):
r = ", ".join(sorted(dtype_abbrs[d] for d in dtypes))
return "{" + r + "}"
def sort_key(kv):
k, _ = kv
_, op = k
if isinstance(op, tuple):
return op
else:
return op, ""
for (device_type, op), failed_dtypes in sorted(seen_failed.items(), key=sort_key):
key = device_type, op
reasons = ""
if failed_reasons[key]:
def maybe_truncate(x, length=80):
x = str(x).replace("\n", " ")
idx = x.find("\\n")
if idx >= 0:
x = f"{x[:idx]}..."
if len(x) > length:
return f"{x[: length - 3]}..."
return x
reasons = sorted(set(map(maybe_truncate, failed_reasons[key])))
reasons = " # " + ", ".join(reasons)
if failed_dtypes:
def format_op(op):
if isinstance(op, tuple):
return f'("{op[0]}", "{op[1]}")'
else:
return f'"{op}"'
expected_failures[device_type].append(
f" {format_op(op)}: {fmt_dtypes(failed_dtypes)},{reasons}"
)
for device_type in ("cpu", GPU_TYPE):
expected_failures[device_type]
nl = "\n"
print(
f"""
inductor_expected_failures_single_sample[\"{device_type}\"] = {{
{nl.join(expected_failures[device_type])}
}}
"""
)
if COLLECT_EXPECT:
atexit.register(print_seen)
# Note, in these skip/xfail dictionaries use a string as the key
# for the default test, and a tuple of two strings for variants
inductor_skips = defaultdict(dict)
inductor_skips["cpu"] = {
"linalg.ldl_factor": {f32, f64}, # flaky
"nn.functional.cosine_embedding_loss": {b8}, # flaky
("index_reduce", "prod"): {f16}, # flaky
("index_reduce", "mean"): {f16}, # flaky
}
if IS_MACOS and IS_X86:
inductor_skips["cpu"]["rsqrt"] = {b8, i32}
inductor_skips["cpu"]["nn.functional.multi_margin_loss"] = {
b8,
f16,
f32,
f64,
i32,
i64,
}
inductor_skips["cuda"] = {
# Jiterator kernel is not expected to work with inductor
"jiterator_2inputs_2outputs": {b8, f16, f32, f64, i32, i64},
"jiterator_4inputs_with_extra_args": {b8, f16, f32, f64, i32, i64},
"jiterator_binary": {b8, f16, f32, f64, i32, i64},
"jiterator_binary_return_by_ref": {b8, f16, f32, f64, i32, i64},
"jiterator_unary": {b8, f16, f32, f64, i32, i64},
# flaky
"nn.functional.cosine_embedding_loss": {b8},
"native_batch_norm": {f16, f32, f64},
"_native_batch_norm_legit": {f16, f32, f64},
"_batch_norm_with_update": {f16, f32, f64},
}
if not SM80OrLater:
inductor_skips["cuda"]["bfloat16"] = {b8, f16, f32, f64, i32, i64}
if TEST_WITH_ROCM:
# Tensors are not alike
inductor_skips["cuda"]["logcumsumexp"] = {f32}
inductor_skips["cuda"]["special.modified_bessel_i1"] = {f64}
inductor_skips["xpu"] = {}
inductor_expected_failures_single_sample = defaultdict(dict)
inductor_expected_failures_single_sample["cpu"] = {
"_softmax_backward_data": {
f16
}, # half_to_float is only valid for the CUDA implementation
"_upsample_bilinear2d_aa": {f32, f64},
"cholesky": {f32, f64},
"complex": {f16},
"resize_": {b8, f16, f32, f64, i32, i64},
"resize_as_": {b8, f16, f32, f64, i32, i64},
"histc": {f16},
"multinomial": {f16, f32, f64},
"nonzero_static": {b8, f16, f32, f64, i32, i64},
("normal", "in_place"): {f16, f32, f64},
("normal", "number_mean"): {f16, f32, f64},
"normal": {f16, f32, f64},
("sparse.mm", "reduce"): {f32, f64, f16},
"sparse.sampled_addmm": {f32, f64},
"to_sparse": {
f32,
f64,
}, # NYI: could not find kernel for aten.view.default at dispatch key DispatchKey.SparseCPU
"view_as_complex": {f16},
}
inductor_expected_failures_single_sample["cuda"] = {
"_upsample_bilinear2d_aa": {f16, f32, f64},
"cholesky": {f32, f64},
"multinomial": {f16, f32, f64},
("normal", "in_place"): {f16, f32, f64},
("normal", "number_mean"): {f16, f32, f64},
"normal": {f16, f32, f64},
"sparse.sampled_addmm": {f32, f64},
"torch.ops.aten._flash_attention_forward": {f16},
"torch.ops.aten._efficient_attention_forward": {f16, f32},
"to_sparse": {
f16,
f32,
f64,
}, # NYI: could not find kernel for aten.view.default at dispatch key DispatchKey.SparseCUDA
