Files
pytorch/torch/_inductor/codegen/wrapper_fxir.py
Blaine Burton Rister e56dd5d770 [Inductor-FX] Support torch.cond (#163234)
# Feature

Support `torch.cond` in the FX converter. The generated FX IR is conceptually indentical to what would come from `torch.export`:
- Submodules as stored as attributes, and accessed via `getattr`.
- The conditional is represented as `torch.ops.higher_order.cond`, which takes in the subgraphs, a predicate and submodule inputs.

# Implementation overview

The FX backend generates code for subgraphs using the following steps:
1. When `codegen_conditional` is called in `WrapperFxCodegen`, we emit a `ConditionalLine`.
   a. We also codegen the true/false subgraphs at this time, storing their subgms for later.
2. At the beginning of FX conversion, generate `get_attr` nodes accessing each subgraph. It's important to do this at the start, before registering the node metadata hook. This also matches the convention followed by torch.export.
3. When we see the `ConditionalLine` in the FX converter, we generate a corresponding `torch.ops.higher_order.cond`.

# Implementation details
This ended up being a substantial change, as wrapper codegen has some special logic for subgraphs.

Certain methods of `PythonWrapperCodegen` are overridden by `SubgraphPythonWrapperCodegen`. To apply these overrides, we use multiple inheritance with the registered subclass of `WrapperFxCodegen`.

Unlike most other wrapper codegen methods, which map 1:1 to Wrapper IR lines, subgraph codegen generates a number of wrapper lines including `EnterSubgraphLine` and `ExitSubgraphLine`, along with Python or C++ code calling the subgraph as a function. These lines are used for some backends' memory planning.

In contrast, FX IR typically represents a subgraph call as a single HOP node, or a `call_module` op. To account for this difference, this PR introduces a new wrapper IR line called `ConditionalLine`, which is only used by the FX backend. We override the `codegen_conditional` method to emit this line. This sidesteps having to port the existing subgraph codegen and associated memory planning to Wrapper IR. (In principle, it seems possible to adapt the existing backends to `ConditionalLine`, but it could be a larger refactor, since we'd also have to update the memory planning.)

Some of the lower-level subgraph codegen methods are still shared between the FX and Python backends, such as `generate_subgraph_common`. Those were easier to port to Wrapper IR.

This also required generalizing the way the FX converter handles graph inputs and outputs. Previously, it assumed the IO signature was the same as `V.graph.module`, but this is only true for the parent graph, and not subgraphs. Instead, we need to call `get_graph_inputs` and `get_graph_outputs` to populate the inputs and outputs for subgraphs.

# Test plan
This PR adds a couple of tests using torch.cond. Here's an example graph generated by one of them:
```
graph():
    %arg0_1 : [num_users=1] = placeholder[target=arg0_1]
    %arg1_1 : [num_users=1] = placeholder[target=arg1_1]
    %true_graph_0 : [num_users=1] = get_attr[target=true_graph_0]
    %false_graph_0 : [num_users=1] = get_attr[target=false_graph_0]
    %cond : [num_users=1] = call_function[target=torch.ops.higher_order.cond](args = (%arg0_1, %true_graph_0, %false_graph_0, (%arg1_1,)), kwargs = {})
    %buf1 : [num_users=2] = call_function[target=operator.getitem](args = (%cond, 0), kwargs = {})
    %triton_kernel_wrapper_mutation : [num_users=0] = call_function[target=torch.ops.higher_order.triton_kernel_wrapper_mutation](args = (), kwargs = {kernel_idx: 6, constant_args_idx: 6, grid: [(1, 1, 1)], tma_descriptor_metadata: {}, kwargs: {in_out_ptr0: %buf1, xnumel: 6, XBLOCK: 8}})
    return buf1
```

It also removes an existing negative test which checked that a certain error was raised when subgraphs were encountered.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163234
Approved by: https://github.com/angelayi, https://github.com/jansel
2025-09-20 03:52:31 +00:00

1090 lines
38 KiB
Python

import dataclasses
import functools
import logging
import operator
import textwrap
from collections import Counter
from collections.abc import Sequence
from typing import Any, Callable, Optional, Union
import sympy
import torch
from torch._export.passes._node_metadata_hook import (
_node_metadata_hook,
_set_node_metadata_hook,
)
from torch._export.utils import _detect_fake_mode_from_gm
