mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-23 06:34:55 +08:00
The strategy for supporting functools partials is relatively straightforward. There are 2 cases we need to support: **1) Functools partials as input** In this case, we are first seeing the functools partial and it is guaranteed to have a source. As such, the args, keywords, and func of the functools partial are passed through VariableBuilder. As this is the first time we are seeing these objects (as it is an input), we re-enter VariableBuilder with a source referencing the args, keywords, and func as attributes of the input to produce: - func: A callable VariableTracker (UDF, TorchVariable, etc) depending on the value of `func` - args: List[VariableTracker] - note, not ListVariableTracker! - keywords: Dict[str, VariableTracker] A major benefit of this structure is that it very elegantly matches the args to `call_function`. We then compose a FunctoolsPartialVariable from the VariableTrackers made above. **2) Functools partials created within compile** In this case, we already have all the args as known VTs, and thus just compose a FunctoolsPartialVariable as we do for case (1). For both (1) and (2) - we propagate all guards from the func, args, and keyword VTs to the FunctoolsPartialVariable Pull Request resolved: https://github.com/pytorch/pytorch/pull/108846 Approved by: https://github.com/ezyang, https://github.com/jansel
631 lines
22 KiB
Python
631 lines
22 KiB
Python
import functools
|
|
import inspect
|
|
import itertools
|
|
import types
|
|
from typing import Dict, List
|
|
|
|
import torch
|
|
|
|
from .. import variables
|
|
from ..bytecode_transformation import create_call_function, create_rot_n
|
|
from ..exc import unimplemented
|
|
from ..source import (
|
|
AttrSource,
|
|
ConstantSource,
|
|
DefaultsSource,
|
|
GetItemSource,
|
|
GlobalSource,
|
|
)
|
|
from ..utils import make_cell
|
|
from .base import typestr, VariableTracker
|
|
|
|
|
|
def wrap_bound_arg(tx, val, options, source=None):
|
|
# Source propagation is best effort since not every object we encounter has a source to begin with.
|
|
assert (
|
|
"source" not in options
|
|
), "Source needs to be separate from options due to recursive calls for lists/dicts"
|
|
if isinstance(val, VariableTracker):
|
|
return val
|
|
elif not source:
|
|
from torch._dynamo.variables.builder import SourcelessBuilder
|
|
|
|
return SourcelessBuilder()(tx, val).add_options(options)
|
|
else:
|
|
from torch._dynamo.variables.builder import VariableBuilder
|
|
|
|
return VariableBuilder(tx, source=source)(val).add_options(options)
|
|
|
|
|
|
def wrap_args_kwargs(tx, result, options):
|
|
for k, v in list(result.items()):
|
|
if isinstance(v, (tuple, dict)):
|
|
# args/kwargs
|
|
result[k] = wrap_bound_arg(tx, v, options)
|
|
|
|
|
|
def init_cellvars(parent, result, code):
|
|
closure_cells = dict()
|
|
side_effects = parent.output.side_effects
|
|
|
|
# for name in itertools.chain(code.co_cellvars, code.co_freevars):
|
|
for name in code.co_cellvars:
|
|
closure_cells[name] = side_effects.track_cell_new()
|
|
if name in result:
|
|
side_effects.store_cell(closure_cells[name], result.pop(name))
|
|
|
|
return closure_cells
|
|
|
|
|
|
def _create_nested_fn(
|
|
code, f_globals, name, defaults, closure, kwdefaults, annotations
|
|
):
|
|
from types import FunctionType
|
|
|
|
func = FunctionType(code, f_globals, name, defaults, closure)
|
|
func.__kwdefaults__ = kwdefaults
|
|
|
|
if isinstance(annotations, tuple):
|
|
from itertools import pairwise
|
|
|
|
annotations = dict(pairwise(annotations))
|
|
|
|