}
inductor_expected_failures_single_sample["xpu"] = {
"_upsample_bilinear2d_aa": {f16, f32, f64},
"cholesky": {f32, f64},
"multinomial": {f16, f32, f64},
("normal", "in_place"): {f16, f32, f64},
("normal", "number_mean"): {f16, f32, f64},
"normal": {f16, f32, f64},
"sparse.sampled_addmm": {f32, f64},
"tan": {f16},
"torch.ops.aten._flash_attention_forward": {f16},
"torch.ops.aten._efficient_attention_forward": {f16, f32},
"to_sparse": {f32, f64},
"linalg.eig": {f32, f64},
("linalg.pinv", "singular"): {f64},
# could not create a primitive
"addmv": {f64},
# could not create a primitive descriptor for
# a deconvolution forward propagation primitive
"nn.functional.conv_transpose2d": {f32, f64},
"nn.functional.conv_transpose3d": {f32, f64},
# [Begin] Incorrect XPU reference due to new driver.
"masked.prod": {b8, i32, i64},
"masked.amin": {i64},
"masked.amax": {i64},
"amax": {i64},
"amin": {i64},
"std": {f64},
"var": {f64},
"std_mean": {f64},
"var_mean": {f64},
# [End]
}
# intentionally not handled
intentionally_not_handled = {
"resize_": {b8, f16, f32, f64, i32, i64},
"resize_as_": {b8, f16, f32, f64, i32, i64},
}
# This is only fixed when this config is set
# We should eventually always turn it on
import torch._functorch.config as functorch_config
if not functorch_config.view_replay_for_aliased_outputs:
intentionally_not_handled['("as_strided", "partial_views")'] = {
b8,
f16,
f32,
f64,
i32,
i64,
}
inductor_expected_failures_single_sample["cuda"].update(intentionally_not_handled)
inductor_expected_failures_single_sample["xpu"].update(intentionally_not_handled)
inductor_gradient_expected_failures_single_sample = defaultdict(dict)
inductor_gradient_expected_failures_single_sample["cuda"] = {}
inductor_gradient_expected_failures_single_sample["xpu"] = {}
if not TEST_MKL:
inductor_expected_failures_single_sample["cpu"].update({})
inductor_should_fail_with_exception = defaultdict(dict)
inductor_should_fail_with_exception["cpu"] = {}
inductor_should_fail_with_exception["cuda"] = {}
inductor_should_fail_with_exception["xpu"] = {}
def get_skips_and_xfails(from_dict, xfails=True):
retval = set()
for device, d in from_dict.items():
for op, dtypes in d.items():
if type(op) is tuple:
op, variant_name = op
else:
variant_name = ""
retval.add((op, variant_name, device, tuple(dtypes), xfails))
return retval
# Note: if you get a "AssertionError: Couldn't find OpInfo for ..." error for an OpInfo you are sure
# exists, you might be trying to use a test variant and you need to replace, for example,
# "max.reduction_no_dim" with ("max", "reduction_no_dim") as the key of one of these dictionaries
test_skips_or_fails = (
get_skips_and_xfails(inductor_skips, xfails=False)
| get_skips_and_xfails(inductor_expected_failures_single_sample, xfails=True)
| get_skips_and_xfails(
inductor_gradient_expected_failures_single_sample, xfails=True
)
)
def wrapper_noop_set_seed(op, *args, **kwargs):
return op(*args, **kwargs)
wrapper_noop_set_seed_decorator = patch(
"torch.testing._internal.common_methods_invocations.wrapper_set_seed",
wrapper_noop_set_seed,
)
# key can be either op_name, or (op_name, dtype)
inductor_override_kwargs = defaultdict(dict)
inductor_override_kwargs["cpu"] = {
# the return value of empty is undefined
"empty": {"assert_equal": False},
"empty_permuted": {"assert_equal": False},
"empty_like": {"assert_equal": False},
"new_empty": {"assert_equal": False},
"empty_strided": {"assert_equal": False},
"new_empty_strided": {"assert_equal": False},
"randn": {"assert_equal": False},
("nn.functional.multilabel_soft_margin_loss", f16): {
"atol": 3e-4,
"rtol": 0.002,
},
("nn.functional.triplet_margin_loss", f16): {"atol": 3e-4, "rtol": 0.003},
("nn.functional.triplet_margin_with_distance_loss", f16): {
"atol": 3e-4,
"rtol": 0.003,
},
("softmax", f16): {"atol": 1e-4, "rtol": 0.02},
("polygamma.polygamma_n_0", f32): {"atol": 1e-3, "rtol": 1e-4},
("polygamma.polygamma_n_1", f32): {"atol": 1e-3, "rtol": 1e-4},
("polygamma.polygamma_n_2", f32): {"atol": 1e-3, "rtol": 1e-4},
("polygamma.polygamma_n_3", f32): {"atol": 1e-3, "rtol": 1e-4},
("polygamma.polygamma_n_4", f32): {"atol": 1e-3, "rtol": 1e-4},
("special.polygamma.special_polygamma_n_0", f32): {
"atol": 1e-3,
"rtol": 1e-4,
},
("_unsafe_masked_index_put_accumulate", f16): {"atol": 1e-4, "rtol": 0.01},
# Following tests are failing with strict comparison but atol=1 is acceptable due roundings errors
("nn.functional.interpolate.bilinear", u8): {"atol": 1, "rtol": 0},
("nn.functional.upsample_bilinear", u8): {"atol": 1, "rtol": 0},
("nn.functional.interpolate.bicubic", u8): {"atol": 1, "rtol": 0},
# High atol due to precision loss
("nn.functional.interpolate.bicubic", f32): {"atol": 5e-3, "rtol": 0},
}
inductor_override_kwargs["cuda"] = {
# the return value of empty is undefined
"empty": {"assert_equal": False},
"empty_permuted": {"assert_equal": False},
"empty_like": {"assert_equal": False},
"new_empty": {"assert_equal": False},
"empty_strided": {"assert_equal": False},
"new_empty_strided": {"assert_equal": False},
"randn": {"assert_equal": False},
("cross", f16): {"reference_in_float": True},
("linalg.cross", f16): {"reference_in_float": True},
("addr", f16): {"reference_in_float": True},
("baddbmm", f16): {"atol": 2e-3, "rtol": 0.002}, # decomp affects accuracy
("angle", f64): {"reference_in_float": True},
("asin", f16): {"reference_in_float": True},
("atanh", f16): {"reference_in_float": True},
"cauchy": {"reference_in_float": True},
