mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
This reverts commit 24e9bbe22af296048f8242c6112d13cff726c588. Reverted https://github.com/pytorch/pytorch/pull/108827 on behalf of https://github.com/huydhn due to I need to land this revert properly as there are new failures showing up on trunk ([comment](https://github.com/pytorch/pytorch/pull/108827#issuecomment-1711020924))
498 lines
14 KiB
Python
Executable File
498 lines
14 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
import gc
|
|
import importlib
|
|
import logging
|
|
import os
|
|
import re
|
|
import sys
|
|
import warnings
|
|
from os.path import abspath, exists
|
|
|
|
import torch
|
|
|
|
try:
|
|
from .common import BenchmarkRunner, main
|
|
except ImportError:
|
|
from common import BenchmarkRunner, main
|
|
|
|
from torch._dynamo.testing import collect_results, reduce_to_scalar_loss
|
|
from torch._dynamo.utils import clone_inputs
|
|
|
|
# We are primarily interested in tf32 datatype
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
|
|
|
def setup_torchbench_cwd():
|
|
original_dir = abspath(os.getcwd())
|
|
|
|
os.environ["KALDI_ROOT"] = "/tmp" # avoids some spam
|
|
for torchbench_dir in (
|
|
"./torchbenchmark",
|
|
"../torchbenchmark",
|
|
"../torchbench",
|
|
"../benchmark",
|
|
"../../torchbenchmark",
|
|
"../../torchbench",
|
|
"../../benchmark",
|
|
):
|
|
if exists(torchbench_dir):
|
|
break
|
|
|
|
if exists(torchbench_dir):
|
|
torchbench_dir = abspath(torchbench_dir)
|
|
os.chdir(torchbench_dir)
|
|
sys.path.append(torchbench_dir)
|
|
|
|
return original_dir
|
|
|
|
|
|
# Some models have large dataset that doesn't fit in memory. Lower the batch
|
|
# size to test the accuracy.
|
|
USE_SMALL_BATCH_SIZE = {
|
|
"demucs": 4,
|
|
"dlrm": 1024,
|
|
"densenet121": 4,
|
|
"hf_Reformer": 4,
|
|
"hf_T5_base": 4,
|
|
"timm_efficientdet": 1,
|
|
"llama_v2_7b_16h": 1,
|
|
}
|
|
|
|
DETECTRON2_MODELS = {
|
|
"detectron2_fasterrcnn_r_101_c4",
|
|
"detectron2_fasterrcnn_r_101_dc5",
|
|
"detectron2_fasterrcnn_r_101_fpn",
|
|
"detectron2_fasterrcnn_r_50_c4",
|
|
"detectron2_fasterrcnn_r_50_dc5",
|
|
"detectron2_fasterrcnn_r_50_fpn",
|
|
"detectron2_maskrcnn_r_101_c4",
|
|
"detectron2_maskrcnn_r_101_fpn",
|
|
"detectron2_maskrcnn_r_50_fpn",
|
|
}
|
|
|
|
SKIP = {
|
|
# https://github.com/pytorch/torchdynamo/issues/101
|
|
"detectron2_maskrcnn",
|
|
# https://github.com/pytorch/torchdynamo/issues/145
|
|
"fambench_xlmr",
|
|
# TIMEOUT, https://github.com/pytorch/pytorch/issues/98467
|
|
"tacotron2",
|
|
"hf_Bert", # Error: RelaxedUnspecConstraint(L['input_ids'].size()[0]) - inferred constant (4)
|
|
"hf_Bert_large", # Error: RelaxedUnspecConstraint(L['input_ids'].size()[0]) - inferred constant (4)
|
|
# takes too long, extreme slowdown (< .001)
|
|
"maml",
|
|
# Failing in eager mode
|
|
"clip",
|
|
}
|
|
|
|
SKIP_FOR_CPU = {
|
|
"hf_T5_generate", # OOMs
|
|
"cm3leon_generate", # model is CUDA only
|
|
"nanogpt_generate", # timeout
|
|
"sam", # timeout
|
|
"llama_v2_7b_16h", # model is CUDA only
|
|
"stable_diffusion", # flaky
|
|
"torchrec_dlrm", # requires FBGEMM, CUDA only
|
|
}
|
|
|
|
SKIP_FOR_CUDA = {
|
|
"gat", # only works on CPU
|
|
"gcn", # only works on CPU
|
|
"sage", # only works on CPU
|
|
}
|
|
|
|
# Additional models that are skipped in training
|
|
SKIP_TRAIN = {
|
|
# not designed for training
|
|
"pyhpc_equation_of_state",
|
|
"pyhpc_isoneutral_mixing",
|
|
"pyhpc_turbulent_kinetic_energy",
|
|
"maml",
|
|
"llama",
|
|
"llama_v2_7b_16h",
|
|
}
|
|
SKIP_TRAIN.update(DETECTRON2_MODELS)