from torch._higher_order_ops.triton_kernel_wrap import (
TraceableTritonKernelWrapper,
tracing_triton_hopifier_singleton,
triton_kernel_wrapper_mutation,
)
from torch._inductor.codecache import LambdaFuture, PyCodeCache
from torch._inductor.runtime.triton_heuristics import CachingAutotuner
from torch._inductor.select_algorithm import extern_kernels # noqa: F401
from torch._inductor.utils import convert_shape_to_symint, sympy_product
from torch._inductor.virtualized import V
from torch._library.triton import wrap_triton
from torch.fx import GraphModule
from torch.utils import _pytree as pytree
from torch.utils._sympy.functions import FloorDiv
from torch.utils._sympy.interp import _run_sympy_handler, sympy_interp
from torch.utils._sympy.reference import OptimizedPythonReferenceAnalysis
from torch.utils._sympy.solve import try_solve
from .. import config, ir
from ..runtime.triton_compat import Config
from ..utils import cache_property_on_self, LineContext, ValueWithLineMap
from .common import (
CodegenSymbol,
FileBackedGraphModule,
WorkspaceArg,
WorkspaceZeroMode,
)
from .wrapper import (
AllocateLine,
BufferLike,
CommBufferAllocateLine,
CommBufferFreeLine,
CommentLine,
ConditionalLine,
EnterDeviceContextManagerLine,
EnterSubgraphLine,
ExitDeviceContextManagerLine,
ExitSubgraphLine,
ExternKernelAllocLine,
ExternKernelOutLine,
FreeIfNotReusedLine,
FreeLine,
IndexPutFallbackLine,
KernelCallLine,
KernelDefinitionLine,
Line,
MultiOutputLine,
NullLine,
PythonWrapperCodegen,
ReinterpretLine,
ReuseLine,
ScatterFallbackLine,
SubgraphPythonWrapperCodegen,
SymbolicCallArg,
SymbolicCallArgLine,
WrapperLine,
)
aten = torch.ops.aten
log = logging.getLogger(__name__)
@dataclasses.dataclass
class SymbolBuffer(CodegenSymbol):
"""
Represents a sympy.Symbol graph input.
"""
symbol: sympy.Symbol
def get_name(self) -> str:
return str(self.symbol)
def get_example(self) -> Union[torch.Tensor, sympy.Symbol]:
return self.symbol
CodegenBuffer = Union[BufferLike, SymbolBuffer]
@dataclasses.dataclass
class TritonKernel:
"""
Stores metadata about Triton kernels for use in FX.
"""
tuner: CachingAutotuner
wrapped: TraceableTritonKernelWrapper
def replace_floor_div(expr: sympy.Expr) -> sympy.Expr:
"""
Replace sympy.floor with FloorDiv.
"""
def replace(expr: sympy.Expr) -> sympy.Expr:
expr = sympy.together(expr)
# Find division operations in the sympy.floor expression
# Div is either represented as Mul with:
# Rational denominator or Pow with negative exponent
if not isinstance(expr, sympy.core.mul.Mul):
return sympy.floor(expr)
if isinstance(expr.args[0], sympy.Rational):
frac = expr.args[0]
numerator = sympy_product(expr.args[1:]) * frac.numerator
denominator = frac.denominator
return FloorDiv(numerator, denominator)
elif isinstance(expr.args[0], sympy.Pow):
base = expr.args[0].base
exp = expr.args[0].exp
numerator = sympy_product(expr.args[1:])
if exp < 0:
denominator = base ** (-exp)
else:
numerator = numerator * (base**exp)
denominator = 1
return FloorDiv(numerator, denominator)
else:
return sympy.floor(expr)
return expr.replace(sympy.floor, replace)
class WrapperFxCodegen(PythonWrapperCodegen):
"""
Backend to generate wrapper code as an FX IR graph.
"""
supports_caching = False
def __init__(self, *args: Any, **kwargs: Any):
super().__init__(*args, **kwargs)
self.subgms: dict[str, torch.fx.GraphModule] = {}
def codegen_inputs(self) -> None:
"""
This would generate code for symbolic input shapes, strides, etc.
Since the FX converter handles this, do nothing here.
"""
def codegen_conditional(self, conditional: ir.Conditional) -> None:
"""
Conditional codegen normally emits a number of different wrapper lines.
Instead, FX conversion uses a dedicated line for the whole conditional.
"""
self.writeline(ConditionalLine(self, conditional))
for subgraph in (conditional.true_subgraph, conditional.false_subgraph):
self.codegen_subgraph_common(subgraph)
def define_subgraph_launcher_fn(
self, name: str, subgraph_code: Union[ValueWithLineMap, FileBackedGraphModule]
) -> None:
"""
Record subgms as they're generated.
"""
assert isinstance(subgraph_code, FileBackedGraphModule)
self.subgms[name] = subgraph_code.gm
@property
@cache_property_on_self
def is_subgraph(self) -> bool:
return isinstance(self, SubgraphPythonWrapperCodegen)
def get_fx_graph_inputs(
self,
) -> dict[str, Union[ir.TensorBox, ir.TorchBindObject, sympy.Expr, None]]:
"""
Get the input nodes corresponding to FX graph placeholders.
