mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Fixes #ISSUE_NUMBER Pull Request resolved: https://github.com/pytorch/pytorch/pull/94465 Approved by: https://github.com/tugsbayasgalan
258 lines
9.8 KiB
Python
258 lines
9.8 KiB
Python
from dataclasses import dataclass
|
|
from functools import partial
|
|
import torch
|
|
from torch.multiprocessing.reductions import StorageWeakRef
|
|
|
|
import torch.utils._pytree as pytree
|
|
|
|
from torch._C import DispatchKey, DispatchKeySet, ExcludeDispatchKeyGuard
|
|
from torch._functorch.eager_transforms import _unwrap_all_tensors_from_functional, _wrap_all_tensors_to_functional, functionalize
|
|
from torch._ops import PyOperator
|
|
from torch._subclasses.fake_tensor import FakeTensorMode
|
|
from torch.fx.experimental.proxy_tensor import (
|
|
disable_proxy_modes_tracing,
|
|
ProxyTorchDispatchMode,
|
|
make_fx,
|
|
track_tensor_tree,
|
|
unwrap_proxy,
|
|
)
|
|
from torch.fx.passes.shape_prop import _extract_tensor_metadata
|
|
from torch.utils._python_dispatch import (
|
|
_get_current_dispatch_mode,
|
|
_pop_mode_temporarily,
|
|
)
|
|
from torch.utils._pytree import tree_flatten
|
|
|
|
|
|
@dataclass
|
|
class UnsupportedAliasMutationException(RuntimeError):
|
|
reason: str
|
|
|
|
|
|
"""
|
|
We're going to define a `cond` operation.
|
|
In order to do this, we need implementations for each of the dispatch keys.
|
|
"""
|
|
cond = PyOperator("cond")
|
|
|
|
|
|
def trace_cond(proxy_mode, func_overload, pred, true_fn, false_fn, operands):
|
|
assert isinstance(operands, (list, tuple)), "Cond operands must be a list or tuple of tensors"
|
|
assert all(isinstance(o, torch.Tensor) for o in operands), "Cond operands must be a list of tensors"
|
|
|
|
with disable_proxy_modes_tracing():
|
|
true_graph = make_fx(true_fn)(*operands)
|
|
false_graph = make_fx(false_fn)(*operands)
|
|
|
|
true_outs = []
|
|
false_outs = []
|
|
for node in true_graph.graph.nodes:
|
|
if node.op == 'output':
|
|
true_outs.extend(node.args)
|
|
|
|
for node in false_graph.graph.nodes:
|
|
if node.op == 'output':
|
|
false_outs.extend(node.args)
|
|
|
|
flat_true_outs, _ = pytree.tree_flatten(true_outs)
|
|
flat_false_outs, _ = pytree.tree_flatten(false_outs)
|
|
assert(len(flat_true_outs) == len(flat_false_outs))
|
|
|
|
for i in range(0, len(flat_true_outs)):
|
|
true_out = flat_true_outs[i]
|
|
false_out = flat_false_outs[i]
|
|
assert true_out.meta['tensor_meta'] == false_out.meta['tensor_meta']
|
|
|
|
# There are probably better ways - I know that create_arg has some self incrementing name
|
|
# magic to it, but since we explicitly have to get the name for register_module,
|
|
# I was not sure how to do that. This kinda simulates it.
|
|
next_name = None
|
|
i = 0
|
|
while not next_name:
|
|
candidate = f"true_graph_{i}"
|
|
if hasattr(proxy_mode.tracer.root, candidate):
|
|
i += 1
|
|
else:
|
|
next_name = candidate
|
|
|
|
true_name = next_name
|
|
false_name = f"false_graph_{i}"
|
|
assert(not hasattr(proxy_mode.tracer.root, false_name))
|
|
|
|
proxy_mode.tracer.root.register_module(true_name, true_graph)
|
|
proxy_mode.tracer.root.register_module(false_name, false_graph)
|
|
|
|
args = (pred, true_graph, false_graph, operands)
|
|
|
|
proxy_args = pytree.tree_map(partial(unwrap_proxy, proxy_mode), args)
|
|
|
|
out_proxy = proxy_mode.tracer.create_proxy('call_function', func_overload, proxy_args, {},
|
|
name="conditional")