|
|
|
|
# These models support only train mode. So accuracy checking can't be done in
|
|
# eval mode.
|
|
ONLY_TRAINING_MODE = {
|
|
"tts_angular",
|
|
"tacotron2",
|
|
"demucs",
|
|
"hf_Reformer",
|
|
"pytorch_struct",
|
|
"yolov3",
|
|
}
|
|
ONLY_TRAINING_MODE.update(DETECTRON2_MODELS)
|
|
|
|
# Need lower tolerance on GPU. GPU kernels have non deterministic kernels for these models.
|
|
REQUIRE_HIGHER_TOLERANCE = {
|
|
"alexnet",
|
|
"attention_is_all_you_need_pytorch",
|
|
"densenet121",
|
|
"hf_Albert",
|
|
"vgg16",
|
|
"mobilenet_v3_large",
|
|
"nvidia_deeprecommender",
|
|
"timm_efficientdet",
|
|
}
|
|
|
|
# These models need >1e-3 tolerance
|
|
REQUIRE_EVEN_HIGHER_TOLERANCE = {
|
|
"soft_actor_critic",
|
|
"tacotron2",
|
|
}
|
|
|
|
REQUIRE_HIGHER_FP16_TOLERANCE = {
|
|
"doctr_reco_predictor",
|
|
"drq",
|
|
}
|
|
|
|
|
|
REQUIRE_HIGHER_BF16_TOLERANCE = {
|
|
"doctr_reco_predictor",
|
|
"drq",
|
|
}
|
|
|
|
REQUIRE_COSINE_TOLERACE = {
|
|
# Just keeping it here even though its empty, if we need this in future.
|
|
}
|
|
|
|
# non-deterministic output / cant check correctness
|
|
NONDETERMINISTIC = {
|
|
# https://github.com/pytorch/pytorch/issues/98355
|
|
"mobilenet_v3_large",
|
|
}
|
|
|
|
# These benchmarks took >600s on an i9-11900K CPU
|
|
VERY_SLOW_BENCHMARKS = {
|
|
"hf_BigBird", # 3339s
|
|
"hf_Longformer", # 3062s
|
|
"hf_T5", # 930s
|
|
}
|
|
|
|
# These benchmarks took >60s on an i9-11900K CPU
|
|
SLOW_BENCHMARKS = {
|
|
*VERY_SLOW_BENCHMARKS,
|
|
"BERT_pytorch", # 137s
|
|
"demucs", # 116s
|
|
"fastNLP_Bert", # 242s
|
|
"hf_Albert", # 221s
|
|
"hf_Bart", # 400s
|
|
"hf_Bert", # 334s
|
|
"hf_DistilBert", # 187s
|
|
"hf_GPT2", # 470s
|
|
"hf_Reformer", # 141s
|
|
"speech_transformer", # 317s
|
|
"vision_maskrcnn", # 99s
|
|
}
|
|
|
|
TRT_NOT_YET_WORKING = {
|
|
"alexnet",
|
|
"resnet18",
|
|
"resnet50",
|
|
"mobilenet_v2",
|
|
"mnasnet1_0",
|
|
"squeezenet1_1",
|
|
"shufflenetv2_x1_0",
|
|
"vgg16",
|
|
"resnext50_32x4d",
|
|
}
|
|
|
|
DONT_CHANGE_BATCH_SIZE = {
|
|
"demucs",
|
|
"pytorch_struct",
|
|
"pyhpc_turbulent_kinetic_energy",
|
|
"vision_maskrcnn", # https://github.com/pytorch/benchmark/pull/1656
|
|
}
|
|
|
|
|
|
SKIP_ACCURACY_CHECK_MODELS = {
|
|
# Models too large to have eager, dynamo and fp64_numbers simultaneosuly
|
|
# even for 40 GB machine. We have tested accuracy for smaller version of
|
|
# these models
|
|
"hf_GPT2_large",
|
|
"hf_T5_large",
|
|
"timm_vision_transformer_large",
|
|
"maml", # accuracy https://github.com/pytorch/pytorch/issues/93847
|
|
"llama_v2_7b_16h",
|
|
"Background_Matting",
|
|
}
|
|
|
|
SKIP_ACCURACY_CHECK_AS_EAGER_NON_DETERMINISTIC_MODELS = {
|
|