# TypeError: __annotations__ must be set to a dict object
|
|
assert annotations is None or isinstance(annotations, dict)
|
|
func.__annotations__ = annotations
|
|
|
|
return func
|
|
|
|
|
|
class BaseUserFunctionVariable(VariableTracker):
|
|
def get_filename(self):
|
|
return self.get_code().co_filename
|
|
|
|
def get_name(self):
|
|
return self.get_code().co_name
|
|
|
|
def call_function(
|
|
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
|
|
) -> "VariableTracker":
|
|
return tx.inline_user_function_return(
|
|
self, list(self.self_args()) + list(args), kwargs
|
|
)
|
|
|
|
def num_parameters(self):
|
|
return len(inspect.signature(self.get_function()).parameters)
|
|
|
|
def closure_vars(self, tx):
|
|
return {}
|
|
|
|
|
|
class UserFunctionVariable(BaseUserFunctionVariable):
|
|
"""Some unsupported user-defined global function"""
|
|
|
|
def __init__(self, fn, is_constant=False, **kwargs):
|
|
super().__init__(**kwargs)
|
|
if getattr(fn, "_dynamo_marked_constant", False):
|
|
# This method should be treated as a constant for the purposes of compilation
|
|
self.is_constant = True
|
|
else:
|
|
self.is_constant = False
|
|
|
|
assert isinstance(
|
|
fn, (types.FunctionType, torch.jit.ScriptFunction)
|
|
), f"expected FunctionType found {typestr(fn)} {fn}"
|
|
# unpack @torch._dynamo.optimize()(fn) wrapped function
|
|
fn = inspect.getattr_static(fn, "_torchdynamo_inline", fn)
|
|
# unpack torch.jit.script_if_tracing
|
|
if inspect.getattr_static(fn, "__script_if_tracing_wrapper", False):
|
|
fn = inspect.getattr_static(fn, "__original_fn", fn)
|
|
self.fn: types.FunctionType = fn
|
|
|
|
def self_args(self):
|
|
return []
|
|
|
|
def get_function(self):
|
|
return self.fn
|
|
|
|
def get_code(self):
|
|
return self.fn.__code__
|
|
|
|
def python_type(self):
|
|
return types.FunctionType
|
|
|
|
def has_self(self):
|
|
return getattr(self.fn, "__self__", None) is not None
|
|
|
|
def get_globals(self):
|
|
return self.fn.__globals__
|
|
|
|
def bind_args(self, parent, args, kwargs):
|
|
assert not self.is_constant
|
|
options = VariableTracker.propagate([self])
|
|
tx = parent.output.root_tx
|
|
wrap = functools.partial(wrap_bound_arg, tx=tx, options=options)
|
|
|
|
fn: types.FunctionType = self.fn
|
|
defaults = fn.__defaults__ or []
|
|
defaults_sources = [
|
|
None if self.source is None else DefaultsSource(self.source, idx)
|
|
for idx, _ in enumerate(defaults)
|
|
]
|
|
fake_func = types.FunctionType(
|
|
fn.__code__,
|
|
fn.__globals__,
|
|
fn.__name__,
|
|
tuple(
|
|
[
|
|
wrap(val=arg, source=source)
|
|
for arg, source in zip(defaults, defaults_sources)
|
|
]
|
|
),
|
|
fn.__closure__,
|
|
)
|
|
if fn.__kwdefaults__:
|
|
kwdefaults_sources = {
|
|
k: None
|
|
if self.source is None
|
|
else DefaultsSource(self.source, k, is_kw=True)
|
|
for k in fn.__kwdefaults__
|
|
}
|
|
fake_func.__kwdefaults__ = {
|
|
k: wrap(val=v, source=kwdefaults_sources[k])
|
|
for k, v in fn.__kwdefaults__.items()
|
|
}
|
|
|
|
bound = inspect.signature(fake_func).bind(*args, **kwargs)
|
|
bound.apply_defaults()
|
|
result = dict(bound.arguments.items())
|
|
|
|
wrap_args_kwargs(tx, result, options)
|
|
closure_cells = init_cellvars(parent, result, fn.__code__)
|
|
closure = self.fn.__closure__ or ()
|
|
assert len(closure) == len(self.fn.__code__.co_freevars)
|
|
for idx, name, cell in zip(
|
|
itertools.count(), self.fn.__code__.co_freevars, closure
|
|
):
|
|
if name == "__class__":
|
|
source = AttrSource(self.source, "__class__") if self.source else None
|
|
result[name] = variables.UserDefinedClassVariable(
|
|
cell.cell_contents,
|
|
source=source,
|
|
)
|
|
else:
