Files
pytorch/torch/csrc/jit/passes/quantization/quantization_patterns.h
Jerry Zhang e3a97688cc [quant][graphmode][fix] dequantize propagation for {add/mul}_scalar (#40596)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40596

Previously the fusion patterns for {add/mul}_scalar is inconsistent since the op pattern
produces a non-quantized tensor and the op replacement graph produces a quantized tensor

Test Plan: Imported from OSS

Differential Revision: D22251072

fbshipit-source-id: e16eb92cf6611578cca1ed8ebde961f8d0610137
2020-06-25 22:17:08 -07:00

1017 lines
40 KiB
C++

#pragma once
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/ir/subgraph_matcher.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/quantization/helper.h>
#include <torch/csrc/jit/passes/subgraph_rewrite.h>
#include <string>
#include <unordered_map>
namespace torch {
namespace jit {
struct QuantFusionInfo {
std::string quantized_op_name;
std::string pattern;
std::string replacement;
std::vector<MatchFilter> filters = {};
};
namespace {
std::string getExtraArgList(std::vector<std::string> extra_args) {
return std::accumulate(
extra_args.begin(),
extra_args.end(),
std::string(),
[](std::string acc, const std::string& arg) { return acc + ", " + arg; });
}
// Get the pattern we want to replace the match with
std::string getAtenOpPattern(
const std::string& graph_header,
const std::string& op_name,
const std::vector<std::string>& extra_op_args,
bool scalar_args = false) {
std::vector<std::string> _extra_op_args = extra_op_args;
std::string aten_op_pattern = graph_header;
if (scalar_args) {
for (const auto& extra_arg : _extra_op_args) {
aten_op_pattern += R"(
)" +
extra_arg + "_scalar = aten::item(" + extra_arg + ")";
}
for (size_t i = 0; i < _extra_op_args.size(); ++i) {
_extra_op_args[i] = _extra_op_args[i] + "_scalar";
}
}
const auto& extra_op_arg_list = getExtraArgList(_extra_op_args);
aten_op_pattern += R"(
%r = )";
aten_op_pattern += op_name + "(" + "%a_quant" + extra_op_arg_list + ")";
aten_op_pattern += R"(
return (%r) )";
return aten_op_pattern;
}
// generate ops for quantize pattern for a scalar value
std::string getQuantizeForScalar(const std::string& value) {
// 6 is `torch.float` ScalarType, we are creating a float scalar
// tensor from a scalar value
std::string quantize_pattern = R"(
)" +
value + "_float_scalar_type : int = prim::Constant[value=6]()";
quantize_pattern += R"(
)" +
value + "_none : None = prim::Constant()";
quantize_pattern += R"(
)" +
value + "_tensor : Tensor = aten::scalar_tensor(" + value + ", " + value +
"_float_scalar_type";
for (auto i = 0; i < 3; ++i) {
quantize_pattern += ", " + value + "_none";
}
quantize_pattern += ")";
quantize_pattern +=
R"(
)" +
value + "_quant = aten::quantize_per_tensor(" + value + "_tensor" +
getExtraArgList(
{value + "_scale", value + "_zero_point", value + "_dtype"}) +
")";
return quantize_pattern;
}
std::string getDequantize(const std::string& value) {
return R"(
)" +
value + "_dequant = aten::dequantize(" + value + "_quant)";
}
std::string getItem(const std::string& value) {
return R"(
)" +
value + "_scalar : float = aten::item(" + value + "_dequant)";
}
// Patterns for the ops that inherit parameters from input
std::string getInputTensorQParamOpPattern(
const std::string& op_name,
const std::vector<std::string>& extra_op_args) {
const auto& extra_op_arg_list = getExtraArgList(extra_op_args);
std::string op_pattern = "graph(%a_quant" + extra_op_arg_list + "):" + R"(
%a_dequant = aten::dequantize(%a_quant)
%r = )" +
op_name + "(" + "%a_dequant" + extra_op_arg_list + ")" + R"(
%r_scale : float = aten::q_scale(%a_quant)
%r_zero_point : int = aten::q_zero_point(%a_quant)
%r_dtype : int = prim::dtype(%a_quant)
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
return op_pattern;
}
// QuantFusionInfo for the ops that inherit parameters from input
QuantFusionInfo getInputTensorQParamOpFusionInfo(
const std::string& op_name,
const std::vector<std::string>& extra_op_args) {
std::string op_pattern =
getInputTensorQParamOpPattern(op_name, extra_op_args);
const auto& extra_op_arg_list = getExtraArgList(extra_op_args);
std::string graph_header = "graph(%a_quant" + extra_op_arg_list + "):";
std::string op_replacement =
getAtenOpPattern(graph_header, op_name, extra_op_args);
return {op_name, op_pattern, op_replacement};
}
// quant fusion for ops like `quantized::add_scalar`, `quantized::mul_scalar`