# Models that deterministic algorithms can not be turned on for eager mode.
|
|
"Background_Matting",
|
|
}
|
|
|
|
|
|
MAX_BATCH_SIZE_FOR_ACCURACY_CHECK = {
|
|
"hf_GPT2": 2,
|
|
"pytorch_unet": 2,
|
|
}
|
|
|
|
FORCE_AMP_FOR_FP16_BF16_MODELS = {
|
|
"DALLE2_pytorch",
|
|
"doctr_det_predictor",
|
|
"doctr_reco_predictor",
|
|
"Super_SloMo",
|
|
"tts_angular",
|
|
"pyhpc_turbulent_kinetic_energy",
|
|
"detectron2_fcos_r_50_fpn",
|
|
}
|
|
|
|
# models in canary_models that we should run anyway
|
|
CANARY_MODELS = {
|
|
"torchrec_dlrm",
|
|
}
|
|
|
|
|
|
class TorchBenchmarkRunner(BenchmarkRunner):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.suite_name = "torchbench"
|
|
self.optimizer = None
|
|
|
|
@property
|
|
def skip_models(self):
|
|
return SKIP
|
|
|
|
@property
|
|
def skip_models_for_cpu(self):
|
|
return SKIP_FOR_CPU
|
|
|
|
@property
|
|
def skip_models_for_cuda(self):
|
|
return SKIP_FOR_CUDA
|
|
|
|
@property
|
|
def slow_models(self):
|
|
return SLOW_BENCHMARKS
|
|
|
|
@property
|
|
def very_slow_models(self):
|
|
return VERY_SLOW_BENCHMARKS
|
|
|
|
@property
|
|
def non_deterministic_models(self):
|
|
return NONDETERMINISTIC
|
|
|
|
@property
|
|
def skip_not_suitable_for_training_models(self):
|
|
return SKIP_TRAIN
|
|
|
|
@property
|
|
def failing_fx2trt_models(self):
|
|
return TRT_NOT_YET_WORKING
|
|
|
|
@property
|
|
def force_amp_for_fp16_bf16_models(self):
|
|
return FORCE_AMP_FOR_FP16_BF16_MODELS
|
|
|
|
@property
|
|
def skip_accuracy_checks_large_models_dashboard(self):
|
|
if self.args.dashboard or self.args.accuracy:
|
|
return SKIP_ACCURACY_CHECK_MODELS
|
|
return set()
|
|
|
|
@property
|
|
def skip_accuracy_check_as_eager_non_deterministic(self):
|
|
if self.args.accuracy and self.args.training:
|
|
return SKIP_ACCURACY_CHECK_AS_EAGER_NON_DETERMINISTIC_MODELS
|
|
return set()
|
|
|
|
def load_model(
|
|
self,
|
|
device,
|
|
model_name,
|
|
batch_size=None,
|
|
part=None,
|
|
):
|
|
if self.args.enable_activation_checkpointing:
|
|
raise NotImplementedError(
|
|
"Activation checkpointing not implemented for Torchbench models"
|
|
)
|
|
is_training = self.args.training
|
|
use_eval_mode = self.args.use_eval_mode
|
|
dynamic_shapes = self.args.dynamic_shapes
|
|
candidates = [
|
|
f"torchbenchmark.models.{model_name}",
|
|
f"torchbenchmark.canary_models.{model_name}",
|
|
f"torchbenchmark.models.fb.{model_name}",
|
|
]
|
|
for c in candidates:
|
|
try:
|
|
module = importlib.import_module(c)
|
|
break
|
|
except ModuleNotFoundError as e:
|
|
if e.name != c:
|
|
raise
|
|
else:
|
|
raise ImportError(f"could not import any of {candidates}")
|
|
benchmark_cls = getattr(module, "Model", None)
|
|
if not hasattr(benchmark_cls, "name"):