|
|
var = tx.match_nested_cell(name, cell)
|
|
if var is not None:
|
|
# optimization for cleaner codegen
|
|
result[name] = var
|
|
elif self.source:
|
|
from .builder import VariableBuilder
|
|
|
|
side_effects = parent.output.side_effects
|
|
if cell in side_effects:
|
|
out = side_effects[cell]
|
|
else:
|
|
closure_cell = GetItemSource(
|
|
AttrSource(self.source, "__closure__"), idx
|
|
)
|
|
closure_cell_contents = AttrSource(
|
|
closure_cell, "cell_contents"
|
|
)
|
|
contents_var = VariableBuilder(parent, closure_cell_contents)(
|
|
cell.cell_contents
|
|
)
|
|
|
|
if (
|
|
closure_cell_contents.name()
|
|
not in tx.mutated_closure_cell_contents
|
|
):
|
|
# Optimistically don't allocate the cell, to
|
|
# reduce the number of side effects. This is
|
|
# important for cond, as without it, any accesses
|
|
# to closures create side effects and cond doesn't
|
|
# support side effects. If we're wrong and this
|
|
# closure cell gets written to, we will restart
|
|
# the analysis with this cell's name in the
|
|
# mutated list here
|
|
result[name] = contents_var
|
|
continue
|
|
|
|
# cells are written to with "cell_contents",
|
|
# so the source should just be the closure_cell, not its contents
|
|
out = side_effects.track_cell_existing(closure_cell, cell)
|
|
side_effects.store_cell(
|
|
out,
|
|
contents_var,
|
|
)
|
|
|
|
result[name] = out
|
|
|
|
else:
|
|
from .builder import SourcelessBuilder
|
|
|
|
result[name] = SourcelessBuilder()(
|
|
tx, cell.cell_contents
|
|
).add_options(options)
|
|
|
|
return result, closure_cells
|
|
|
|
def export_freevars(self, parent, child):
|
|
pass
|
|
|
|
def call_function(
|
|
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
|
|
) -> "VariableTracker":
|
|
if self.is_constant:
|
|
options = VariableTracker.propagate(self, args, kwargs.values())
|
|
return invoke_and_store_as_constant(
|
|
tx, self.fn, self.get_name(), options, args, kwargs
|
|
)
|
|
|
|
return super().call_function(tx, args, kwargs)
|
|
|
|
|
|
class UserMethodVariable(UserFunctionVariable):
|
|
"""Some unsupported user-defined method"""
|
|
|
|
def __init__(self, fn, obj, **kwargs):
|
|
super().__init__(fn=fn, **kwargs)
|
|
self.obj = obj
|
|
|
|
def __str__(self):
|
|
return f"{self.__class__.__name__}({self.fn}, {self.obj})"
|
|
|
|
def self_args(self):
|
|
return [self.obj]
|
|
|
|
def python_type(self):
|
|
return types.MethodType
|
|
|
|
def call_function(
|
|
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
|
|
) -> "VariableTracker":
|
|
# For nn.Module methods, redirecting to NNModuleVariable.call_method for optimized solution
|
|
# rather than simple inlining. E.g, putting `call_method` op in FX graph for `forward` method
|
|
# since we ensure `forward` of allowed modules can be traced by AOT safely.
|
|
# Note this is not only for allowed modules, as user customized modules can extend from
|
|
# allowed modules but using parent's `forward` method, which is also covered by this branch.
|
|
|
|
# If we are tracing the higher order op, we want Dynamo to step inside
|
|
# the module call so that Dynamo can see the underlying parameters and
|
|
# buffers and raise them as inputs to the graph. The is_root_tracer
|
|
# check bypasses the if condition for non-root tracers and directly
|
|
# calls the super().call_function at the end, which is basically
|
|
# equivalent of inlining the method.
|
|
if tx.output.is_root_tracer() and isinstance(
|
|
self.obj, variables.NNModuleVariable
|
|
):
|
|
module_attr = getattr(self.fn, "__module__", "")
|
|
if (
|
|
module_attr is not None
|
|
and module_attr.startswith("torch.nn.")