("cummax", f16): {"atol": 5e-4, "rtol": 0.002},
("cumsum", f16): {"reference_in_float": True},
"cumprod": {"reference_in_float": True, "atol": 7e-5, "rtol": 0.002},
"logcumsumexp": {"grad_atol": 8e-4, "grad_rtol": 0.001},
("logcumsumexp", f16): {"grad_atol": 3e-3, "grad_rtol": 0.01},
"exponential": {"reference_in_float": True},
"geometric": {"reference_in_float": True},
("kron", f16): {"reference_in_float": True},
"log_normal": {"reference_in_float": True},
("masked.softmin", f16): {"atol": 1e-4, "rtol": 0.01},
("nn.functional.batch_norm", f16): {"reference_in_float": True},
("nn.functional.batch_norm.without_cudnn", f16): {"reference_in_float": True},
("nn.functional.cosine_similarity", f16): {"reference_in_float": True},
("nn.functional.instance_norm", f16): {"reference_in_float": True},
("nn.functional.linear", f16): {"atol": 3e-4, "rtol": 0.01},
("nn.functional.local_response_norm", f16): {"reference_in_float": True},
("nn.functional.normalize", f16): {"atol": 1e-3, "rtol": 0.05},
("nn.functional.rms_norm", f16): {"reference_in_float": True},
("nn.functional.soft_margin_loss", f16): {"reference_in_float": True},
("nn.functional.softmin", f16): {"atol": 1e-4, "rtol": 0.01},
("nn.functional.softsign", f16): {"reference_in_float": True},
("nn.functional.tanhshrink", f16): {"atol": 3e-4, "rtol": 0.001},
("outer", f16): {"reference_in_float": True},
("round.decimals_3", f16): {"reference_in_float": True},
("nn.functional.triplet_margin_loss", f16): {"atol": 1e-4, "rtol": 0.02},
("nn.functional.triplet_margin_with_distance_loss", f16): {
"atol": 1e-4,
"rtol": 0.02,
},
("sinc", f16): {"atol": 0.008, "rtol": 0.002},
("torch.ops.aten._safe_softmax.default", f16): {"atol": 5e-4, "rtol": 0.02},
("softmax", f16): {"atol": 1e-4, "rtol": 0.02},
("_softmax_backward_data", f16): {"atol": 0.008, "rtol": 0.002},
("special.log_ndtr", f64): {"atol": 1e-6, "rtol": 1e-5},
("std_mean.unbiased", f16): {"reference_in_float": True},
"uniform": {"reference_in_float": True},
("_unsafe_masked_index_put_accumulate", f16): {"atol": 1e-4, "rtol": 0.01},
# High atol due to precision loss
("nn.functional.interpolate.bilinear", f64): {"atol": 5e-4, "rtol": 0},
("nn.functional.upsample_bilinear", f64): {"atol": 5e-4, "rtol": 0},
("nn.functional.interpolate.bicubic", f64): {"atol": 1e-3, "rtol": 0},
# Unreasonably high atol requirement:
("index_reduce.mean", f16): {"check_gradient": False},
("index_reduce.mean", f32): {"check_gradient": False},
("index_reduce.mean", f64): {"check_gradient": False},
# Gradient contains non-finite entries:
("index_reduce.amin", f64): {"check_gradient": False},
("index_reduce.amin", f32): {"check_gradient": False},
("index_reduce.amin", f16): {"check_gradient": False},
("index_reduce.amax", f64): {"check_gradient": False},
("index_reduce.amax", f32): {"check_gradient": False},
("index_reduce.amax", f16): {"check_gradient": False},
("tanh", f16): {"atol": 1e-4, "rtol": 1e-2},
("_unsafe_masked_index", f16): {
"reference_in_float": True,
"atol": 3e-4,
"rtol": 2e-3,
},
("nn.functional.interpolate.linear", f16): {"reference_in_float": True},
("nn.functional.prelu", f16): {
"reference_in_float": True,
"atol": 1e-3,
"rtol": 4e-3,
},
("addmm", f16): {"reference_in_float": True},
("logaddexp", f16): {"reference_in_float": True},
("std_mean", f16): {"reference_in_float": True},
("hypot", f16): {"reference_in_float": True, "atol": 3e-4, "rtol": 2e-3},
("cummin", f16): {"reference_in_float": True, "atol": 5e-5, "rtol": 2e-3},
("unfold_copy", f16): {"reference_in_float": True, "atol": 2e-5, "rtol": 1e-2},
("nn.functional.upsample_bilinear", f16): {
"reference_in_float": True,
"atol": 1e-4,
"rtol": 2e-3,
},
("nn.functional.embedding_bag", f16): {
"reference_in_float": True,
"atol": 1e-4,
"rtol": 1e-2,
},
("fft.irfft2", f16): {
"reference_in_float": True,
"atol": 1e-4,
"rtol": 7e-1,
},
("fft.irfftn", f16): {
"reference_in_float": True,
"atol": 1e-4,
"rtol": 7e-1,
},
}
inductor_override_kwargs["xpu"] = {
# the return value of empty is undefined
"empty": {"assert_equal": False},
"empty_permuted": {"assert_equal": False},
"empty_like": {"assert_equal": False},
"new_empty": {"assert_equal": False},
"empty_strided": {"assert_equal": False},
"new_empty_strided": {"assert_equal": False},
"randn": {"assert_equal": False},
# XPU
("cross", f16): {"reference_in_float": True},
("addr", f16): {"reference_in_float": True},
("baddbmm", f16): {"atol": 2e-3, "rtol": 0.002}, # decomp affects accuracy
("angle", f64): {"reference_in_float": True},
("asin", f16): {"reference_in_float": True},
("asin", f32): {"reference_in_float": True, "atol": 1e-4, "rtol": 1e-4},
("atanh", f16): {"reference_in_float": True},
"cauchy": {"reference_in_float": True},
("cummax", f16): {"atol": 5e-4, "rtol": 0.002},
("cumsum", f16): {"reference_in_float": True},
"cumprod": {"reference_in_float": True, "atol": 7e-5, "rtol": 0.002},
("dot", f16): {"atol": 1e-5, "rtol": 0.002},
"logcumsumexp": {
"atol": 5e-5,
"rtol": 0.005,
"grad_atol": 8e-4,
"grad_rtol": 0.001,
},
("logcumsumexp", f16): {"grad_atol": 4e-3, "grad_rtol": 0.01},
"exponential": {"reference_in_float": True},
"geometric": {"reference_in_float": True},
("kron", f16): {"reference_in_float": True},
("linalg.cross", f16): {"reference_in_float": True},
("linalg.vecdot", f16): {"atol": 1e-5, "rtol": 2e-2},
"log_normal": {"reference_in_float": True},
("logsumexp", f16): {"atol": 1e-5, "rtol": 1e-2},
("masked.cumprod", f16): {"reference_in_float": True, "atol": 1e-5, "rtol": 5e-2},