"""
if V.aot_compilation and not self.is_subgraph:
# AOT graphs must match the signature of the input module.
return {
node.name: V.graph.graph_inputs.get(node.name)
for node in V.graph.module.graph.find_nodes(op="placeholder") # type: ignore[operator, union-attr]
}
return self.get_graph_inputs()
def _generate(self, is_inference: bool) -> tuple[FileBackedGraphModule, None]:
self.run_wrapper_ir_passes(is_inference)
prologue = "\n".join(
[
self.imports.getvalue(),
self.header.getvalue(),
]
)
gm = FxConverter(
lines=self.lines,
prologue=prologue,
graph_inputs=self.get_fx_graph_inputs(),
graph_outputs=self.get_graph_outputs(),
subgms=self.subgms,
is_subgraph=self.is_subgraph,
).generate()
compiled_fn = self.compile_graph(gm)
return FileBackedGraphModule(gm, compiled_fn), None
def compile_graph(self, gm: GraphModule) -> Callable[..., Any]:
"""
Converts the graph module into a runnable function. The default implementation
is simply an interpreter calling kernels in eager mode. Derived backends can
override this to do further compilation.
"""
return gm.forward
def write_header(self) -> None:
"""
Python subgraphs normally lack headers.
Override this behavior to generate prologues for FX subgraphs.
"""
PythonWrapperCodegen.write_header(self)
@classmethod
def create(
cls: type["WrapperFxCodegen"],
is_subgraph: bool,
subgraph_name: Optional[str],
parent_wrapper: Optional[PythonWrapperCodegen],
partition_signatures: Optional[ir.GraphPartitionSignature] = None,
) -> "WrapperFxCodegen":
if is_subgraph:
assert subgraph_name is not None
assert parent_wrapper is not None
# Subgraphs override some methods of PythonWrapperCodegen.
# Apply these overrides to the user-provided class, with priority given to
# user-provided methods.
class SubgraphFxWrapperCodegen(cls, SubgraphPythonWrapperCodegen): # type: ignore[misc,valid-type]
def compile_graph(self, gm: GraphModule) -> Callable[..., Any]:
"""
Skip graph compilation for subgraphs.
"""
def crash_if_run(*args: Any) -> None:
raise NotImplementedError("Cannot run a subgraph in isolation!")
return crash_if_run
return SubgraphFxWrapperCodegen(
subgraph_name, parent_wrapper, partition_signatures
)
return cls()
@dataclasses.dataclass
class FxConverter:
"""
Generates FX IR from Wrapper IR. As each instance is only meant to be used once, the
input and output code are stored as attributes.
"""
lines: list[Line]
prologue: str
graph_inputs: dict[str, Union[ir.TensorBox, ir.TorchBindObject, sympy.Expr, None]]
graph_outputs: list[ir.IRNode]
subgms: dict[str, torch.fx.GraphModule]
is_subgraph: bool
def __post_init__(self) -> None:
graph = torch.fx.Graph()
self.gm = GraphModule({}, graph) # Wrapper FX IR.
self.buffer_to_node: dict[
Optional[str], torch.fx.Node
] = {} # Symbol table for codegen.
self.kernels: dict[str, TritonKernel] = {} # Table to store Triton kernels.
self._unique_symbol_ids: Counter[str] = Counter()
self.tracer = torch.fx.proxy.GraphAppendingTracer(graph)
self.expr_to_proxy: dict[sympy.Expr, torch.fx.Proxy] = {}
def _import_kernel(self, code: str, kernel_name: str) -> CachingAutotuner:
"""
Imports a kernel from source, possibly autotuning block parameters.
"""
module_code = "\n".join([self.prologue, code])
mod = PyCodeCache.load(module_code)
kernel = getattr(mod, kernel_name)
if isinstance(kernel, LambdaFuture):
kernel = kernel.result()
if not isinstance(kernel, CachingAutotuner):
raise NotImplementedError(
textwrap.dedent(f"""
Unsupported type for kernel {kernel_name}: {type(kernel)}.
FX conversion only supports Triton kernels.
""")
)
return kernel
def _fake_tensor(
self,
size: tuple[Any, ...],
stride: tuple[Any, ...],
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
) -> torch.Tensor:
with V.fake_mode:
return torch.empty_strided(
convert_shape_to_symint(size),
convert_shape_to_symint(stride),
dtype=dtype,
device=device,
)
def _create_as_strided(
self,
input_node: torch.fx.Node,
size: tuple[Any, ...],
stride: tuple[Any, ...],
offset: Union[int, sympy.Expr],
) -> torch.fx.Node:
return self.gm.graph.call_function(
torch.as_strided,
args=(
input_node,
self._generate_sym_nodes(size),
self._generate_sym_nodes(stride),
self._generate_sym_node(offset),
),
)
def _record_allocation(self, buffer: CodegenBuffer, node: torch.fx.Node) -> None:
"""
Updates the symbol table to record that an Inductor buffer maps to the result of
an FX node.
