mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
This might cause some new DDEs on call sites that do not use is_contiguous_or_false() or sym_is_contiguous() but want to find those call sites to handle this properly by calling is_contiguous_or_false() and not is_contiguous() explitly when appropriate. I had to fix one issue after removing the implicit size oblivious reasoning. here is context we defined in this https://github.com/pytorch/pytorch/pull/157472 sym_is_contiguous to be the function computing contiguity for dynamic shapes in c++. It returns a symbolic expression that represents contiguity and guaranteed not to throw a DDE. when people call is_contiguous we do sym_is_contiguous().guard_bool() when people call is_contiguous_or_false we do sym_is_contiguous().guard_or_false() one issue not handled well was this path ``` c10::SymBool TensorImpl::sym_is_contiguous_custom( at::MemoryFormat memory_format) const { if (C10_UNLIKELY(matches_python_custom(SizesStridesPolicy::CustomStrides))) { return pyobj_slot_.load_pyobj_interpreter()->is_contiguous( this, memory_format); } return sym_is_contiguous_default(memory_format); } ``` namely if we call sym_is_contiguous_custom but we have matches_python_custom(SizesStridesPolicy::CustomStrides) return true , then we used to call is_contiguous(this, memory_format); This used to go through the load_pyobj_interpreter and end up calling the python is_contiguous call which used implicit size oblivious reasoning. once we removed that implicit size oblivious reasoning, the right thing we want is to call return pyobj_slot_.load_pyobj_interpreter()->sym_is_contiguous(this, memory_format); otherwise we would get DDE even if the caller is doing sym_is_contiguous. so I had to define it for pyinterpreter, and then I had to override it for nested tensors. Pull Request resolved: https://github.com/pytorch/pytorch/pull/159197 Approved by: https://github.com/ezyang