("masked.cumsum", f16): {"atol": 1e-5, "rtol": 5e-3},
("masked.softmin", f16): {"atol": 1e-4, "rtol": 0.01},
("masked.softmax", f16): {"atol": 2e-4, "rtol": 0.01},
("masked.var", f16): {"atol": 2e-5, "rtol": 5e-3},
("native_batch_norm", f64): {"atol": 1e-7, "rtol": 1e-5},
("_native_batch_norm_legit", f64): {"atol": 1e-7, "rtol": 5e-6},
("_batch_norm_with_update", f64): {"atol": 1e-7, "rtol": 1e-6},
("native_layer_norm", f16): {"atol": 5e-3, "rtol": 5e-3},
("native_layer_norm", f32): {"atol": 5e-3, "rtol": 5e-3},
("nn.functional.batch_norm", f16): {"reference_in_float": True},
("nn.functional.batch_norm", f64): {"atol": 1e-6, "rtol": 1e-6},
("nn.functional.batch_norm.without_cudnn", f16): {"reference_in_float": True},
("nn.functional.conv1d", f16): {"atol": 1e-5, "rtol": 6e-3},
("nn.functional.conv3d", f16): {"atol": 1e-5, "rtol": 2e-3},
("nn.functional.conv_transpose2d", f16): {"atol": 1e-5, "rtol": 2e-3},
("nn.functional.conv_transpose3d", f16): {"atol": 1e-5, "rtol": 5e-3},
("nn.functional.cosine_embedding_loss", f16): {"atol": 1e-5, "rtol": 2e-3},
("nn.functional.cosine_similarity", f16): {
"reference_in_float": True,
"atol": 1e-5,
"rtol": 5e-3,
},
("nn.functional.instance_norm", f16): {"reference_in_float": True},
("nn.functional.instance_norm", f64): {"atol": 1e-6, "rtol": 1e-6},
("nn.functional.layer_norm", f16): {"atol": 5e-3, "rtol": 2e-3},
("nn.functional.layer_norm", f32): {"atol": 5e-5, "rtol": 2e-3},
("nn.functional.local_response_norm", f16): {"reference_in_float": True},
("nn.functional.multilabel_soft_margin_loss", f16): {
"atol": 3e-4,
"rtol": 2e-3,
},
("nn.functional.normalize", f16): {"atol": 1e-3, "rtol": 0.05},
("nn.functional.rms_norm", f16): {"reference_in_float": True},
("nn.functional.soft_margin_loss", f16): {"reference_in_float": True},
("nn.functional.softmin", f16): {"atol": 1e-4, "rtol": 0.01},
("nn.functional.softsign", f16): {
"reference_in_float": True,
"atol": 1e-5,
"rtol": 0.005,
},
("nn.functional.tanhshrink", f16): {"atol": 3e-4, "rtol": 0.001},
("outer", f16): {"reference_in_float": True},
("round.decimals_3", f16): {"reference_in_float": True},
("nn.functional.triplet_margin_loss", f16): {"atol": 1e-4, "rtol": 0.02},
("nn.functional.triplet_margin_with_distance_loss", f16): {
"atol": 1e-4,
"rtol": 0.02,
},
("remainder", f16): {"atol": 1e-4, "rtol": 0.005},
("sinc", f16): {"atol": 0.008, "rtol": 0.002},
("softmax", f16): {"atol": 1e-4, "rtol": 0.02},
("_softmax_backward_data", f16): {"atol": 0.008, "rtol": 0.002},
("special.log_ndtr", f64): {"atol": 1e-6, "rtol": 1e-5},
("std_mean.unbiased", f16): {
"reference_in_float": True,
"atol": 5e-5,
"rtol": 5e-3,
},
("trapezoid", f16): {"atol": 1e-5, "rtol": 5e-3},
("trapz", f16): {"atol": 1e-5, "rtol": 5e-3},
"uniform": {"reference_in_float": True},
("var_mean", f16): {"atol": 1e-5, "rtol": 2e-3},
("var_mean.unbiased", f16): {"atol": 1e-5, "rtol": 2e-3},
("vdot", f16): {"atol": 1e-5, "rtol": 2e-3},
# Following tests are failing with strict comparison but atol=1 is acceptable due roundings errors
# High atol due to precision loss
("nn.functional.interpolate.bilinear", f64): {"atol": 5e-4, "rtol": 0},
("nn.functional.upsample_bilinear", f64): {"atol": 5e-4, "rtol": 0},
("nn.functional.interpolate.bicubic", f64): {"atol": 1e-3, "rtol": 0},
# Unreasonably high atol requirement:
("index_reduce.mean", f16): {"check_gradient": False},
("index_reduce.mean", f32): {"check_gradient": False},
("index_reduce.mean", f64): {"check_gradient": False},
# Gradient contains non-finite entries:
("index_reduce.amin", f64): {"check_gradient": False},
("index_reduce.amin", f32): {"check_gradient": False},
("index_reduce.amin", f16): {"check_gradient": False},
("index_reduce.amax", f64): {"check_gradient": False},
("index_reduce.amax", f32): {"check_gradient": False},
("index_reduce.amax", f16): {"check_gradient": False},
("tanh", f16): {"atol": 1e-4, "rtol": 1e-2},
("nn.functional.embedding_bag", f32): {"check_gradient": False},
("nn.functional.embedding_bag", f64): {"check_gradient": False},
("_unsafe_masked_index_put_accumulate", f16): {"atol": 1e-4, "rtol": 0.01},
("_unsafe_masked_index", f16): {
"reference_in_float": True,
"atol": 3e-4,
"rtol": 2e-3,
},
("nn.functional.interpolate.linear", f16): {"reference_in_float": True},
("nn.functional.prelu", f16): {
"reference_in_float": True,
"atol": 1e-3,
"rtol": 4e-3,
},
("addmm", f16): {"reference_in_float": True},
("logaddexp", f16): {"reference_in_float": True},
("std_mean", f16): {"reference_in_float": True},
("hypot", f16): {"reference_in_float": True, "atol": 3e-4, "rtol": 2e-3},
("cummin", f16): {"reference_in_float": True, "atol": 5e-5, "rtol": 2e-3},
("unfold_copy", f16): {"reference_in_float": True, "atol": 2e-5, "rtol": 1e-2},
("nn.functional.upsample_bilinear", f16): {
"reference_in_float": True,
"atol": 1e-4,
"rtol": 2e-3,
},
("nn.functional.embedding_bag", f16): {
"check_gradient": False,
"atol": 1e-4,
"rtol": 1e-2,
},
("nn.functional.max_pool2d", f16): {
"reference_in_float": True,
"atol": 1e-4,
"rtol": 2e-3,
},
("nn.functional.unfold", f16): {
"reference_in_float": True,
},
# Reference crash on Intel LTS2 driver.
("nn.functional.interpolate.trilinear", f32): {
"check_gradient": False,
},
# Reference crash on Intel LTS2 driver.
("nn.functional.interpolate.trilinear", f64): {
"check_gradient": False,
},
}
if TEST_WITH_ROCM:
inductor_override_kwargs["cuda"].update(
{("cummin", f16): {"atol": 1e-3, "rtol": 1e-5}}
)
# Test with one sample only for following ops
inductor_one_sample = defaultdict(dict)
