Files
pytorch/torch/utils/data/datapipes/dataframe/datapipes.py
Yuanyuan Chen e595136187 Enable PLC1802 on ruff (#165813)
This PR enables ruff check `PLC1802`, which detects len calls on sequences in a boolean test context.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165813
Approved by: https://github.com/ezyang
2025-10-18 05:44:14 +00:00

138 lines
4.5 KiB
Python

# mypy: allow-untyped-defs
import random
from typing import Any
from torch.utils.data.datapipes._decorator import functional_datapipe
from torch.utils.data.datapipes.dataframe import dataframe_wrapper as df_wrapper
from torch.utils.data.datapipes.datapipe import DFIterDataPipe, IterDataPipe
__all__ = [
"ConcatDataFramesPipe",
"DataFramesAsTuplesPipe",
"ExampleAggregateAsDataFrames",
"FilterDataFramesPipe",
"PerRowDataFramesPipe",
"ShuffleDataFramesPipe",
]
@functional_datapipe("_dataframes_as_tuples")
class DataFramesAsTuplesPipe(IterDataPipe):
def __init__(self, source_datapipe):
self.source_datapipe = source_datapipe
def __iter__(self):
for df in self.source_datapipe:
# for record in df.to_records(index=False):
yield from df_wrapper.iterate(df)
@functional_datapipe("_dataframes_per_row", enable_df_api_tracing=True)
class PerRowDataFramesPipe(DFIterDataPipe):
def __init__(self, source_datapipe):
self.source_datapipe = source_datapipe
def __iter__(self):
for df in self.source_datapipe:
# TODO(VitalyFedyunin): Replacing with TorchArrow only API, as we are dropping pandas as followup
for i in range(len(df)):
yield df[i : i + 1]
@functional_datapipe("_dataframes_concat", enable_df_api_tracing=True)
class ConcatDataFramesPipe(DFIterDataPipe):
def __init__(self, source_datapipe, batch=3):
self.source_datapipe = source_datapipe
self.n_batch = batch
def __iter__(self):
buffer = []
for df in self.source_datapipe:
buffer.append(df)
if len(buffer) == self.n_batch:
yield df_wrapper.concat(buffer)
buffer = []
if buffer:
yield df_wrapper.concat(buffer)
@functional_datapipe("_dataframes_shuffle", enable_df_api_tracing=True)
class ShuffleDataFramesPipe(DFIterDataPipe):
def __init__(self, source_datapipe):
self.source_datapipe = source_datapipe
def __iter__(self):
size = None
all_buffer: list[Any] = []
for df in self.source_datapipe:
if size is None:
size = df_wrapper.get_len(df)
all_buffer.extend(
df_wrapper.get_item(df, i) for i in range(df_wrapper.get_len(df))
)
random.shuffle(all_buffer)
buffer = []
for df in all_buffer:
buffer.append(df)
if len(buffer) == size:
yield df_wrapper.concat(buffer)
buffer = []
if buffer:
yield df_wrapper.concat(buffer)
@functional_datapipe("_dataframes_filter", enable_df_api_tracing=True)
class FilterDataFramesPipe(DFIterDataPipe):
def __init__(self, source_datapipe, filter_fn):
self.source_datapipe = source_datapipe
self.filter_fn = filter_fn
def __iter__(self):
size = None
all_buffer = []
filter_res = []
# pyrefly: ignore # bad-assignment
for df in self.source_datapipe:
if size is None:
size = len(df.index)
for i in range(len(df.index)):
all_buffer.append(df[i : i + 1])
filter_res.append(self.filter_fn(df.iloc[i]))
buffer = []
for df, res in zip(all_buffer, filter_res):
if res:
buffer.append(df)
if len(buffer) == size:
yield df_wrapper.concat(buffer)
buffer = []
if buffer:
yield df_wrapper.concat(buffer)
@functional_datapipe("_to_dataframes_pipe", enable_df_api_tracing=True)
class ExampleAggregateAsDataFrames(DFIterDataPipe):
def __init__(self, source_datapipe, dataframe_size=10, columns=None):
self.source_datapipe = source_datapipe
self.columns = columns
self.dataframe_size = dataframe_size
def _as_list(self, item):
try:
return list(item)
except (
Exception
): # TODO(VitalyFedyunin): Replace with better iterable exception
return [item]
def __iter__(self):
aggregate = []
for item in self.source_datapipe:
aggregate.append(self._as_list(item))
if len(aggregate) == self.dataframe_size:
yield df_wrapper.create_dataframe(aggregate, columns=self.columns)
aggregate = []
if len(aggregate) > 0:
yield df_wrapper.create_dataframe(aggregate, columns=self.columns)