"""
assert node not in self.buffer_to_node
self.buffer_to_node[buffer.get_name()] = node
def _free(self, buffer: Union[CodegenBuffer, ir.TorchBindObject]) -> None:
"""
Removes the buffer from the symbol table.
"""
name = buffer.get_name()
del self.buffer_to_node[name]
def _lookup_args(self, args: tuple[Any, ...]) -> tuple[Any, ...]:
"""
Maps call args back to FX nodes.
"""
return tuple(
self.buffer_to_node[arg]
if isinstance(arg, str)
else arg.inner_expr
if isinstance(arg, SymbolicCallArg)
else arg
for arg in args
)
def _get_buffer(self, node: ir.IRNode) -> CodegenBuffer:
"""
Extract buffer data from an IR node.
"""
if isinstance(node, (ir.Buffer, WorkspaceArg)):
return node
elif isinstance(node, (ir.BaseView, ir.MutableBox)):
return self._get_buffer(node.data)
elif isinstance(node, sympy.Symbol):
return SymbolBuffer(node)
else:
raise NotImplementedError(f"Unable to extract buffer from node: {node}")
def _generate_graph_inputs(self) -> None:
"""
Converts graph inputs to FX placeholders.
"""
for name, ir_node in self.graph_inputs.items():
if ir_node is None:
# Create dummy input nodes to match the input signature
self.gm.graph.placeholder(name)
continue
# Introduce a new symbol for constant inputs.
buffer = (
SymbolBuffer(sympy.Symbol(name, is_integer=True))
if isinstance(ir_node, (int, float, sympy.Integer, sympy.Float))
else self._get_buffer(ir_node)
)
placeholder_node = self.gm.graph.placeholder(buffer.get_name())
placeholder_node.meta["val"] = buffer.get_example()
self._record_allocation(buffer, placeholder_node)
def _generate_graph_input_shapes(self) -> None:
"""
Generate nodes creating symints that are part of graph input
shape/strides.
"""
def _codegen_symbol(
sym_or_exp: Union[sympy.Symbol, sympy.Expr],
base_node: torch.fx.Node,
target: torch._ops.OpOverload,
dim: int,
) -> None:
def codegen_proxy() -> torch.fx.Proxy:
size_node = self.gm.graph.call_function(target, (base_node, dim))
size_proxy = torch.fx.Proxy(size_node, tracer=self.tracer)
self.expr_to_proxy[sym_or_exp] = size_proxy
return size_proxy
if isinstance(sym_or_exp, sympy.Symbol):
if sym_or_exp in self.expr_to_proxy:
return
codegen_proxy()
elif isinstance(sym_or_exp, sympy.Integer):
return
elif isinstance(sym_or_exp, sympy.Expr):
# Check if we need to solve for an undefined symbol.
undefined_symbols = [
sym
for sym in sym_or_exp.free_symbols
if sym not in self.expr_to_proxy
]
if len(undefined_symbols) == 0:
self._sympy_interp(sym_or_exp)
return
elif len(undefined_symbols) > 1:
raise ValueError(f"Underdetermined input expression: {sym_or_exp}")
# Define a new symbol for the input size.
size_proxy = codegen_proxy()
size_symbol = sympy.Symbol(
size_proxy.node.name, integer=True, nonnegative=True
)
self.expr_to_proxy[size_symbol] = size_proxy
# Solve for the undefined symbol.
undefined_symbol = undefined_symbols[0]
solution = try_solve(
sympy.Eq(sym_or_exp, size_symbol), undefined_symbol
)
if solution is None:
raise ValueError(f"Cannot solve input expression: {sym_or_exp}")
# Since the symbol is a size, it must be an integer.
# Therefore, we can convert division to FloorDiv.
undefined_symbol_expr = solution[1]
if undefined_symbol.is_integer:
undefined_symbol_expr = replace_floor_div(
sympy.floor(undefined_symbol_expr)
)
# Generate FX for the symbol.
self._sympy_interp(undefined_symbol_expr)
self.expr_to_proxy[undefined_symbol] = self.expr_to_proxy[
undefined_symbol_expr
]
for node in V.graph.module.graph.find_nodes(op="placeholder"): # type: ignore[operator, union-attr]
name = node.name
ir_node = self.graph_inputs.get(name)
if isinstance(ir_node, ir.TensorBox):
buffer = self._get_buffer(ir_node)
placeholder_node = self.buffer_to_node[buffer.get_name()]
for dim, size in enumerate(ir_node.get_size()):
_codegen_symbol(
size, placeholder_node, torch.ops.aten.sym_size.int, dim
)
for dim, stride in enumerate(ir_node.get_stride()):
_codegen_symbol(
stride, placeholder_node, torch.ops.aten.sym_stride.int, dim
)
def _generate_graph_constants(self) -> None:
for name, value in V.graph.constants.items():
node = self.gm.graph.get_attr(name)
node.meta["val"] = value
setattr(self.gm, name, value)
self.buffer_to_node[name] = node
def _generate_buffer(self, node: ir.IRNode) -> Optional[torch.fx.Node]:
"""
Generates FX IR for transformations on a buffer, such as ReinterpretView.