|
|
benchmark_cls.name = model_name
|
|
|
|
cant_change_batch_size = (
|
|
not getattr(benchmark_cls, "ALLOW_CUSTOMIZE_BSIZE", True)
|
|
or model_name in DONT_CHANGE_BATCH_SIZE
|
|
)
|
|
if cant_change_batch_size:
|
|
batch_size = None
|
|
if batch_size is None and is_training and model_name in USE_SMALL_BATCH_SIZE:
|
|
batch_size = USE_SMALL_BATCH_SIZE[model_name]
|
|
|
|
# Control the memory footprint for few models
|
|
if self.args.accuracy and model_name in MAX_BATCH_SIZE_FOR_ACCURACY_CHECK:
|
|
batch_size = min(batch_size, MAX_BATCH_SIZE_FOR_ACCURACY_CHECK[model_name])
|
|
|
|
# workaround "RuntimeError: not allowed to set torch.backends.cudnn flags"
|
|
torch.backends.__allow_nonbracketed_mutation_flag = True
|
|
extra_args = []
|
|
if part:
|
|
extra_args = ["--part", part]
|
|
|
|
if model_name == "vision_maskrcnn" and is_training:
|
|
# Output of vision_maskrcnn model is a list of bounding boxes,
|
|
# sorted on the basis of their scores. This makes accuracy
|
|
# comparison hard with torch.compile. torch.compile can cause minor
|
|
# divergences in the output because of how fusion works for amp in
|
|
# TorchInductor compared to eager. Therefore, instead of looking at
|
|
# all the bounding boxes, we compare only top 5.
|
|
model_kwargs = {"box_detections_per_img": 5}
|
|
benchmark = benchmark_cls(
|
|
test="train",
|
|
device=device,
|
|
batch_size=batch_size,
|
|
extra_args=extra_args,
|
|
model_kwargs=model_kwargs,
|
|
)
|
|
elif is_training:
|
|
benchmark = benchmark_cls(
|
|
test="train",
|
|
device=device,
|
|
batch_size=batch_size,
|
|
extra_args=extra_args,
|
|
)
|
|
else:
|
|
benchmark = benchmark_cls(
|
|
test="eval",
|
|
device=device,
|
|
batch_size=batch_size,
|
|
extra_args=extra_args,
|
|
)
|
|
model, example_inputs = benchmark.get_module()
|
|
|
|
# Models that must be in train mode while training
|
|
if is_training and (not use_eval_mode or model_name in ONLY_TRAINING_MODE):
|
|
model.train()
|
|
else:
|
|
model.eval()
|
|
gc.collect()
|
|
batch_size = benchmark.batch_size
|
|
|
|
# Torchbench has quite different setup for yolov3, so directly passing
|
|
# the right example_inputs
|
|
if model_name == "yolov3":
|
|
example_inputs = (torch.rand(batch_size, 3, 384, 512).to(device),)
|
|
# See https://github.com/pytorch/benchmark/issues/1561
|
|
if model_name == "maml_omniglot":
|
|
batch_size = 5
|
|
assert example_inputs[0].shape[0] == batch_size
|
|
if model_name == "vision_maskrcnn":
|
|
batch_size = 1
|
|
# global current_name, current_device
|
|
# current_device = device
|
|
# current_name = benchmark.name
|
|
|
|
if self.args.trace_on_xla:
|
|
# work around for: https://github.com/pytorch/xla/issues/4174
|