QuantFusionInfo getBinaryOpScalarFusionInfo(
const std::string& op_name,
const std::vector<std::string>& extra_op_args,
const std::string& quantized_op_name,
const std::vector<std::string>& extra_quantized_op_args,
const std::vector<MatchFilter>& filters = {}) {
std::string op_pattern =
getInputTensorQParamOpPattern(op_name, extra_op_args);
const auto& extra_op_arg_list = getExtraArgList(extra_op_args);
std::string graph_header = "graph(%a_quant" + extra_op_arg_list + "):";
const auto& extra_quantized_op_arg_list =
getExtraArgList(extra_quantized_op_args);
std::string op_replacement = getAtenOpPattern(
graph_header, quantized_op_name, extra_quantized_op_args);
return {op_name, op_pattern, op_replacement, filters};
}
QuantFusionInfo getClampOpFusionInfo(
const std::string& op_name,
const std::vector<std::string>& extra_op_args) {
std::vector<std::string> header_args = extra_op_args;
std::vector<std::string> input_qparams = {"_scale", "_zero_point", "_dtype"};
for (const auto& arg : extra_op_args) {
for (const auto& qparam : input_qparams) {
header_args.push_back(arg + qparam);
}
}
for (const auto& qparam : input_qparams) {
header_args.push_back("%r" + qparam);
}
const auto& extra_op_arg_list = getExtraArgList(extra_op_args);
const auto& extra_header_arg_list = getExtraArgList(header_args);
std::string graph_header = "graph(%a_quant" + extra_header_arg_list + "):";
std::string op_pattern = graph_header;
for (const auto& arg : extra_op_args) {
op_pattern += getQuantizeForScalar(arg);
op_pattern += getDequantize(arg);
op_pattern += getItem(arg);
}
op_pattern += getDequantize("%a");
op_pattern += R"(
%r = )";
std::vector<std::string> scalar_extra_args;
for (const auto& arg : extra_op_args) {
scalar_extra_args.push_back(arg + "_scalar");
}
op_pattern +=
op_name + "(" + "%a_dequant" + getExtraArgList(scalar_extra_args) + ")";
// IR pattern common to all ops that inherit qparam from input
op_pattern += R"(
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
std::string aten_op_pattern =
getAtenOpPattern(graph_header, op_name, extra_op_args);
return {op_name, op_pattern, aten_op_pattern};
}
// Patterns for the ops that has fixed quantization parameters
QuantFusionInfo getFixedQParamOpFusionInfo(
const std::string& op_name,
const std::vector<std::string>& extra_op_args,
bool is_symmetric) {
const auto& extra_op_arg_list = getExtraArgList(extra_op_args);
std::string graph_header = "graph(%a_quant" + extra_op_arg_list + "):";
std::string op_pattern = graph_header;
op_pattern += R"(
%a_dequant = aten::dequantize(%a_quant)
%r = )";
op_pattern += op_name + "(" + "%a_dequant" + extra_op_arg_list + ")";
// IR pattern common to all ops with fixed quantization parameters for
// asymetric quantization
std::string asym_fixed_qparam_op_suffix = R"(
%r_scale : float = prim::Constant[value=0.00390625]()
%r_zero_point : int = prim::Constant[value=0]()
%r_dtype : int = prim::Constant[value=13]()
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
std::string sym_fixed_qparam_op_suffix = R"(
%r_scale : float = prim::Constant[value=0.0078125]()
%r_zero_point : int = prim::Constant[value=128]()
%r_dtype : int = prim::Constant[value=13]()
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
op_pattern +=
is_symmetric ? sym_fixed_qparam_op_suffix : asym_fixed_qparam_op_suffix;
std::string aten_op_pattern =
getAtenOpPattern(graph_header, op_name, extra_op_args);
return {op_name, op_pattern, aten_op_pattern};
}
// filter that checks %b_scalar is a scalar
bool input_b_is_scalar(
const Match& match,
const std::unordered_map<std::string, Value*>& vmap) {
const auto& match_vmap = match.values_map;
auto b_scalar = match_vmap.at(vmap.at("b_scalar"));
return isScalar(b_scalar);
}
// Patterns for ops that require observation for output quantization parameters
// Example:
//
// before fusion:
//
// graph(%a_quant, %r_scale, %r_zero_point, %r_dtype):
// %a_dequant = aten::dequantize(%a_quant)
// %r = {op_name}(%a_dequant, {extra_args})
// %r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point,
// %r_dtype) return (%r_quant)
//
// after fusion:
//
// graph(%a_quant, %r_scale, %r_zero_point, %r_dtype):
// %r_quant = {quantized_op_name}(%a_quant, {extra_args}, %r_scale,
// %r_zero_point) return (%r_quant)
QuantFusionInfo getObservedQParamOpFusionInfo(
const std::string& fp_op_name,
const std::string& q_op_name,
const std::vector<std::string>& fp_extra_args,