Does nothing if no such transformations are present.
"""
def generate_to_buffer(node: ir.IRNode) -> Optional[BufferLike]:
if isinstance(node, (ir.Buffer, WorkspaceArg)):
return node
elif isinstance(node, ir.NoneAsConstantBuffer):
return None
elif isinstance(node, ir.MutableBox):
return generate_to_buffer(node.data)
elif isinstance(node, ir.ReinterpretView):
# We need to introduce a new symbol if the output is a ReinterpretView.
# Use a WorkspaceArg for this.
buffer = self._get_buffer(node.data)
assert isinstance(buffer, (ir.Buffer, WorkspaceArg))
unique_name = self.gm.graph._graph_namespace.create_name(
f"{buffer.get_name()}_view", None
)
device = buffer.get_device()
assert device
reused_as = WorkspaceArg(
count=buffer.get_size(),
zero_mode=WorkspaceZeroMode.UNINITIALIZED,
device=device,
outer_name=unique_name,
dtype=buffer.get_dtype(),
)
# Generate FX IR for the view.
self._generate_reinterpret_helper(buffer, reused_as, node.layout)
return reused_as
else:
raise NotImplementedError(f"Unrecognized buffer/view node: {node}")
buffer = generate_to_buffer(node)
return self.buffer_to_node[buffer.get_name()] if buffer is not None else None
def _generate_output(self) -> None:
"""
Generate FX IR for graph outputs.
"""
output_nodes = [
self._generate_buffer(node) for idx, node in enumerate(self.graph_outputs)
]
# Parent graphs with single return elements don't use a tuple.
output_value = (
output_nodes[0]
if len(output_nodes) == 1 and not self.is_subgraph
else output_nodes
)
self.gm.graph.output(output_value)
def _generate_subgm_getattrs(self) -> None:
"""
Generate getattr nodes for subgms.
"""
def generate_getattr(name: str, subgm: torch.fx.GraphModule) -> torch.fx.Node:
self.gm.add_submodule(name, subgm)
node = self.gm.graph.get_attr(name)
node.meta["val"] = subgm
return node
self.subgm_getattrs = {
name: generate_getattr(name, subgm) for name, subgm in self.subgms.items()
}
def _get_subgm_attr(self, subgraph: ir.Subgraph) -> torch.fx.Node:
"""
Look up the getattr node for a subgraph.
"""
graph = subgraph.graph
assert graph is not None
return self.subgm_getattrs[graph.name]
def generate(self) -> torch.fx.GraphModule:
"""
Main entrypoint for FX codegen.
"""
self._generate_graph_inputs()
self._generate_graph_constants()
self._generate_subgm_getattrs()
fake_mode = _detect_fake_mode_from_gm(self.gm)
with _set_node_metadata_hook(
self.gm,
functools.partial(_node_metadata_hook, fake_mode=fake_mode),
):
self._generate_graph_input_shapes()
# Generate FX IR from Wrapper IR lines.
for line in self.lines:
if isinstance(line, WrapperLine):
line.codegen_fx(self)(line)
elif isinstance(line, LineContext):
# Ignore line context in FX IR.
pass
else:
raise NotImplementedError(
textwrap.dedent(
f"""
Found line of unrecognized type '{type(line)}':
'{line}'
FX conversion only supports Wrapper IR lines.
"""
)
)
self._generate_output()
self.gm.recompile()
return self.gm
def _sympy_interp(self, expr: sympy.Expr) -> torch.fx.Proxy:
# hash cons
if expr in self.expr_to_proxy:
return self.expr_to_proxy[expr]
# base cases, don't cache
if isinstance(
expr,
(
sympy.Integer,
sympy.Number,
sympy.Symbol,
sympy.logic.boolalg.BooleanAtom,
),
):
return sympy_interp(
OptimizedPythonReferenceAnalysis, self.expr_to_proxy, expr
)
# hash cons on arguments, run expr handler
self.expr_to_proxy[expr] = _run_sympy_handler(
OptimizedPythonReferenceAnalysis,
[self._sympy_interp(arg) for arg in expr.args],
expr,
)
return self.expr_to_proxy[expr]
def _generate_sym_node(
self, s: Union[int, sympy.Expr]
) -> Union[int, torch.fx.Node]:
if isinstance(s, (int, sympy.Integer)):
return int(s)
elif isinstance(s, sympy.Symbol):
assert s in self.expr_to_proxy, (
f"Could not find a node corresponding to the symbol {s}"
)
return self.expr_to_proxy[s].node
elif isinstance(s, sympy.Expr):
return self._sympy_interp(s).node
elif isinstance(s, torch.fx.Node):
return s
else:
raise ValueError(f"{s} of type {type(s)} is not a valid input")
def _generate_sym_nodes(
self, shape: Sequence[sympy.Expr]
) -> list[Union[int, torch.fx.Node]]:
return [self._generate_sym_node(s) for s in shape]
def _generate_allocate(self, line: WrapperLine) -> None:
assert isinstance(line, AllocateLine)
buffer = line.node
name = buffer.get_name()
assert name not in V.graph.removed_buffers
device = buffer.get_device()
dtype = buffer.get_dtype()
shape = self._generate_sym_nodes(buffer.get_size())
stride = self._generate_sym_nodes(buffer.get_stride())
node = self.gm.graph.call_function(
torch.empty_strided,
args=(shape, stride),
kwargs={"dtype": dtype, "device": device},
)
assert name
node.name = name
self._record_allocation(buffer, node)
def _generate_conditional(self, line: WrapperLine) -> None:
assert isinstance(line, ConditionalLine)
def get_subgm_attr(subgraph: Optional[ir.Subgraph]) -> torch.fx.Node:
assert subgraph is not None
return self._get_subgm_attr(subgraph)