|
import torch_xla # noqa: F401
|
|
self.validate_model(model, example_inputs)
|
|
return device, benchmark.name, model, example_inputs, batch_size
|
|
|
|
def iter_model_names(self, args):
|
|
from torchbenchmark import _list_canary_model_paths, _list_model_paths
|
|
|
|
models = _list_model_paths()
|
|
models += [
|
|
f
|
|
for f in _list_canary_model_paths()
|
|
if os.path.basename(f) in CANARY_MODELS
|
|
]
|
|
models.sort()
|
|
|
|
start, end = self.get_benchmark_indices(len(models))
|
|
for index, model_path in enumerate(models):
|
|
if index < start or index >= end:
|
|
continue
|
|
|
|
model_name = os.path.basename(model_path)
|
|
if (
|
|
not re.search("|".join(args.filter), model_name, re.I)
|
|
or re.search("|".join(args.exclude), model_name, re.I)
|
|
or model_name in args.exclude_exact
|
|
or model_name in self.skip_models
|
|
):
|
|
continue
|
|
|
|
yield model_name
|
|
|
|
def pick_grad(self, name, is_training):
|
|
if is_training or name in ("maml",):
|
|
return torch.enable_grad()
|
|
else:
|
|
return torch.no_grad()
|
|
|
|
def get_tolerance_and_cosine_flag(self, is_training, current_device, name):
|
|
tolerance = 1e-4
|
|
cosine = self.args.cosine
|
|
# Increase the tolerance for torch allclose
|
|
if self.args.float16 or self.args.amp:
|
|
if name in REQUIRE_HIGHER_FP16_TOLERANCE:
|
|
return 1e-2, cosine
|
|
return 1e-3, cosine
|
|
|
|
if self.args.bfloat16:
|
|
if name in REQUIRE_HIGHER_BF16_TOLERANCE:
|
|
return 1e-2, cosine
|
|
|
|
if is_training and current_device == "cuda":
|
|
tolerance = 1e-3
|
|
if name in REQUIRE_COSINE_TOLERACE:
|
|
cosine = True
|
|
elif name in REQUIRE_HIGHER_TOLERANCE:
|
|
tolerance = 1e-3
|
|
elif name in REQUIRE_EVEN_HIGHER_TOLERANCE:
|
|
tolerance = 8 * 1e-2
|
|
return tolerance, cosine
|
|
|
|
def compute_loss(self, pred):
|
|
return reduce_to_scalar_loss(pred)
|
|
|
|
def forward_pass(self, mod, inputs, collect_outputs=True):
|
|
with self.autocast():
|
|
return mod(*inputs)
|
|
|
|
def forward_and_backward_pass(self, mod, inputs, collect_outputs=True):
|
|
cloned_inputs = clone_inputs(inputs)
|
|
self.optimizer_zero_grad(mod)
|
|
with self.autocast():
|
|
pred = mod(*cloned_inputs)
|
|
loss = self.compute_loss(pred)
|
|
self.grad_scaler.scale(loss).backward()
|
|
self.optimizer_step()
|
|
if collect_outputs:
|
|
return collect_results(mod, pred, loss, cloned_inputs)
|
|
return None
|
|
|
|
|
|
def torchbench_main():
|
|
original_dir = setup_torchbench_cwd()
|
|
logging.basicConfig(level=logging.WARNING)
|
|
warnings.filterwarnings("ignore")
|
|
main(TorchBenchmarkRunner(), original_dir)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
torchbench_main()
|