const std::vector<std::string>& q_extra_args) {
const auto& fp_extra_arg_list = getExtraArgList(fp_extra_args);
const auto& q_extra_arg_list = getExtraArgList(q_extra_args);
std::string op_pattern = "graph(%a_quant" + fp_extra_arg_list +
", %r_scale, %r_zero_point, %r_dtype):" + R"(
%a_dequant = aten::dequantize(%a_quant)
%r = )" +
fp_op_name + "(" + "%a_dequant" + fp_extra_arg_list + ")" + R"(
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
std::string aten_op_pattern = "graph(%a_quant" + fp_extra_arg_list +
", %r_scale, %r_zero_point, %r_dtype):" + R"(
%r_quant = )" +
q_op_name + "(%a_quant" + q_extra_arg_list +
", %r_scale, %r_zero_point)" + R"(
return (%r_quant) )";
return {q_op_name, op_pattern, aten_op_pattern};
}
} // namespace
std::vector<QuantFusionInfo> quant_fusion_pattern_and_replacements() {
// aten::conv1d
std::string conv1d = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
%a_dequant = aten::dequantize(%a_quant)
%w_quant : Tensor, %b : Tensor? = quantized::conv1d_unpack(%packed_params)
%w_dequant = aten::dequantize(%w_quant)
%r = aten::conv1d(%a_dequant, %w_dequant, %b, %stride, %padding, %dilation, %groups)
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
// aten::conv1d - aten::relu
std::string conv1d_relu = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
%a_dequant = aten::dequantize(%a_quant)
%w_quant : Tensor, %b : Tensor? = quantized::conv1d_unpack(%packed_params)
%w_dequant = aten::dequantize(%w_quant)
%conv_out = aten::conv1d(%a_dequant, %w_dequant, %b, %stride, %padding, %dilation, %groups)
%r = aten::relu(%conv_out)
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
// aten::conv1d - aten::relu_
std::string conv1d_inplace_relu = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
%a_dequant = aten::dequantize(%a_quant)
%w_quant : Tensor, %b : Tensor? = quantized::conv1d_unpack(%packed_params)
%w_dequant = aten::dequantize(%w_quant)
%conv_out = aten::conv1d(%a_dequant, %w_dequant, %b, %stride, %padding, %dilation, %groups)
%r = aten::relu_(%conv_out)
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
// quantized::conv1d
std::string quantized_conv1d = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
%r_quant = quantized::conv1d(%a_quant, %packed_params, %r_scale, %r_zero_point)
return (%r_quant) )";
// quantized::conv1d_relu
std::string quantized_conv1d_relu = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
%r_quant = quantized::conv1d_relu(%a_quant, %packed_params, %r_scale, %r_zero_point)
return (%r_quant) )";
// aten::conv2d
std::string conv2d = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
%a_dequant = aten::dequantize(%a_quant)
%w_quant : Tensor, %b : Tensor? = quantized::conv2d_unpack(%packed_params)
%w_dequant = aten::dequantize(%w_quant)
%r = aten::conv2d(%a_dequant, %w_dequant, %b, %stride, %padding, %dilation, %groups)
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
// aten::conv2d - aten::relu
std::string conv2d_relu = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
%a_dequant = aten::dequantize(%a_quant)
%w_quant : Tensor, %b : Tensor? = quantized::conv2d_unpack(%packed_params)
%w_dequant = aten::dequantize(%w_quant)
%conv_out = aten::conv2d(%a_dequant, %w_dequant, %b, %stride, %padding, %dilation, %groups)
%r = aten::relu(%conv_out)
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
// aten::conv2d - aten::relu_
std::string conv2d_inplace_relu = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
%a_dequant = aten::dequantize(%a_quant)
%w_quant : Tensor, %b : Tensor? = quantized::conv2d_unpack(%packed_params)
%w_dequant = aten::dequantize(%w_quant)
%conv_out = aten::conv2d(%a_dequant, %w_dequant, %b, %stride, %padding, %dilation, %groups)
%r = aten::relu_(%conv_out)
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
// quantized::conv2d
std::string quantized_conv2d = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
%r_quant = quantized::conv2d(%a_quant, %packed_params, %r_scale, %r_zero_point)
return (%r_quant) )";
// quantized::conv2d_relu
std::string quantized_conv2d_relu = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
%r_quant = quantized::conv2d_relu(%a_quant, %packed_params, %r_scale, %r_zero_point)
return (%r_quant) )";
// aten::conv3d
std::string conv3d = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
%a_dequant = aten::dequantize(%a_quant)
%w_quant : Tensor, %b : Tensor? = quantized::conv3d_unpack(%packed_params)