|
|
|
|
# At this point, we're *guaranteed* that whether an output came from the
|
|
# true or false branch is indistinguishable. So, as this is just for tracing
|
|
# purposes, choose the true branch.
|
|
|
|
# TODO: Uhh.... it shouldn't matter, but changing this to true_fn results in
|
|
# a FakeTensorMode error :
|
|
# `Current active mode <class 'torch._subclasses.fake_tensor.FakeTensorMode'> not registered`
|
|
out = false_fn(*operands)
|
|
|
|
return track_tensor_tree(out, out_proxy, constant=None, tracer=proxy_mode.tracer)
|
|
|
|
|
|
@cond.py_impl(DispatchKey.CUDA)
|
|
@cond.py_impl(DispatchKey.CPU)
|
|
def cond_dense(pred, true_fn, false_fn, operands):
|
|
mode = _get_current_dispatch_mode()
|
|
assert (mode is None), "Mode should never be enabled for CPU/CUDA key"
|
|
if pred:
|
|
return true_fn(*operands)
|
|
else:
|
|
return false_fn(*operands)
|
|
|
|
|
|
@cond.py_impl(DispatchKey.AutogradCUDA)
|
|
@cond.py_impl(DispatchKey.AutogradCPU)
|
|
def cond_autograd(pred, true_fn, false_fn, *operands):
|
|
# TODO: support autograd
|
|
flat_operands, _ = tree_flatten([true_fn, false_fn] + [operands])
|
|
assert all([not f.requires_grad for f in flat_operands
|
|
if isinstance(f, torch.Tensor)])
|
|
|
|
guard = ExcludeDispatchKeyGuard(DispatchKeySet(DispatchKey.AutogradCPU))
|
|
return cond(pred, true_fn, false_fn, *operands)
|
|
|
|
|
|
@cond.py_impl(ProxyTorchDispatchMode)
|
|
def inner(pred, true_fn, false_fn, operands):
|
|
mode = _get_current_dispatch_mode()
|
|
assert (mode is not None), "Mode should always be enabled for python fallback key"
|
|
with _pop_mode_temporarily() as mode:
|
|
res = trace_cond(mode, cond, pred, true_fn, false_fn, operands)
|
|
return res
|
|
|
|
|
|
@cond.py_impl(FakeTensorMode)
|
|
def cond_fake_tensor_mode(pred, true_fn, false_fn, operands):
|
|
true_outs = true_fn(*operands)
|
|
flat_true_outs, _ = pytree.tree_flatten(true_outs)
|
|
flat_false_outs, _ = pytree.tree_flatten(false_fn(*operands))
|
|
if len(flat_true_outs) != len(flat_false_outs):
|
|
raise RuntimeError("Unmatched number of outputs from cond() branches.")
|
|
|
|
for true_out, false_out in zip(flat_true_outs, flat_false_outs):
|
|
true_meta = _extract_tensor_metadata(true_out)
|
|
false_meta = _extract_tensor_metadata(false_out)
|
|
if true_meta != false_meta:
|
|
raise RuntimeError(
|
|
f"Unmatched tensor metadata from cond() branches.\ntrue branch: {true_meta}, false branch: {false_meta}")
|
|
return true_outs
|
|
|
|
|
|
# We cannot directly call fallthrough here due to issue #89037.
|
|
@cond.py_impl(DispatchKey.PythonDispatcher)
|
|
def cond_python_dispatcher(*args):
|
|
_ = ExcludeDispatchKeyGuard(DispatchKeySet(DispatchKey.PythonDispatcher))
|
|
return cond(*args)
|
|
|
|
|
|
def _has_potential_branch_input_mutation(branch, fake_inputs):
|
|
"""
|
|
Dispatch-trace the branch with fake inputs and check if
|
|
producing graph has mutable op on the input. This is
|
|
bit restrictive as the branch must be traceable.