|
|
or self.is_constant
|
|
):
|
|
return self.obj.call_method(
|
|
tx, self.fn.__name__, args, kwargs, constant=self.is_constant
|
|
).add_options(self)
|
|
return super().call_function(tx, args, kwargs)
|
|
|
|
def num_parameters(self):
|
|
return super().num_parameters() - 1
|
|
|
|
|
|
class WrappedUserMethodVariable(UserMethodVariable):
|
|
def __init__(self, wrapped, context, **kwargs):
|
|
kwargs.pop("fn", None)
|
|
kwargs.pop("obj", None)
|
|
super().__init__(wrapped.fn, wrapped.obj, **kwargs)
|
|
self.wrapped = wrapped
|
|
self.context = context
|
|
|
|
def call_function(
|
|
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
|
|
) -> "VariableTracker":
|
|
self.context.enter(tx)
|
|
result = super().call_function(tx, args, kwargs)
|
|
self.context.exit(tx)
|
|
return result
|
|
|
|
|
|
class WrappedUserFunctionVariable(UserFunctionVariable):
|
|
def __init__(self, wrapped, context, **kwargs):
|
|
kwargs.pop("fn", None)
|
|
kwargs.pop("obj", None)
|
|
super().__init__(wrapped.fn, **kwargs)
|
|
self.wrapped = wrapped
|
|
self.context = context
|
|
|
|
def call_function(
|
|
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
|
|
) -> "VariableTracker":
|
|
self.context.enter(tx)
|
|
result = super().call_function(tx, args, kwargs)
|
|
self.context.exit(tx)
|
|
return result
|
|
|
|
|
|
def invoke_and_store_as_constant(tx, fn, name, options, args, kwargs):
|
|
def convert(x):
|
|
if isinstance(x, variables.TensorVariable):
|
|
return x.get_real_value()
|
|
return x.as_python_constant()
|
|
|
|
args = [convert(x) for x in args]
|
|
kwargs = {k: convert(v) for k, v in kwargs.items()}
|
|
res = fn(*args, **kwargs)
|
|
return tx.output.register_attr_or_module(
|
|
res,
|
|
name,
|
|
source=ConstantSource(name),
|
|
**options,
|
|
)
|
|
|
|
|
|
class NestedUserFunctionVariable(BaseUserFunctionVariable):
|
|
def __init__(
|
|
self,
|
|
fn_name,
|
|
code,
|
|
f_globals,
|
|
defaults,
|
|
kwdefaults,
|
|
annotations,
|
|
closure,
|
|
closure_scope,
|
|
wraps_source=None,
|
|
**kwargs,
|
|
):
|
|
super().__init__(**kwargs)
|
|
assert isinstance(fn_name.as_python_constant(), str)
|
|
assert isinstance(code.as_python_constant(), types.CodeType)
|
|
assert isinstance(f_globals, dict)
|
|
self.fn_name = fn_name
|
|
self.code = code
|
|
self.f_globals = f_globals
|
|
self.defaults = defaults
|
|
self.kwdefaults = kwdefaults
|
|
self.annotations = annotations
|
|
self.closure = closure
|
|
if closure is None:
|
|
closure_scope = None
|
|
self.closure_scope = closure_scope
|
|
self.wraps_source = wraps_source
|
|
|
|
def self_args(self):
|
|
return []
|
|
|
|
def get_code(self):
|
|
return self.code.as_python_constant()
|
|
|
|
def get_function(self):
|
|
if self.closure:
|
|
raise NotImplementedError()
|
|
func = types.FunctionType(
|
|
self.code.as_python_constant(),
|
|
self.f_globals,
|
|
self.fn_name.as_python_constant(),
|
|
)
|
|
if self.defaults:
|
|
func.__defaults__ = self.defaults.as_python_constant()
|
|
if self.kwdefaults:
|
|
func.__kwdefaults__ = self.kwdefaults.as_python_constant()
|
|
if self.annotations:
|
|
annotations = self.annotations.as_python_constant()
|
|
if isinstance(annotations, tuple):
|
|
from itertools import pairwise
|
|
|
|
annotations = dict(pairwise(annotations))
|
|
|
|
# TypeError: __annotations__ must be set to a dict object
|
|
assert isinstance(annotations, dict)
|
|
func.__annotations__ = annotations
|
|
return func
|
|
|
|
def has_closure(self):
|
|
return self.closure is not None
|
|
|
|
def has_self(self):
|
|
return False
|
|
|
|
def get_globals(self):
|
|
return self.f_globals
|
|
|
|
def bind_args(self, parent, args, kwargs):
|
|
from .misc import InlinedClosureVariable
|
|
|
|
code = self.get_code()
|
|