inductor_one_sample["cpu"] = {
"_segment_reduce.lengths": {f16},
"_segment_reduce.offsets": {f16},
"addmv": {f16},
"as_strided.partial_views": {f16},
"corrcoef": {f16},
"diff": {f16},
"einsum": {f16, i32},
"gradient": {f16},
"histogram": {f32, f64},
"histogramdd": {f32, f64},
"index_put": {f16, f32, f64},
"linalg.eig": {f32, f64},
"linspace": {f16, i32, i64},
"linspace.tensor_overload": {f16, f32, f64, i32, i64},
"logspace": {f16},
"logspace.tensor_overload": {f16, f32, f64, i32, i64},
"masked_logsumexp": {i64},
"max_pool2d_with_indices_backward": {f16, f32, f64},
"new_empty_strided": {f16},
"nn.functional.adaptive_avg_pool3d": {f16},
"nn.functional.adaptive_max_pool1d": {f16, f32},
"nn.functional.adaptive_max_pool2d": {f16, f32},
"nn.functional.bilinear": {f16},
"nn.functional.conv_transpose1d": {f16},
"nn.functional.conv_transpose2d": {f16},
"nn.functional.conv_transpose3d": {f16},
"nn.functional.cosine_similarity": {f16},
"nn.functional.cross_entropy": {f16, f32, f64},
"nn.functional.gaussian_nll_loss": {f16},
"nn.functional.grid_sample": {f32, f64, f16},
"nn.functional.interpolate.area": {f16},
"nn.functional.nll_loss": {f16, f32, f64},
"normal": {f16, f32, f64},
"put": {f16, f32, f64},
"take": {b8, f16, f32, f64, i32, i64},
}
inductor_one_sample["cuda"] = {
"_segment_reduce.lengths": {f16},
"_segment_reduce.offsets": {f16},
"addmv": {f16},
"as_strided.partial_views": {f16},
"corrcoef": {f16},
"diff": {f16},
"einsum": {f16, i32},
"gradient": {f16},
"histogram": {f32, f64},
"histogramdd": {f32, f64},
"index_put": {f16, f32, f64},
"linalg.eig": {f32, f64},
"linspace": {f16, i32, i64},
"linspace.tensor_overload": {f16, f32, f64, i32, i64},
"logspace": {f16, i32, i64},
"logspace.tensor_overload": {f16, f32, f64, i32, i64},
"masked_logsumexp": {i64},
"max_pool2d_with_indices_backward": {f16, f32, f64},
"new_empty_strided": {f16},
"nn.functional.adaptive_avg_pool3d": {f16},
"nn.functional.adaptive_max_pool1d": {f16, f32},
"nn.functional.adaptive_max_pool2d": {f16, f32},
"nn.functional.bilinear": {f16},
"nn.functional.conv_transpose1d": {f16},
"nn.functional.conv_transpose2d": {f16},
"nn.functional.conv_transpose3d": {f16},
"nn.functional.cosine_similarity": {f16},
"nn.functional.cross_entropy": {f16, f32, f64},
"nn.functional.gaussian_nll_loss": {f16},
"nn.functional.grid_sample": {f16, f32, f64},
"nn.functional.interpolate.area": {f16},
"nn.functional.nll_loss": {f16, f32, f64},
"normal": {f16, f32, f64},
"put": {f16, f32, f64},
"take": {b8, f16, f32, f64, i32, i64},
"__rdiv__": {f16},
"__rmod__": {f16, i64},
"__rmul__": {f16},
"__rpow__": {f16},
"_unsafe_masked_index": {f16},
"_unsafe_masked_index_put_accumulate": {f16},
"addcdiv": {f16},
"addcmul": {f16},
"atan2": {f16},
"cumsum": {f16},
"cumulative_trapezoid": {f16},
"dist": {f16},
"div.no_rounding_mode": {f16},
"fmod": {f16},
"grid_sampler_2d": {f16},
"index_fill": {f16, f32, f64},
"ldexp": {f16},
"lerp": {f16},
"linalg.householder_product": {f32},
"linalg.matrix_norm": {f16},
"linalg.vector_norm": {f16},
"masked.cumsum": {f16},
"masked.logsumexp": {f16},
"masked.mean": {b8},
"masked.normalize": {f16},
"masked.prod": {f16},
"masked.std": {f16},
"masked.var": {f16},
"mul": {f16},
"nn.functional.alpha_dropout": {f16, f32, f64},
"nn.functional.avg_pool1d": {f16, f32, f64},
"nn.functional.avg_pool2d": {f16, f32, f64},
"nn.functional.avg_pool3d": {f16, f32, f64},
"nn.functional.binary_cross_entropy": {f16},
"nn.functional.binary_cross_entropy_with_logits": {f16},
"nn.functional.conv2d": {f16},
"nn.functional.cosine_embedding_loss": {f16},
"nn.functional.dropout2d": {f16, f32, f64},
"nn.functional.dropout3d": {f16, f32, f64},
"nn.functional.dropout": {f16, f32, f64},
"nn.functional.feature_alpha_dropout.with_train": {f16, f32, f64},
"nn.functional.fractional_max_pool2d": {f16, f32, f64},
"nn.functional.fractional_max_pool3d": {f16, f32, f64},
"nn.functional.group_norm": {f16},
"nn.functional.hinge_embedding_loss": {f16},
# Enabling all tests for this test fails randomly
# See https://github.com/pytorch/pytorch/issues/129238
"nn.functional.huber_loss": {f16},
"nn.functional.interpolate.bicubic": {f16},
"nn.functional.interpolate.bilinear": {f16},
"nn.functional.interpolate.trilinear": {f16},
"nn.functional.kl_div": {f16},
"nn.functional.margin_ranking_loss": {f16},
"nn.functional.max_pool1d": {f16, f32, f64},
"nn.functional.max_pool3d": {f16},
"nn.functional.mse_loss": {f16},
"nn.functional.multi_margin_loss": {f16},
"nn.functional.multilabel_margin_loss": {f16},
"nn.functional.multilabel_soft_margin_loss": {f16},
"nn.functional.normalize": {f16},
"nn.functional.pad.replicate": {f16, f32, f64},
"nn.functional.pad.reflect": {f16},
"nn.functional.pairwise_distance": {f16},