|
|
"""
|
|
try:
|
|
gm = make_fx(branch)(*fake_inputs)
|
|
except UnsupportedAliasMutationException:
|
|
# this can happen when nested cond is
|
|
# functionalized
|
|
return True
|
|
except Exception as e:
|
|
raise e
|
|
|
|
input_nodes = set()
|
|
for node in gm.graph.nodes:
|
|
if node.op == "placeholder":
|
|
input_nodes.add(node)
|
|
if node.op == "call_function":
|
|
target = node.target
|
|
if isinstance(target, torch._ops.OpOverload) and target._schema.is_mutable:
|
|
for arg in node.args:
|
|
if arg in input_nodes:
|
|
return True
|
|
|
|
return False
|
|
|
|
def _has_potential_branch_input_alias(branch, fake_inputs):
|
|
"""
|
|
Dispatch-trace the branch with fake inputs and check if
|
|
producing graph has output aliasing the branch input. This is
|
|
bit restrictive as the branch must be traceable.
|
|
"""
|
|
try:
|
|
gm = make_fx(branch)(*fake_inputs)
|
|
except UnsupportedAliasMutationException:
|
|
# this can happen when nested cond is
|
|
# functionalized
|
|
return True
|
|
except Exception as e:
|
|
raise e
|
|
|
|
input_storages = set()
|
|
for node in gm.graph.nodes:
|
|
if node.op == "placeholder":
|
|
input_storages.add(StorageWeakRef(node.meta['val']._typed_storage()))
|
|
|
|
outs, _ = pytree.tree_flatten(gm(*fake_inputs))
|
|
for out in outs:
|
|
if isinstance(out, torch.Tensor) and StorageWeakRef(out._typed_storage()) in input_storages:
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
|
|
@cond.py_impl(torch._C._functorch.TransformType.Functionalize)
|
|
def cond_functionalize(interpreter, pred, true_fn, false_fn, inputs):
|
|
"""
|
|
Functionalization implementation for torch.cond. Currently:
|
|
1. We don't allow any input mutation inside the branches
|
|
2. Our check for above condition is not exhaustive
|
|
"""
|
|
reapply_views = interpreter.functionalize_add_back_views()
|
|
mode = 'mutations_and_views' if reapply_views else 'mutations'
|
|
# At this point, we will see functionalized tensors, so need to unwrap them first
|
|
unwrapped_inputs = _unwrap_all_tensors_from_functional(inputs, reapply_views=reapply_views)
|
|
unwrapped_pred = _unwrap_all_tensors_from_functional(pred, reapply_views=reapply_views)
|
|
|
|
functional_true_fn = functionalize(true_fn, remove=mode)
|
|
functional_false_fn = functionalize(false_fn, remove=mode)
|
|
|
|
with interpreter.lower():
|
|
fake_tensor_mode = FakeTensorMode()
|
|
with fake_tensor_mode as ft_mode:
|
|
for branch in [functional_true_fn, functional_false_fn]:
|
|
def convert(x):
|
|
return ft_mode.fake_tensor_converter(ft_mode, x)
|
|
fake_inputs = pytree.tree_map_only(torch.Tensor, convert, unwrapped_inputs)
|
|
if _has_potential_branch_input_mutation(branch, fake_inputs):
|
|
raise UnsupportedAliasMutationException("One of torch.cond branch "
|
|
"might be modifying the input!")
|
|
for branch in [true_fn, false_fn]:
|
|
def convert(x):
|
|
return ft_mode.fake_tensor_converter(ft_mode, x)
|
|
fake_inputs = pytree.tree_map_only(torch.Tensor, convert, unwrapped_inputs)
|
|
if _has_potential_branch_input_alias(branch, fake_inputs):
|
|
raise UnsupportedAliasMutationException("One of torch.cond branch "
|
|
"might be aliasing the input!")
|
|
|
|
cond_return = cond(unwrapped_pred, functional_true_fn, functional_false_fn, unwrapped_inputs)
|
|
return _wrap_all_tensors_to_functional(cond_return, level=interpreter.level())
|
|
|
|
# TODO(voz): Make this automatic for keys, this is very ugly atm
|
|
cond.fallthrough(DispatchKey.PythonTLSSnapshot)
|
|
cond.fallthrough(DispatchKey.ADInplaceOrView)
|
|
cond.fallthrough(DispatchKey.BackendSelect)
|