func = types.FunctionType(
|
|
code,
|
|
self.f_globals,
|
|
self.fn_name.as_python_constant(),
|
|
tuple(self.defaults.items) if self.defaults else None,
|
|
tuple(make_cell(None) for _ in range(len(self.get_code().co_freevars))),
|
|
)
|
|
if self.kwdefaults:
|
|
func.__kwdefaults__ = self.kwdefaults.items
|
|
bound = inspect.signature(func).bind(*args, **kwargs)
|
|
bound.apply_defaults()
|
|
result = dict(bound.arguments.items())
|
|
wrap_args_kwargs(parent.output.root_tx, result, VariableTracker.propagate(self))
|
|
closure_cells = init_cellvars(parent, result, code)
|
|
|
|
for idx, name in enumerate(code.co_freevars):
|
|
cell = self.closure.items[idx]
|
|
assert getattr(cell, name, name) == name
|
|
assert name not in result
|
|
if isinstance(cell, InlinedClosureVariable):
|
|
# InlinedClosureVariable's are created from LOAD_CLOSURE's from
|
|
# InliningInstructionTranslators when the variable name is not found in closure_cells.
|
|
# They should remain outside of closure_cells, so that our callee (the
|
|
# InliningInstructionTranslator that traces `func`) handles
|
|
# the cell correctly - that is, the cell's contents are treated as if they
|
|
# are local variables, like in UserFunctionVariable's bind_args for freevars.
|
|
cand = parent
|
|
while cand and name not in cand.symbolic_locals:
|
|
cand = cand.parent
|
|
if cand is None:
|
|
raise RuntimeError(
|
|
f"Couldn't find {name} in the symbolic_locals of the inline interpreter stack"
|
|
)
|
|
result[name] = cand.symbolic_locals[name]
|
|
else:
|
|
closure_cells[name] = self.closure.items[idx]
|
|
|
|
return result, closure_cells
|
|
|
|
def export_freevars(self, parent, child):
|
|
code = self.get_code()
|
|
for var in code.co_freevars:
|
|
if var in child.symbolic_locals:
|
|
parent.symbolic_locals[var] = child.symbolic_locals[var]
|
|
|
|
def reconstruct(self, codegen):
|
|
codegen.load_import_from(__name__, "_create_nested_fn")
|
|
codegen(self.code)
|
|
codegen.extend_output([codegen._create_load_const(self.f_globals)])
|
|
codegen(self.fn_name)
|
|
|
|
if self.defaults:
|
|
codegen(self.defaults)
|
|
else:
|
|
codegen.extend_output([codegen.create_load_const(None)])
|
|
|
|
if self.closure:
|
|
codegen(self.closure)
|
|
else:
|
|
codegen.extend_output([codegen.create_load_const(None)])
|
|
|
|
if self.kwdefaults:
|
|
codegen(self.kwdefaults)
|
|
else:
|
|
codegen.extend_output([codegen.create_load_const(None)])
|
|
|
|
if self.annotations:
|
|
try:
|
|
if isinstance(self.annotations, variables.ConstDictVariable):
|
|
annotations = {
|
|
k: v.as_python_constant()
|
|
for k, v in self.annotations.items.items()
|
|
}
|
|
else:
|
|
annotations = tuple(
|
|
[v.as_python_constant() for v in self.annotations.items]
|
|
)
|
|
codegen.extend_output([codegen._create_load_const(annotations)])
|
|
except NotImplementedError:
|
|
codegen(self.annotations)
|
|
else:
|
|
codegen.extend_output([codegen.create_load_const(None)])
|
|
|
|
codegen.extend_output(create_call_function(7, push_null=True))
|
|
|
|
if self.wraps_source:
|
|
codegen.load_import_from("functools", "wraps")
|
|
codegen(self.wraps_source)
|
|
codegen.extend_output(create_call_function(1, True))
|
|
codegen.extend_output(create_rot_n(2))
|
|
codegen.extend_output(create_call_function(1, True))
|
|
|
|
return []
|
|
|
|
|
|
def _traceable_collective_remaps():
|
|
# We can't rely on importing from distributed, since its not always built
|
|
if torch.distributed.is_available():
|
|
from torch.distributed._functional_collectives import (
|
|
traceable_collective_remaps,
|
|
)
|
|
|
|
return traceable_collective_remaps
|
|
return {}
|
|
|
|
|
|
def _traceable_collectives_source(fn):
|
|
assert torch.distributed.is_available(), "Illegal invocation."