"nn.functional.poisson_nll_loss": {f16},
"nn.functional.rms_norm": {f16},
"norm": {f16},
"pow": {f16},
"prod": {f16},
"scatter_reduce.amax": {f16, f32, f64},
"scatter_reduce.amin": {f16, f32, f64},
"scatter_reduce.mean": {f16, f32, f64},
"special.xlog1py": {f16},
"std": {f16},
"std_mean": {f16},
"svd_lowrank": {f32, f64},
"trapezoid": {f16},
"trapz": {f16},
"true_divide": {f16},
"var": {f16},
"var_mean": {f16},
"xlogy": {f16},
}
inductor_one_sample["xpu"] = {
"_segment_reduce.lengths": {f16},
"_segment_reduce.offsets": {f16},
"addmv": {f16},
"as_strided.partial_views": {f16},
"corrcoef": {f16},
"diff": {f16},
"einsum": {f16, i32},
"gradient": {f16},
"histogram": {f32, f64},
"histogramdd": {f32, f64},
"index_put": {f16, f32, f64},
"linalg.eig": {f32, f64},
"linspace": {f16, i32, i64},
"linspace.tensor_overload": {f16, f32, f64, i32, i64},
"logspace": {f16, i32, i64},
"logspace.tensor_overload": {f16, f32, f64, i32, i64},
"masked_logsumexp": {i64},
"max_pool2d_with_indices_backward": {f16, f32, f64},
"new_empty_strided": {f16},
"nn.functional.adaptive_avg_pool3d": {f16},
"nn.functional.adaptive_max_pool1d": {f16, f32},
"nn.functional.adaptive_max_pool2d": {f16, f32},
"nn.functional.max_pool2d": {f16, f32, f64},
"nn.functional.bilinear": {f16},
"nn.functional.conv_transpose1d": {f16},
"nn.functional.conv_transpose2d": {f16},
"nn.functional.conv_transpose3d": {f16},
"nn.functional.cosine_similarity": {f16},
"nn.functional.cross_entropy": {f16, f32, f64},
"nn.functional.gaussian_nll_loss": {f16},
"nn.functional.grid_sample": {f16, f32, f64},
"nn.functional.interpolate.area": {f16},
"nn.functional.nll_loss": {f16, f32, f64},
"normal": {f16, f32, f64},
"put": {f16, f32, f64},
"take": {b8, f16, f32, f64, i32, i64},
"__rdiv__": {f16},
"__rmod__": {f16, i64},
"__rmul__": {f16},
"__rpow__": {f16},
"_unsafe_masked_index": {f16},
"_unsafe_masked_index_put_accumulate": {f16},
"addcdiv": {f16},
"addcmul": {f16},
"atan2": {f16},
"cumsum": {f16},
"cumulative_trapezoid": {f16},
"dist": {f16},
"div.no_rounding_mode": {f16},
"fmod": {f16},
"grid_sampler_2d": {f16},
"index_fill": {f16, f32, f64},
"ldexp": {f16},
"lerp": {f16},
"linalg.householder_product": {f32},
"linalg.matrix_norm": {f16},
"linalg.vector_norm": {f16},
"masked.cumsum": {f16},
"masked.logsumexp": {f16},
"masked.mean": {b8},
"masked.normalize": {f16},
"masked.prod": {f16},
"masked.std": {f16},
"masked.var": {f16},
"mul": {f16},
"nn.functional.alpha_dropout": {f16, f32, f64},
"nn.functional.avg_pool1d": {f16, f32, f64},
"nn.functional.avg_pool2d": {f16, f32, f64},
"nn.functional.avg_pool3d": {f16, f32, f64},
"nn.functional.binary_cross_entropy": {f16},
"nn.functional.binary_cross_entropy_with_logits": {f16},
"nn.functional.conv2d": {f16},
"nn.functional.cosine_embedding_loss": {f16},
"nn.functional.dropout2d": {f16, f32, f64},
"nn.functional.dropout3d": {f16, f32, f64},
"nn.functional.dropout": {f16, f32, f64},
"nn.functional.feature_alpha_dropout.with_train": {f16, f32, f64},
"nn.functional.fractional_max_pool2d": {f16, f32, f64},
"nn.functional.fractional_max_pool3d": {f16, f32, f64},
"nn.functional.group_norm": {f16},
"nn.functional.hinge_embedding_loss": {f16},
# Enabling all tests for this test fails randomly
# See https://github.com/pytorch/pytorch/issues/129238
"nn.functional.huber_loss": {f16},
"nn.functional.interpolate.bicubic": {f16},
"nn.functional.interpolate.bilinear": {f16},
"nn.functional.interpolate.trilinear": {f16},
"nn.functional.kl_div": {f16},
"nn.functional.margin_ranking_loss": {f16},
"nn.functional.max_pool1d": {f16, f32, f64},
"nn.functional.max_pool3d": {f16},
"nn.functional.mse_loss": {f16},
"nn.functional.multi_margin_loss": {f16},
"nn.functional.multilabel_margin_loss": {f16},
"nn.functional.multilabel_soft_margin_loss": {f16},
"nn.functional.normalize": {f16},
"nn.functional.pad.replicate": {f16, f32, f64},
"nn.functional.pad.reflect": {f16},
"nn.functional.pairwise_distance": {f16},
"nn.functional.poisson_nll_loss": {f16},
"nn.functional.rms_norm": {f16},
"norm": {f16},
"pow": {f16},
"prod": {f16},
"scatter_reduce.amax": {f16, f32, f64},
"scatter_reduce.amin": {f16, f32, f64},
"scatter_reduce.mean": {f16, f32, f64},
"special.xlog1py": {f16},
"std": {f16},
"std_mean": {f16},
"svd_lowrank": {f32, f64},
"trapezoid": {f16},
"trapz": {f16},
"true_divide": {f16},
"var": {f16},
"var_mean": {f16},
"xlogy": {f16},
}
# Custom replacements for assertEquals, in cases where a difference in value
# may not indicate correctness.
def get_sort_argsort_assert_equal_fn(is_argsort, args, kwargs):
# Use the normal assert_equal_fn suffices for a stable sort
if "stable" in kwargs:
return True
# In other cases, we need only check that the sort/argsort outputs are
# compatible.
orig_input = args[0]