# Access the subgraphs as getattrs.
ir_node = line.node
(true_subgm, false_subgm) = [
get_subgm_attr(subgraph)
for subgraph in (ir_node.true_subgraph, ir_node.false_subgraph)
]
def generate_buffer(node: Optional[ir.IRNode]) -> Optional[torch.fx.Node]:
assert node is not None
return self._generate_buffer(node)
predicate = generate_buffer(ir_node.predicate)
assert ir_node.operands is not None
operands = tuple(generate_buffer(arg) for arg in ir_node.operands)
fx_node = self.gm.graph.call_function(
torch.ops.higher_order.cond,
args=(predicate, true_subgm, false_subgm, operands),
)
self._record_allocation(ir_node, fx_node)
def _generate_comment(self, line: WrapperLine) -> None:
assert isinstance(line, CommentLine)
# We ignore comments in FX IR.
def _generate_enter_device_context_manager(self, line: WrapperLine) -> None:
assert isinstance(line, EnterDeviceContextManagerLine)
# We ignore the device context in FX IR.
def _generate_exit_device_context_manager(self, line: WrapperLine) -> None:
assert isinstance(line, ExitDeviceContextManagerLine)
# We ignore the device context in FX IR.
def _generate_enter_subgraph(self, line: WrapperLine) -> None:
assert isinstance(line, EnterSubgraphLine)
# We ignore memory planning lines in FX IR.
def _generate_exit_subgraph(self, line: WrapperLine) -> None:
assert isinstance(line, ExitSubgraphLine)
# We ignore memory planning lines in FX IR.
def _generate_free(self, line: WrapperLine) -> None:
assert isinstance(line, FreeLine)
buf = line.node
# No need to free placeholders.
if self.buffer_to_node[buf.get_name()].op == "placeholder":
return
self._free(buf)
def _generate_free_if_not_reused(self, line: WrapperLine) -> None:
assert isinstance(line, FreeIfNotReusedLine)
buf = line.node
assert buf.get_name() not in V.graph.removed_buffers
if not line.is_reused:
self._free(buf)
def _generate_line_context(self, line: WrapperLine) -> None:
assert isinstance(line, LineContext)
# We ignore line context in FX IR.
def _generate_reinterpret(self, line: WrapperLine) -> None:
assert isinstance(line, ReinterpretLine)
self._generate_reinterpret_helper(line.node, line.reused_as, line.layout)
def _generate_reinterpret_helper(
self, input_buffer: BufferLike, result_buffer: BufferLike, layout: ir.Layout
) -> None:
input_node = self.buffer_to_node[input_buffer.get_name()]
# Look up output metadata.
name = result_buffer.get_name()
assert name
size = tuple(layout.size)
stride = tuple(layout.stride)
if isinstance(layout, ir.NonOwningLayout):
# Look up the view's layout.
view = layout.view
assert isinstance(view, ir.ReinterpretView), (
f"unexpected type: {type(view)}"
)
layout = view.layout
offset = input_buffer.get_offset() + layout.offset
# Map ReinterpretView to as_strided.
result_node = self._create_as_strided(input_node, size, stride, offset)
result_node.name = name
self._record_allocation(result_buffer, result_node)
def _generate_reuse(self, line: WrapperLine) -> None:
assert isinstance(line, ReuseLine)
old = line.node
new = line.reused_as
assert not any(buf.get_name() in V.graph.removed_buffers for buf in (old, new))
assert old.get_dtype() == new.get_dtype()
old_node = self.buffer_to_node[old.get_name()]
result_node = old_node
# Change shape and stride.
size = tuple(new.get_size())
stride = tuple(new.get_stride())
offset = new.get_offset()
if (
tuple(old.get_size()) != size
or tuple(old.get_stride()) != stride
or old.get_offset() != offset
):
result_node = self._create_as_strided(old_node, size, stride, offset)
self._record_allocation(new, result_node)