|
|
from torch.distributed._functional_collectives import (
|
|
all_gather_tensor_inplace,
|
|
reduce_scatter_tensor_inplace,
|
|
)
|
|
|
|
valid_values = {all_gather_tensor_inplace, reduce_scatter_tensor_inplace}
|
|
assert fn in valid_values
|
|
inner_name = fn.__name__
|
|
path_source = AttrSource(
|
|
base=AttrSource(base=GlobalSource(global_name="torch"), member="distributed"),
|
|
member="_functional_collectives",
|
|
)
|
|
return AttrSource(path_source, inner_name)
|
|
|
|
|
|
class CollectiveFunctionRewriteVariable(UserFunctionVariable):
|
|
"""
|
|
Some of the torch.distributed.* collective APIs are possible to rewrite to 'traceable' collectives.
|
|
|
|
This class provides both a way to check if a function is remappable, and perform the remapping.
|
|
|
|
In the case that a function is 'remappable' but only for some combinations of call-time arguments,
|
|
we check the args at `call_function` time and fall back to graph-breaking if needed. This is no worse
|
|
than status-quo as we currently graph-break on all distributed.* collectives.
|
|
"""
|
|
|
|
def __init__(self, fn, *, orig_fn, orig_source, **kwargs):
|
|
# orig_fn lets us implement any fn-specific args/kwargs restrictions inside call_function
|
|
self.orig_fn = orig_fn
|
|
self.orig_source = orig_source
|
|
|
|
# remapped_fn gets stuffed in self.fn and used in super().call_function
|
|
super().__init__(fn, **kwargs)
|
|
|
|
@staticmethod
|
|
def can_rewrite(variable):
|
|
return (
|
|
inspect.isfunction(variable) and variable in _traceable_collective_remaps()
|
|
)
|
|
|
|
@staticmethod
|
|
def rewrite(fn):
|
|
new_fn = _traceable_collective_remaps()[fn]
|
|
return new_fn, _traceable_collectives_source(new_fn)
|
|
|
|
def call_function(
|
|
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
|
|
) -> "VariableTracker":
|
|
# call_function must check any unsupported arguments and graph-break.
|
|
# It's safe to assume args/kwargs from orig_fn map 1:1 to args/kwargs of remapped_fn,
|
|
# since that's the contract for putting a mapping in `traceable_collective_remaps`
|
|
if kwargs.get("async_op", False):
|
|
# Put the old source back, this function will always graph break, but this ensures
|
|
# we produce the correct guards.
|
|
self.source = self.orig_source
|
|
unimplemented(
|
|
f"CollectiveFunctionRewriteVariable can't support async_op=True for {self.orig_fn}"
|
|
)
|
|
return super().call_function(tx, args, kwargs)
|
|
|
|
|
|
class FunctoolsPartialVariable(VariableTracker):
|
|
def __init__(self, func, args, keywords, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.func = func
|
|
assert isinstance(args, list)
|
|
self.args = args
|
|
assert isinstance(keywords, dict)
|
|
self.keywords = keywords
|
|
|
|
self.guards.update(VariableTracker.propagate(func)["guards"])
|
|
for arg in args:
|
|
self.guards.update(VariableTracker.propagate(arg)["guards"])
|
|
for val in keywords.values():
|
|
self.guards.update(VariableTracker.propagate(val)["guards"])
|
|
|
|
def call_function(
|
|
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
|
|
) -> "VariableTracker":
|
|
options = VariableTracker.propagate([self])
|
|
merged_args = self.args + args
|
|
merged_kwargs = {**self.keywords, **kwargs}
|
|
|
|
return self.func.call_function(tx, merged_args, merged_kwargs).add_options(
|
|
options
|
|
)
|