# The sort dimension is specified as a kwarg, or the last dimension.
if "dim" not in kwargs:
dim = orig_input.dim() - 1
else:
dim = kwargs["dim"]
def argsort_sort_assert_equal(
test_case_inst,
x,
y,
*,
atol=None,
rtol=None,
equal_nan=True,
exact_dtype=True,
exact_stride=False,
):
if is_argsort:
assert isinstance(x, torch.Tensor)
assert isinstance(y, torch.Tensor)
else:
# The first tensor is the sorted values and can be asserted via
# the usual means
for t in (x, y):
assert isinstance(t, tuple)
assert len(t) == 2
test_case_inst.assertEqual(
x[0],
y[0],
atol=atol,
rtol=rtol,
equal_nan=equal_nan,
exact_dtype=exact_dtype,
exact_stride=exact_stride,
)
# The second tensor is the same result as an argsort.
x = x[1]
y = y[1]
if exact_dtype and (x.dtype != y.dtype):
raise AssertionError(f"The dtypes do not match: {x.dtype} != {y.dtype}.")
assert x.shape == y.shape
if exact_stride and (x.stride() != y.stride()):
raise AssertionError(
f"The strides do not match: {x.stride()} != {y.stride()}."
)
def el_to_indices(el):
"""Turn an element number into a list of indices"""
indices = [None] * x.dim()
for cur_dim in reversed(range(x.dim())):
indices[cur_dim] = el % x.shape[cur_dim]
el //= x.shape[cur_dim]
assert None not in indices
return indices
def get_val_by_ids(t, ids):
"""Return a value from a tensor at a given list of indices"""
for idx in ids:
t = t[idx]
return t.item()
# Loop through every value of the tensors and check for equality or
# compatibility.
for current_el in range(x.numel()):
ids = el_to_indices(current_el)
# Simple case: check equality of arsort indices
if get_val_by_ids(x, ids) == get_val_by_ids(y, ids):
continue
# Complex case: check if indices refer to same value
x_orig_ids = ids.copy()
y_orig_ids = ids.copy()
x_orig_ids[dim] = get_val_by_ids(x, ids)
y_orig_ids[dim] = get_val_by_ids(y, ids)
x_value = get_val_by_ids(orig_input, x_orig_ids)
y_value = get_val_by_ids(orig_input, y_orig_ids)
if x_value == y_value:
continue
if equal_nan:
if math.isnan(x_value) and math.isnan(y_value):
continue
raise AssertionError(
f"Non-stable argsort outputs are incompatible at {ids}"
)
return argsort_sort_assert_equal
def get_argsort_assert_equal_fn(args, kwargs):
return get_sort_argsort_assert_equal_fn(True, args, kwargs)
def get_sort_assert_equal_fn(args, kwargs):
return get_sort_argsort_assert_equal_fn(False, args, kwargs)
CUSTOM_ASSERT_EQUALS_FNS = {
"argsort": get_argsort_assert_equal_fn,
"sort": get_sort_assert_equal_fn,
}
def collection_decorator(fn):
@functools.wraps(fn)
def inner(self, device, dtype, op):
try:
fn(self, device, dtype, op)
except Exception as e:
if COLLECT_EXPECT:
variant = op.variant_test_name
op_key = op.name if not variant else (op.name, variant)
device_type = torch.device(device).type
# failed_reasons[device_type, op_key].add(repr(e))
seen_failed[device_type, op_key].add(dtype)
raise e
return inner
@wrapper_noop_set_seed_decorator
class TestInductorOpInfo(TestCase):
def tearDown(self):
torch._dynamo.reset()
check_model = check_model
check_model_gpu = check_model_gpu
@onlyNativeDeviceTypes
@suppress_warnings
@skipCUDAMemoryLeakCheckIf(
True
) # inductor kernels failing this test intermittently
@requires_gpu_and_triton
@skipXPUIf(
not HAS_XPU_AND_TRITON, "Skipped! Supported XPU compiler and Triton not found"
)
@skipCPUIf(not HAS_CPU, "Skipped! Supported CPU compiler not found")
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@skipIfTorchDynamo("Test uses dynamo already")
@skipIfCrossRef
@_ops(op_db[START:END])
@skipOps("TestInductorOpInfo", "test_comprehensive", test_skips_or_fails)
@patch("torch._dynamo.config.raise_on_unsafe_aot_autograd", True)
@torch._inductor.config.patch(
{"implicit_fallbacks": False, "triton.autotune_pointwise": False}
)
@torch._inductor.config.patch("test_configs.runtime_triton_dtype_assert", True)
@torch._inductor.config.patch("test_configs.static_cpp_dtype_assert", True)
@collection_decorator
def test_comprehensive(self, device, dtype, op):
device_type = torch.device(device).type
assert device_type in (GPU_TYPE, "cpu")
torch._dynamo.reset()
with torch.no_grad():
# TODO: should we move empty_cache to the common device interface
if device_type == "cuda":
torch.cuda.empty_cache()
elif device == "xpu":
torch.xpu.empty_cache()
op_name = op.name
if op.variant_test_name:
op_name += f".{op.variant_test_name}"
# Skip dtype=torch.uint8 for all ops except upsample and interpolate:
allowed_dtypes = [f16, f32, f64, i32, i64, b8]
if op_name not in (
"nn.functional.interpolate.bilinear",
"nn.functional.interpolate.bicubic",
"nn.functional.upsample_bilinear",
"nn.functional.upsample_nearest",
"fill",
"full_like",
):
if dtype not in allowed_dtypes:
raise unittest.SkipTest("Skipped!")