# Free the old buffer, if we allocated a new tensor.
if (
old.get_name() not in V.graph.get_output_names()
and line.delete_old
and result_node is not old_node
):
self._free(old)
def _generate_multi_output(self, line: WrapperLine) -> None:
assert isinstance(line, MultiOutputLine)
arg_node = self.buffer_to_node[line.arg_name]
# For non-tuple / non-list outputs, map the
# output to the same node as the input.
if len(line.indices) == 0:
self.buffer_to_node[line.result_name] = arg_node
return
# Extract the index for tuple access.
inds = line.indices[0][1:]
assert len(inds) == 1, f"Cannot convert {inds} to an index."
idx = inds[0]
node = self.gm.graph.call_function(operator.getitem, args=(arg_node, idx))
node.name = line.result_name
self.buffer_to_node[line.result_name] = node
def _generate_fallback_call(
self,
ir_node: ir.ExternKernel,
args: Optional[tuple[Any, ...]] = None,
kwargs: Optional[dict[str, Any]] = None,
) -> None:
fx_node = self.gm.graph.call_function(
ir_node.op_overload, # type: ignore[arg-type]
args=args,
kwargs=kwargs,
)
result_buffer = ir_node.codegen_reference()
self.buffer_to_node[result_buffer] = fx_node
def _generate_index_put_fallback(self, line: WrapperLine) -> None:
assert isinstance(line, IndexPutFallbackLine)
ir_node = line.node
def generate_buffer_or_none(
x: Union[ir.IRNode, Sequence[ir.IRNode], None],
) -> Optional[torch.fx.Node]:
"""
Handles None before calling _generate_buffer.
"""
if x is None:
return None
assert isinstance(x, ir.IRNode)
return self._generate_buffer(x)
(x, values) = [generate_buffer_or_none(t) for t in ir_node.inputs[:2]]
indices = tuple(generate_buffer_or_none(t) for t in line.indices)
accumulate = ir_node.constant_args[0]
args = (x, indices, values, accumulate)
self._generate_fallback_call(ir_node, args)
def _generate_scatter_fallback(self, line: WrapperLine) -> None:
assert isinstance(line, ScatterFallbackLine)
ir_node = line.node
assert ir.is_node_sequence(ir_node.inputs)
(x, index, src) = [self._generate_buffer(t) for t in ir_node.inputs] + (
[] if ir_node.src_is_tensor else [ir_node.constant_args[1]]
)
args = (x, ir_node.constant_args[0], index, src)
kwargs = {}
if reduce := ir_node.kwargs.get("reduce"):
kwargs["reduce"] = reduce
self._generate_fallback_call(ir_node, args, kwargs)
def _generate_null(self, line: WrapperLine) -> None:
assert isinstance(line, NullLine)
# Does nothing.
def _generate_comm_buffer_allocate(self, line: WrapperLine) -> None:
assert isinstance(line, CommBufferAllocateLine)
raise NotImplementedError("Comm buffer allocation is not yet supported")
def _generate_comm_buffer_free(self, line: WrapperLine) -> None:
assert isinstance(line, CommBufferFreeLine)
self._free(line.node)
def _generate_triton_call(self, line: WrapperLine) -> None:
assert isinstance(line, KernelCallLine)
# Collect all kwargs, including autotuned block sizes.
call_args = self._lookup_args(line.call_args)
kernel = self.kernels[line.kernel_name]
tuner = kernel.tuner
# Use python_slow mode instead of python mode to avoid
# the round to neginf behaviour, which is not the convention
# in other languages.
tuner.grid_mode = "python_slow"
# Optionally autotune the kernels.
# The FX backend currently only supports compile-time tuning.
kernel_name = tuner.fn.__name__
if config.triton.autotune_at_compile_time:
from triton.runtime import driver
log.info("Autotuning Triton kernel %s at compile time.", kernel_name)
device = driver.active.get_current_device()
stream = driver.active.get_current_stream(device)
def node_to_tuning_arg(arg: Any) -> Any:
"""
Create real tensors for autotuning arguments, substituting size hints
for dynamic shapes.
"""
to_size_hint = functools.partial(
pytree.tree_map, V.graph.sizevars.size_hint
)
if not isinstance(arg, torch.fx.Node):
return to_size_hint(arg)
fake = arg.meta["val"]
return torch.empty_strided(
to_size_hint(fake.shape),
to_size_hint(fake.stride()),
device=device,
).zero_()
arg_values = [node_to_tuning_arg(arg) for arg in call_args]
tuner.run(*arg_values, stream=stream)
else:
log.info(
"Skipping autotuning for kernel %s. Set config.triton.autotune_at_compile_time = True to enable.",
kernel_name,
)
triton_meta = tuner.triton_meta
signature = triton_meta["signature"]
def add_constants_to_call_args(
call_args: Sequence[Any], cfg: Config
) -> tuple[Any, ...]:
"""
Add constant kwargs to the arg list.