%w_dequant = aten::dequantize(%w_quant)
%r = aten::conv3d(%a_dequant, %w_dequant, %b, %stride, %padding, %dilation, %groups)
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
// aten::conv3d - aten::relu
std::string conv3d_relu = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
%a_dequant = aten::dequantize(%a_quant)
%w_quant : Tensor, %b : Tensor? = quantized::conv3d_unpack(%packed_params)
%w_dequant = aten::dequantize(%w_quant)
%conv_out = aten::conv3d(%a_dequant, %w_dequant, %b, %stride, %padding, %dilation, %groups)
%r = aten::relu(%conv_out)
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
// aten::conv3d - aten::relu_
std::string conv3d_inplace_relu = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
%a_dequant = aten::dequantize(%a_quant)
%w_quant : Tensor, %b : Tensor? = quantized::conv3d_unpack(%packed_params)
%w_dequant = aten::dequantize(%w_quant)
%conv_out = aten::conv3d(%a_dequant, %w_dequant, %b, %stride, %padding, %dilation, %groups)
%r = aten::relu_(%conv_out)
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
// quantized::conv3d
std::string quantized_conv3d = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
%r_quant = quantized::conv3d(%a_quant, %packed_params, %r_scale, %r_zero_point)
return (%r_quant) )";
// quantized::conv3d_relu
std::string quantized_conv3d_relu = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
%r_quant = quantized::conv3d_relu(%a_quant, %packed_params, %r_scale, %r_zero_point)
return (%r_quant) )";
std::string add_relu = R"(
graph(%a_quant, %b_quant, %alpha, %scale, %zero_point, %dtype):
%a_dequant = aten::dequantize(%a_quant)
%b_dequant = aten::dequantize(%b_quant)
%r_add = aten::add(%a_dequant, %b_dequant, %alpha)
%r_relu = aten::relu(%r_add)
%r = aten::quantize_per_tensor(%r_relu, %scale, %zero_point, %dtype)
return (%r) )";
std::string add_inplace_relu = R"(
graph(%a_quant, %b_quant, %alpha, %scale, %zero_point, %dtype):
%a_dequant = aten::dequantize(%a_quant)
%b_dequant = aten::dequantize(%b_quant)
%r_add = aten::add(%a_dequant, %b_dequant, %alpha)
%r_relu = aten::relu_(%r_add)
%r = aten::quantize_per_tensor(%r_relu, %scale, %zero_point, %dtype)
return (%r) )";
std::string inplace_add_relu = R"(
graph(%a_quant, %b_quant, %alpha, %scale, %zero_point, %dtype):
%a_dequant = aten::dequantize(%a_quant)
%b_dequant = aten::dequantize(%b_quant)
%r_add = aten::add_(%a_dequant, %b_dequant, %alpha)
%r_relu = aten::relu(%r_add)
%r = aten::quantize_per_tensor(%r_relu, %scale, %zero_point, %dtype)
return (%r) )";
std::string inplace_add_inplace_relu = R"(
graph(%a_quant, %b_quant, %alpha, %scale, %zero_point, %dtype):
%a_dequant = aten::dequantize(%a_quant)
%b_dequant = aten::dequantize(%b_quant)
%r_add = aten::add_(%a_dequant, %b_dequant, %alpha)
%r_relu = aten::relu_(%r_add)
%r = aten::quantize_per_tensor(%r_relu, %scale, %zero_point, %dtype)
return (%r) )";
std::string quantized_add_relu = R"(
graph(%a_quant, %b_quant, %alpha, %scale, %zero_point, %dtype):
%r = quantized::add_relu(%a_quant, %b_quant, %scale, %zero_point)
return (%r) )";
// aten::linear
std::string linear = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype):
%a_dequant = aten::dequantize(%a_quant)
%w_quant : Tensor, %b : Tensor? = quantized::linear_unpack(%packed_params)
%w_dequant = aten::dequantize(%w_quant)
%r = aten::linear(%a_dequant, %w_dequant, %b)
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
std::string linear_relu = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype):
%a_dequant = aten::dequantize(%a_quant)
%w_quant : Tensor, %b : Tensor? = quantized::linear_unpack(%packed_params)
%w_dequant = aten::dequantize(%w_quant)
%linear_out = aten::linear(%a_dequant, %w_dequant, %b)
%r = aten::relu(%linear_out)
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
std::string linear_inplace_relu = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype):
%a_dequant = aten::dequantize(%a_quant)
%w_quant : Tensor, %b : Tensor? = quantized::linear_unpack(%packed_params)
%w_dequant = aten::dequantize(%w_quant)
%linear_out = aten::linear(%a_dequant, %w_dequant, %b)
%r = aten::relu_(%linear_out)
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
// quantized::linear
std::string quantized_linear = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype):
%r = quantized::linear(%a_quant, %packed_params, %r_scale, %r_zero_point)
return (%r) )";