# with open("test_output.txt", "a") as f:
# print(f"CONSIDERING OP {op_name} on {device_type} with {dtype} |
# {inductor_skips[device_type].get(op_name, set())}", flush=True, file=f)
# print(f"CONSIDERING OP {op_name} on {device_type} with {dtype} |
# {inductor_skips[device_type].get(op_name, set())}", flush=True)
if dtype in inductor_skips[device_type].get(op_name, set()):
test_expect = ExpectedTestResult.SKIP # noqa: F841
# with open("test_output.txt", "a") as f:
# print(f"SKIPPING OP {op_name} on {device_type}", flush=True, file=f)
# print(f"SKIPPING OP {op_name} on {device_type}", flush=True)
elif dtype in inductor_expected_failures_single_sample[device_type].get(
op_name, set()
) or dtype in inductor_gradient_expected_failures_single_sample[
device_type
].get(op_name, set()):
test_expect = ExpectedTestResult.XFAILURE # noqa: F841
else:
test_expect = ExpectedTestResult.SUCCESS # noqa: F841
overridden_kwargs = {}
overridden_kwargs.update(
inductor_override_kwargs.get(device_type, {}).get(op_name, {})
)
overridden_kwargs.update(
inductor_override_kwargs.get(device_type, {}).get((op_name, dtype), {})
)
func = op.get_op()
def fn(*args, **kwargs):
return func(*args, **kwargs)
requires_grad = (
op.supports_autograd
and dtype in op.supported_backward_dtypes(device_type)
# TODO: OpInfo really ought to error out for this case, but it's
# not exercised in test_ops_gradients atm. The problem is not
# complex32 per-se (which is supported by data movement only ops)
# but that when we do backwards we expect other ops like add to work
and not dtype == torch.complex32
)
samples = op.sample_inputs(device, dtype, requires_grad=requires_grad)
if (
dtype in inductor_one_sample.get(device_type, {}).get(op_name, {})
) and not ALL_SAMPLES:
if isinstance(samples, (list, tuple)):
samples = [samples[0]]
else:
samples = [next(samples)]
class HasRngOp(TorchDispatchMode):
def __init__(self) -> None:
super().__init__()
self.has_rng_op = False
def __torch_dispatch__(self, func, types, args, kwargs=None):
kwargs = kwargs if kwargs else {}
if torch.Tag.nondeterministic_seeded in func.tags:
self.has_rng_op = True
return func(*args, **kwargs)
def do_nopython_and_has_rng(fn, args, kwargs):
try:
mode = FakeTensorMode()
def map_to_fake(e):
if isinstance(e, torch.Tensor):
return mode.from_tensor(e)
else:
return e
args, kwargs = tree_map(map_to_fake, (args, kwargs))
with HasRngOp() as rng_mode, mode:
with enable_python_dispatcher():
fn(*args, **kwargs)
except (DataDependentOutputException, DynamicOutputShapeException):
return False, rng_mode.has_rng_op
return True, rng_mode.has_rng_op
def get_contexts(has_rng_op, args, kwargs):
if has_rng_op:
# TODO - enable this, running into errors
return (
# (
# lambda: torch._inductor.config.patch(
# {"fallback_random": True, "implicit_fallbacks": True}
# ),
# {"assert_equal": True},
# ),
(
contextlib.nullcontext,
{"assert_equal": False},
),
)
ctx = functools.partial(maybe_skip_size_asserts, op)
if op_name in CUSTOM_ASSERT_EQUALS_FNS:
assert_equal_fn = CUSTOM_ASSERT_EQUALS_FNS[op_name](args, kwargs)
return (
(
ctx,
{"assert_equal": assert_equal_fn},
),
)
return ((ctx, {}),)
try:
def _get_tolerances(dtype):
_custom_tolerances = {
torch.float32: (1.3e-5, 1.5e-5),
}
# When we are running opportunistic_fastatomics, we will expect some floating point rounding
# errors as the order of operation is not guaranteed.
if dtype in _custom_tolerances:
return _custom_tolerances[dtype]
else:
return None, None
for sample_input in samples:
args = [sample_input.input] + list(sample_input.args)
kwargs = sample_input.kwargs
# UNCOMMENT TO DEBUG SEGFAULTS
# with open("test_output.txt", "a") as f:
# print(f"RUNNING OP {op_name} on {device_type} with {dtype}", flush=True, file=f)
# print(f"RUNNING OP {op_name} on {device_type} with {dtype}", flush=True)
rtol, atol = _get_tolerances(dtype)
no_python, has_rng_op = do_nopython_and_has_rng(fn, args, kwargs)
for context_fn, kwarg_overrides in get_contexts(
has_rng_op, args, kwargs
):
with context_fn():
# Base kwargs
adjusted_kwargs = {
"check_lowp": False,
"nopython": no_python,
"check_has_compiled": no_python,
"atol": atol,
"rtol": rtol,
}
# Backend-specific adjustments
# Triton
if has_triton():
adjusted_kwargs.update(
copy_to_gpu=False, reference_in_float=False
)
# skip checking gradient on CPU for now
if device_type == GPU_TYPE:
adjusted_kwargs.update(
check_gradient=requires_grad,
output_process_fn_grad=sample_input.output_process_fn_grad,
)
else:
adjusted_kwargs["check_gradient"] = False
# Update with overridden kwargs and context-specific overrides
adjusted_kwargs.update(overridden_kwargs)
adjusted_kwargs.update(kwarg_overrides)
# Call the appropriate check method based on device type
if device_type == GPU_TYPE:
self.check_model_gpu(
fn,
args,
kwargs,
**adjusted_kwargs,
)
else:
self.check_model(
fn,
args,
kwargs,
**adjusted_kwargs,
)
except Exception as e:
known_failure = False
if dtype in inductor_should_fail_with_exception[device_type].get(
op_name, set()
):
failure = inductor_should_fail_with_exception[device_type][op_name][
dtype
]
if failure in str(e):
known_failure = True
if not known_failure:
raise e
# with open("test_output.txt", "a") as f:
# print(f"SUCCEEDED OP {op_name} on {device_type} with {dtype}", flush=True, file=f)
instantiate_device_type_tests(TestInductorOpInfo, globals(), allow_xpu=True)
if __name__ == "__main__":
run_tests()