"""
# Add args from the proper Triton signature.
new_call_args = []
call_arg_idx = 0
constants = triton_meta["constants"]
for arg_name in signature:
# Config kwargs are tracked separately.
if arg_name in cfg.kwargs:
continue
try:
new_arg = constants[arg_name]
except KeyError:
new_arg = call_args[call_arg_idx]
call_arg_idx += 1
new_call_args.append(new_arg)
# Add Inductor's extra call args to the end.
new_call_args.extend(call_args[call_arg_idx:])
return tuple(new_call_args)
kernel_config = tuner.compile_results[0].config
call_args = add_constants_to_call_args(call_args, kernel_config)
call_args, grid = tuner._interpret_args_grid(call_args, kernel_config)
call_kwargs = dict(zip(signature, call_args))
call_kwargs.update(kernel_config.kwargs)
# Replace all sympy.floor with FloorDiv
# _generate_sym_node does not support sympy.floor
grid = [replace_floor_div(x) if isinstance(x, sympy.Expr) else x for x in grid]
wrapper_grid = [tuple(self._generate_sym_nodes(grid))]
call_kwargs = {
name: self._generate_sym_node(val) for name, val in call_kwargs.items()
}
# Store non-graphable kwargs in the side table.
(
call_kwargs,
constant_args_idx,
) = tracing_triton_hopifier_singleton.store_non_graphable_args(call_kwargs)
self.gm.graph.call_function(
triton_kernel_wrapper_mutation,
kwargs={
"kernel_idx": kernel.wrapped.kernel_idx,
"constant_args_idx": constant_args_idx,
"grid": wrapper_grid,
"tma_descriptor_metadata": {},
"kwargs": call_kwargs,
},
)
def _generate_extern_kernel_alloc(self, line: WrapperLine) -> None:
assert isinstance(line, ExternKernelAllocLine)
node = line.node
self._generate_extern_kernel_common(node, node)
def _generate_extern_kernel_out(
self,
line: WrapperLine,
) -> None:
assert isinstance(line, ExternKernelOutLine)
node = line.node
out_node = node.output_view if node.output_view else node
self._generate_extern_kernel_common(node, out_node)
def _generate_extern_kernel_common(
self, kernel: ir.ExternKernel, out_ir_node: ir.IRNode
) -> None:
"""
Generates FX IR from either ExternKernelAlloc or ExternKernelOut.
"""
# Get FX nodes corresponding to the call args.
assert ir.is_node_sequence(kernel.inputs)
tensor_nodes = tuple(self._generate_buffer(arg) for arg in kernel.inputs)
args = tensor_nodes + tuple(kernel.constant_args)
# Get the result buffer.
# Some kernels write to a pre-existing output tensor via the "out" kwarg.
kwargs = kernel.kwargs.copy()
result_buffer: Optional[str] = None
if isinstance(kernel, ir.ExternKernelOut):
kwargs["out"] = self.buffer_to_node[out_ir_node.codegen_reference()]
elif isinstance(kernel.layout, (ir.Layout, ir.MultiOutputLayout)):
result_buffer = kernel.get_name()
elif isinstance(kernel.layout, ir.NoneLayout):
pass
else:
raise NotImplementedError(f"Unrecognized output layout: {kernel.layout}")
fx_node = self.gm.graph.call_function(
kernel.op_overload, # type: ignore[arg-type]
args=args,
kwargs=kwargs,
)
# Assign the result to the given name.
if result_buffer:
assert "out" not in kwargs, (
f"Extern kernel '{kernel}' has both result and out kwarg. Expected only one."
)
fx_node.name = result_buffer
self.buffer_to_node[result_buffer] = fx_node
def _generate_kernel_call(self, line: WrapperLine) -> None:
assert isinstance(line, KernelCallLine)
if not line.triton:
raise NotImplementedError("FX conversion only supports Triton kernels.")
self._generate_triton_call(line)
def _generate_kernel_definition(self, line: WrapperLine) -> None:
assert isinstance(line, KernelDefinitionLine)
# Generate code for the kernel.
kernel_code = PythonWrapperCodegen._format_kernel_definition(
line.kernel_name, line.kernel_body, metadata=line.metadata
)
# Import the module and store the JIT kernel.
tuner = self._import_kernel(kernel_code, line.kernel_name)
wrapped = wrap_triton(tuner.fn)
self.kernels[line.kernel_name] = TritonKernel(tuner, wrapped)
def _generate_symbolic_call_arg(self, line: WrapperLine) -> None:
assert isinstance(line, SymbolicCallArgLine)
# Store the arg: expr mapping for later use.
arg = line.arg
inner_expr_proxy = self._sympy_interp(arg.inner_expr)
self.expr_to_proxy[arg.inner] = inner_expr_proxy