std::string quantized_linear_relu = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype):
%r = quantized::linear_relu(%a_quant, %packed_params, %r_scale, %r_zero_point)
return (%r) )";
std::string cat = R"(
graph(%input_quant, %dim, %r_scale, %r_zero_point, %r_dtype):
%input_dequant = aten::dequantize(%input_quant)
%r = aten::cat(%input_dequant, %dim)
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
std::string quantized_cat = R"(
graph(%input_quant, %dim, %r_scale, %r_zero_point, %r_dtype):
%r_quant = quantized::cat(%input_quant, %dim, %r_scale, %r_zero_point)
return (%r_quant) )";
// aten::add
std::string add = R"(
graph(%a_quant, %b_quant, %alpha, %scale, %zero_point, %dtype):
%a_dequant = aten::dequantize(%a_quant)
%b_dequant = aten::dequantize(%b_quant)
%r_add = aten::add(%a_dequant, %b_dequant, %alpha)
%r = aten::quantize_per_tensor(%r_add, %scale, %zero_point, %dtype)
return (%r) )";
// TODO: add %dtype after when https://github.com/pytorch/pytorch/issues/34351
// is fixed
// quantized::add
std::string quantized_add = R"(
graph(%a_quant, %b_quant, %alpha, %scale, %zero_point, %dtype):
%r = quantized::add(%a_quant, %b_quant, %scale, %zero_point)
return (%r) )";
// aten::add_
std::string inplace_add = R"(
graph(%a_quant, %b_quant, %alpha, %scale, %zero_point, %dtype):
%a_dequant = aten::dequantize(%a_quant)
%b_dequant = aten::dequantize(%b_quant)
%r_add = aten::add_(%a_dequant, %b_dequant, %alpha)
%r = aten::quantize_per_tensor(%r_add, %scale, %zero_point, %dtype)
return (%r) )";
auto add_scalar = getBinaryOpScalarFusionInfo(
"aten::add",
{"%b_scalar", "%alpha"},
"quantized::add_scalar",
{"%b_scalar"},
{aten_add_alpha_is_one, input_b_is_scalar});
auto add_scalar_out = getBinaryOpScalarFusionInfo(
"aten::add_",
{"%b_scalar", "%alpha"},
"quantized::add_scalar_out",
{"%b_scalar", "%a_quant"},
{aten_add_alpha_is_one, input_b_is_scalar});
// quantized::add_scalar_relu -- fusing quantized::add_scalar
// and aten::relu
auto quantized_add_scalar_relu_pattern = R"(
graph(%a_quant, %b_scalar):
%r_add = quantized::add_scalar(%a_quant, %b_scalar)
%r = aten::relu(%r_add)
return (%r) )";
auto quantized_add_scalar_inplace_relu_pattern = R"(
graph(%a_quant, %b_scalar):
%r_add = quantized::add_scalar(%a_quant, %b_scalar)
%r = aten::relu_(%r_add)
return (%r) )";
auto quantized_add_scalar_relu_replacement = R"(
graph(%a_quant, %b_scalar):
%r = quantized::add_scalar_relu(%a_quant, %b_scalar)
return (%r) )";
// quantized::add_scalar_relu_out -- fusing quantized::add_scalarOut
// and aten::relu
auto quantized_add_scalar_relu_out_pattern = R"(
graph(%a_quant, %b_scalar):
%r_add = quantized::add_scalar_out(%a_quant, %b_scalar, %a_quant)
%r = aten::relu(%r_add)
return (%r) )";
auto quantized_add_scalar_inplace_relu_out_pattern = R"(
graph(%a_quant, %b_scalar):
%r_add = quantized::add_scalar_out(%a_quant, %b_scalar, %a_quant)
%r = aten::relu_(%r_add)
return (%r) )";
auto quantized_add_scalar_relu_out_replacement = R"(
graph(%a_quant, %b_scalar):
%r = quantized::add_scalar_relu_out(%a_quant, %b_scalar, %a_quant)
return (%r) )";
// quantized::batch_norm
std::string batch_norm = R"(
graph(%a_quant, %weight, %bias, %mean, %var, %training, %eaf, %eps, %7, %scale, %zero_point, %scalar_type):
%a_dequant = aten::dequantize(%a_quant)
%r_bn = aten::batch_norm(%a_dequant, %weight, %bias, %mean, %var, %training, %eaf, %eps, %7)
%r = aten::quantize_per_tensor(%r_bn, %scale, %zero_point, %scalar_type)
return (%r) )";
std::string quantized_batch_norm = R"(
graph(%a_quant, %weight, %bias, %mean, %var, %training, %eaf, %eps, %7, %scale, %zero_point, %scalar_type):
%r = quantized::batch_norm(%a_quant, %weight, %bias, %mean, %var, %eps, %scale, %zero_point)
return (%r) )";
std::string batch_norm_relu = R"(
graph(%a_quant, %weight, %bias, %mean, %var, %training, %eaf, %eps, %7, %scale, %zero_point, %scalar_type):
%a_dequant = aten::dequantize(%a_quant)
%bn_out = aten::batch_norm(%a_dequant, %weight, %bias, %mean, %var, %training, %eaf, %eps, %7)
%relu = aten::relu(%bn_out)
%r = aten::quantize_per_tensor(%relu, %scale, %zero_point, %scalar_type)
return (%r) )";
std::string batch_norm_inplace_relu = R"(
graph(%a_quant, %weight, %bias, %mean, %var, %training, %eaf, %eps, %7, %scale, %zero_point, %scalar_type):
%a_dequant = aten::dequantize(%a_quant)
%bn_out = aten::batch_norm(%a_dequant, %weight, %bias, %mean, %var, %training, %eaf, %eps, %7)
%relu = aten::relu_(%bn_out)
%r = aten::quantize_per_tensor(%relu, %scale, %zero_point, %scalar_type)
return (%r) )";
std::string quantized_batch_norm_relu = R"(
graph(%a_quant, %weight, %bias, %mean, %var, %training, %eaf, %eps, %7, %scale, %zero_point, %scalar_type):
%r = quantized::batch_norm_relu(%a_quant, %weight, %bias, %mean, %var, %eps, %scale, %zero_point)
return (%r) )";
// aten::mul
std::string mul = R"(
graph(%a_quant, %b_quant, %scale, %zero_point, %dtype):
%a_dequant = aten::dequantize(%a_quant)
%b_dequant = aten::dequantize(%b_quant)
%r_mul = aten::mul(%a_dequant, %b_dequant)
%r = aten::quantize_per_tensor(%r_mul, %scale, %zero_point, %dtype)
return (%r) )";
// aten::mul_
std::string inplace_mul = R"(
graph(%a_quant, %b_quant, %scale, %zero_point, %dtype):
%a_dequant = aten::dequantize(%a_quant)
%b_dequant = aten::dequantize(%b_quant)
%r_mul = aten::mul_(%a_dequant, %b_dequant)
%r = aten::quantize_per_tensor(%r_mul, %scale, %zero_point, %dtype)
return (%r) )";
// quantized::mul
std::string quantized_mul = R"(
graph(%a_quant, %b_quant, %scale, %zero_point, %dtype):
%r = quantized::mul(%a_quant, %b_quant, %scale, %zero_point)
return (%r) )";
auto mul_scalar = getBinaryOpScalarFusionInfo(
"aten::mul",
{"%b_scalar"},
"quantized::mul_scalar",
{"%b_scalar"},
{input_b_is_scalar});
auto mul_scalar_out = getBinaryOpScalarFusionInfo(
"aten::mul_",
{"%b_scalar"},
"quantized::mul_scalar_out",
{"%b_scalar", "%a_quant"},
{input_b_is_scalar});
// quantized::mul_relu
std::string mul_relu = R"(
graph(%a_quant, %b_quant, %scale, %zero_point, %dtype):
%a_dequant = aten::dequantize(%a_quant)
%b_dequant = aten::dequantize(%b_quant)
%r_mul = aten::mul(%a_dequant, %b_dequant)
%r_relu = aten::relu(%r_mul)
%r = aten::quantize_per_tensor(%r_relu, %scale, %zero_point, %dtype)
return (%r) )";
std::string mul_inplace_relu = R"(
graph(%a_quant, %b_quant, %scale, %zero_point, %dtype):
%a_dequant = aten::dequantize(%a_quant)
%b_dequant = aten::dequantize(%b_quant)
%r_mul = aten::mul(%a_dequant, %b_dequant)
%r_relu = aten::relu_(%r_mul)
%r = aten::quantize_per_tensor(%r_relu, %scale, %zero_point, %dtype)
return (%r) )";
std::string inplace_mul_relu = R"(
graph(%a_quant, %b_quant, %scale, %zero_point, %dtype):
%a_dequant = aten::dequantize(%a_quant)
%b_dequant = aten::dequantize(%b_quant)
%r_mul = aten::mul_(%a_dequant, %b_dequant)
%r_relu = aten::relu(%r_mul)
%r = aten::quantize_per_tensor(%r_relu, %scale, %zero_point, %dtype)
return (%r) )";
std::string inplace_mul_inplace_relu = R"(
graph(%a_quant, %b_quant, %scale, %zero_point, %dtype):
%a_dequant = aten::dequantize(%a_quant)
%b_dequant = aten::dequantize(%b_quant)
%r_mul = aten::mul_(%a_dequant, %b_dequant)
%r_relu = aten::relu_(%r_mul)
%r = aten::quantize_per_tensor(%r_relu, %scale, %zero_point, %dtype)
return (%r) )";
std::string quantized_mul_relu = R"(
graph(%a_quant, %b_quant, %scale, %zero_point, %dtype):
%r = quantized::mul_relu(%a_quant, %b_quant, %scale, %zero_point)
return (%r) )";
// quantized::mul_scalar_relu -- fusing quantized::mul_scalar
// and aten::relu
auto quantized_mul_scalar_relu_pattern = R"(
graph(%a_quant, %b_scalar):
%r_mul = quantized::mul_scalar(%a_quant, %b_scalar)
%r = aten::relu(%r_mul)
return (%r) )";
auto quantized_mul_scalar_inplace_relu_pattern = R"(
graph(%a_quant, %b_scalar):
%r_mul = quantized::mul_scalar(%a_quant, %b_scalar)
%r = aten::relu_(%r_mul)
return (%r) )";
auto quantized_mul_scalar_relu_replacement = R"(
graph(%a_quant, %b_scalar):
%r = quantized::mul_scalar_relu(%a_quant, %b_scalar)
return (%r) )";
// quantized::mul_scalar_relu_out -- fusing quantized::mul_scalarOut
// and aten::relu
auto quantized_mul_scalar_relu_out_pattern = R"(
graph(%a_quant, %b_scalar):
%r_mul = quantized::mul_scalar_out(%a_quant, %b_scalar, %a_quant)
%r = aten::relu(%r_mul)
return (%r) )";
auto quantized_mul_scalar_inplace_relu_out_pattern = R"(
graph(%a_quant, %b_scalar):
%r_mul = quantized::mul_scalar_out(%a_quant, %b_scalar, %a_quant)
%r = aten::relu_(%r_mul)
return (%r) )";
auto quantized_mul_scalar_relu_out_replacement = R"(
graph(%a_quant, %b_scalar):
%r = quantized::mul_scalar_relu_out(%a_quant, %b_scalar, %a_quant)
return (%r) )";
// quantized::elu
std::string elu = R"(
graph(%a_quant, %alpha, %scale, %input_scale, %r_scale, %r_zero_point, %r_dtype):
%a_dequant = aten::dequantize(%a_quant)
%r = aten::elu(%a_dequant, %alpha, %scale, %input_scale)
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
std::string quantized_elu = R"(
graph(%a_quant, %alpha, %scale, %input_scale, %r_scale, %r_zero_point, %r_dtype):
%r_quant = quantized::elu(%a_quant, %r_scale, %r_zero_point, %alpha, %scale, %input_scale)
return (%r_quant) )";
std::string elu_ = R"(
graph(%a_quant, %alpha, %scale, %input_scale, %r_scale, %r_zero_point, %r_dtype):
%a_dequant = aten::dequantize(%a_quant)
%r = aten::elu_(%a_dequant, %alpha, %scale, %input_scale)
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
// ============= General Ops that inherit quantization paramters from input
// tensor =============
auto avg_pool1d = getInputTensorQParamOpFusionInfo(
"aten::avg_pool1d",
{"%kernel_size",
"%stride",
"%padding",
"%ceil_mode",
"%count_include_pad"});
auto avg_pool2d = getInputTensorQParamOpFusionInfo(
"aten::avg_pool2d",
{"%kernel_size",
"%stride",
"%padding",
"%ceil_mode",
"%count_include_pad",
"%divisor_override"});
std::string common_general_value_op = R"(
%r_scale : float = aten::q_scale(%a_quant)
%r_zero_point : int = aten::q_zero_point(%a_quant)
%r_dtype : int = prim::dtype(%a_quant)
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
auto avg_pool3d = getInputTensorQParamOpFusionInfo(
"aten::avg_pool3d",
{"%kernel_size",
"%stride",
"%padding",
"%ceil_mode",
"%count_include_pad",
"%divisor_override"});
auto adaptive_avg_pool1d = getInputTensorQParamOpFusionInfo(
"aten::adaptive_avg_pool1d", {"%output_size"});
auto adaptive_avg_pool2d = getInputTensorQParamOpFusionInfo(
"aten::adaptive_avg_pool2d", {"%output_size"});
auto adaptive_avg_pool3d = getInputTensorQParamOpFusionInfo(
"aten::adaptive_avg_pool3d", {"%output_size"});
auto mean1 = getInputTensorQParamOpFusionInfo("aten::mean", {"%dim"});
auto mean2 = getInputTensorQParamOpFusionInfo(
"aten::mean", {"%dim", "%keepdim", "%out"});
auto upsample_nearest1d = getInputTensorQParamOpFusionInfo(
"aten::upsample_nearest1d", {"%output_size", "%scales"});
auto upsample_nearest2d = getInputTensorQParamOpFusionInfo(
"aten::upsample_nearest2d", {"%output_size", "%scale_h", "%scale_w"});
auto upsample_nearest3d = getInputTensorQParamOpFusionInfo(
"aten::upsample_nearest3d",
{"%output_size", "%scale_d", "%scale_h", "%scale_w"});
auto upsample_linear1d = getInputTensorQParamOpFusionInfo(
"aten::upsample_linear1d", {"%output_size", "%align_corners", "%scales"});
auto upsample_bilinear2d = getInputTensorQParamOpFusionInfo(
"aten::upsample_bilinear2d",
{"%output_size", "%align_corners", "%scale_h", "%scale_w"});
auto upsample_trilinear3d = getInputTensorQParamOpFusionInfo(
"aten::upsample_trilinear3d",
{"%output_size", "%align_corners", "%scale_d", "%scale_h", "%scale_w"});
auto clamp = getClampOpFusionInfo("aten::clamp", {"%min", "%max"});
auto hardtanh = getClampOpFusionInfo("aten::hardtanh", {"%min", "%max"});
auto hardtanh_ = getClampOpFusionInfo("aten::hardtanh_", {"%min", "%max"});
auto leaky_relu =
getInputTensorQParamOpFusionInfo("aten::leaky_relu", {"%negative_slope"});
auto leaky_relu_ = getInputTensorQParamOpFusionInfo(
"aten::leaky_relu_", {"%negative_slope"});
// Ops with fixed quantization parameters
auto hardsigmoid = getFixedQParamOpFusionInfo("aten::hardsigmoid", {}, false);
auto hardsigmoid_ =
getFixedQParamOpFusionInfo("aten::hardsigmoid_", {}, false);
auto sigmoid = getFixedQParamOpFusionInfo("aten::sigmoid", {}, false);
auto sigmoid_ = getFixedQParamOpFusionInfo("aten::sigmoid_", {}, false);
auto tanh = getFixedQParamOpFusionInfo("aten::tanh", {}, true);
auto tanh_ = getFixedQParamOpFusionInfo("aten::tanh_", {}, true);
auto hardswish = getObservedQParamOpFusionInfo(
"aten::hardswish", "quantized::hardswish", {}, {});
auto hardswish_ = getObservedQParamOpFusionInfo(
"aten::hardswish_", "quantized::hardswish", {}, {});
auto layer_norm = getObservedQParamOpFusionInfo(
"aten::layer_norm",
"quantized::layer_norm",
{"%normalized_shape", "%weight", "%bias", "%eps", "%cudnn_enabled"},
{"%normalized_shape", "%weight", "%bias", "%eps"});
auto group_norm = getObservedQParamOpFusionInfo(
"aten::group_norm",
"quantized::group_norm",
{"%num_groups", "%weight", "%bias", "%eps", "%cudnn_enabled"},
{"%num_groups", "%weight", "%bias", "%eps"});
auto instance_norm = getObservedQParamOpFusionInfo(
"aten::instance_norm",
"quantized::instance_norm",
{"%weight",
"%bias",
"%running_mean",
"%running_var",
"%use_input_stats",
"%momentum",
"%eps",
"%cudnn_enabled"},
{"%weight", "%bias", "%eps"});
return {
{"quantized::conv1d", conv1d, quantized_conv1d},
{"quantized::conv1d_relu", conv1d_relu, quantized_conv1d_relu},
{"quantized::conv1d_relu", conv1d_inplace_relu, quantized_conv1d_relu},
{"quantized::conv2d", conv2d, quantized_conv2d},
{"quantized::conv2d_relu", conv2d_relu, quantized_conv2d_relu},
{"quantized::conv2d_relu", conv2d_inplace_relu, quantized_conv2d_relu},
{"quantized::conv3d", conv3d, quantized_conv3d},
{"quantized::conv3d_relu", conv3d_relu, quantized_conv3d_relu},
{"quantized::conv3d_relu", conv3d_inplace_relu, quantized_conv3d_relu},
{"quantized::linear", linear, quantized_linear},
{"quantized::linear_relu", linear_relu, quantized_linear_relu},
{"quantized::linear_relu", linear_inplace_relu, quantized_linear_relu},
{"quantized::add_relu",
add_relu,
quantized_add_relu,
{aten_add_alpha_is_one}},
{"quantized::add_relu",
add_inplace_relu,
quantized_add_relu,
{aten_add_alpha_is_one}},
{"quantized::add_relu",
inplace_add_relu,
quantized_add_relu,
{aten_add_alpha_is_one}},
{"quantized::add_relu",
inplace_add_inplace_relu,
quantized_add_relu,
{aten_add_alpha_is_one}},
add_scalar,
add_scalar_out,
// note that these must come after quantized::add_scalar and
// quantized::add_scalar_out patterns
{"quantized::add_scalar_relu",
quantized_add_scalar_relu_pattern,
quantized_add_scalar_relu_replacement},
{"quantized::add_scalar_relu",
quantized_add_scalar_inplace_relu_pattern,
quantized_add_scalar_relu_replacement},
{"quantized::add_scalar_relu_out",
quantized_add_scalar_relu_out_pattern,
quantized_add_scalar_relu_out_replacement},
{"quantized::add_scalar_relu_out",
quantized_add_scalar_inplace_relu_out_pattern,
quantized_add_scalar_relu_out_replacement},
{"quantized::add", add, quantized_add, {aten_add_alpha_is_one}},
{"quantized::add", inplace_add, quantized_add, {aten_add_alpha_is_one}},
{"quantized::cat", cat, quantized_cat},
{"quantized::batch_norm", batch_norm, quantized_batch_norm},
{"quantized::batch_norm_relu",
batch_norm_relu,
quantized_batch_norm_relu},
{"quantized::batch_norm_relu",
batch_norm_inplace_relu,
quantized_batch_norm_relu},
mul_scalar,
mul_scalar_out,
// note that these must come after quantized::mul_scalar and
// quantized::mul_scalar_out patterns
{"quantized::mul_scalar_relu",
quantized_mul_scalar_relu_pattern,
quantized_mul_scalar_relu_replacement},
{"quantized::mul_scalar_relu",
quantized_mul_scalar_inplace_relu_pattern,
quantized_mul_scalar_relu_replacement},
{"quantized::mul_scalar_relu_out",
quantized_mul_scalar_relu_out_pattern,
quantized_mul_scalar_relu_out_replacement},
{"quantized::mul_scalar_relu_out",
quantized_mul_scalar_inplace_relu_out_pattern,
quantized_mul_scalar_relu_out_replacement},
{"quantized::mul_relu", mul_relu, quantized_mul_relu},
{"quantized::mul_relu", mul_inplace_relu, quantized_mul_relu},
{"quantized::mul_relu", inplace_mul_relu, quantized_mul_relu},
{"quantized::mul_relu", inplace_mul_inplace_relu, quantized_mul_relu},
{"quantized::mul", mul, quantized_mul},
{"quantized::mul", inplace_mul, quantized_mul},
hardswish,
hardswish_,
layer_norm,
group_norm,
instance_norm,
{"quantized::elu", elu, quantized_elu},
{"quantized::elu_", elu_, quantized_elu},
avg_pool1d,
avg_pool2d,
avg_pool3d,
adaptive_avg_pool1d,
adaptive_avg_pool2d,
adaptive_avg_pool3d,
mean1,
mean2,
upsample_nearest1d,
upsample_nearest2d,
upsample_nearest3d,
upsample_linear1d,
upsample_bilinear2d,
upsample_trilinear3d,
clamp,
hardtanh,
hardtanh_,
leaky_relu,
leaky_relu_,
// fixed qparam ops
hardsigmoid,
hardsigmoid_,
sigmoid,
sigmoid_,
tanh,
tanh_,
};
}
std::vector<QuantFusionInfo> dynamic_quant_fusion_pattern_and_replacements() {
std::string linear_dynamic = R"(
graph(%packed_params, %a, %reduce_range, %a_dtype):
%a_scale : float, %a_zero_point : int = aten::_choose_qparams_per_tensor(%a, %reduce_range)
%a_quant = aten::quantize_per_tensor(%a, %a_scale, %a_zero_point, %a_dtype)
%a_dequant = aten::dequantize(%a_quant)
%w_quant : Tensor, %b : Tensor? = quantized::linear_unpack(%packed_params)
%w_dequant = aten::dequantize(%w_quant)
%r = aten::linear(%a_dequant, %w_dequant, %b)
return (%r) )";
std::string quantized_linear_dynamic = R"(
graph(%packed_params, %a, %reduce_range, %a_dtype):
%r = quantized::linear_dynamic(%a, %packed_params, %reduce_range)
return (%r) )";
return {
{"quantized::linear_dynamic", linear_dynamic, quantized_linear_dynamic},
};
}
} // namespace jit
} // namespace torch