mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 13:44:15 +08:00
- This pull request introduces support for the [OCP Micro-scaling (MX) format](https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf), with a focus on compatibility with AMD **ROCm 7.0** and the **gfx950** architecture. This PR also establishes the foundation for enabling MX-FPX features in [TorchAO](https://github.com/pytorch/ao/issues/2229) on the AMD platform. - Validation (**ROCm 7.0** + **gfx950** required): `111 relevant tests passing.` > PYTORCH_TEST_WITH_ROCM=1 python test/test_matmul_cuda.py -k test_blockwise -v Co-author: @jagadish-amd — Thank you for the efforts leading validation on gfx950 with ROCm 7.0. ----------------------------------- This pull request introduces support for new scalar types and scaling methods, particularly for ROCm 7.0 and gfx950, and refines testing for these features. Key changes include adding constraints for matrix dimensions, enabling block-wise scaling, and updating tests to accommodate new data types. ### Support for new scalar types and scaling methods: * [`aten/src/ATen/cuda/CUDABlas.cpp`](diffhunk://#diff-74fcb26047c1df4024105d36ce22a36b77cf8cc93c28631d743e639b3d6066aeR1876-R1885): Added constraints for matrix dimensions when using `Float8_e8m0fnu` with block-wise scaling, ensuring dimensions are multiples of 32. Updated compatibility checks to support ROCm 7.0 for `Float8_e8m0fnu` and `Float8_e4m3fn`. [[1]](diffhunk://#diff-74fcb26047c1df4024105d36ce22a36b77cf8cc93c28631d743e639b3d6066aeR1876-R1885) [[2]](diffhunk://#diff-74fcb26047c1df4024105d36ce22a36b77cf8cc93c28631d743e639b3d6066aeL1913-R1934) * [`aten/src/ATen/native/cuda/Blas.cpp`](diffhunk://#diff-e8a569efee1e650172f120a0fdcda024fe3e4703a4ee3336425c8f685af6b3abR1276-R1290): Introduced block-wise scaling for `Float8_e8m0fnu`, with checks for ROCm 7.0 and GPU architecture `gfx950`. Added validation for supported scalar types and matrix dimensions. [[1]](diffhunk://#diff-e8a569efee1e650172f120a0fdcda024fe3e4703a4ee3336425c8f685af6b3abR1276-R1290) [[2]](diffhunk://#diff-e8a569efee1e650172f120a0fdcda024fe3e4703a4ee3336425c8f685af6b3abR1349-R1364) ### Updates to scalar type mappings: * [`aten/src/ATen/cuda/CUDADataType.h`](diffhunk://#diff-9188bb13b1a49f459141f5f9b875593d1c5ce2beb5ad711fdbaf5bc7089ec015L93-R93): Extended scalar type mappings to support `Float4_e2m1fn_x2` for ROCm 7.0. * [`aten/src/ATen/cuda/tunable/GemmHipblaslt.h`](diffhunk://#diff-bfa1a3b5d4bef1892bf50338775f3b0fd8cd31fc1868148f3968b98aefb68e3fR88-R96): Added a constexpr mapping for `Float4_e2m1fn_x2` based on ROCm version. ### Enhancements to testing(@jagadish-amd): * [`test/test_matmul_cuda.py`](diffhunk://#diff-3f31c52b48cfddf8f4617d809f7695b2e4a1c78656f8c4b5143a4b45d01fcf23R765-R766): Updated tests to include new scalar types (`Float4_e2m1fn_x2`) and recipes (`mxfp4`). Added logic to handle different scaling recipes and validate compatibility with ROCm and CUDA versions. [[1]](diffhunk://#diff-3f31c52b48cfddf8f4617d809f7695b2e4a1c78656f8c4b5143a4b45d01fcf23R765-R766) [[2]](diffhunk://#diff-3f31c52b48cfddf8f4617d809f7695b2e4a1c78656f8c4b5143a4b45d01fcf23L1331-R1356) F592e669L1353R1472) These changes improve compatibility with newer hardware and software versions, enhance functionality for matrix operations, and ensure robust testing for the added features. Pull Request resolved: https://github.com/pytorch/pytorch/pull/151360 Approved by: https://github.com/drisspg, https://github.com/malfet
372 lines
15 KiB
Python
372 lines
15 KiB
Python
# mypy: ignore-errors
|
|
|
|
r"""This file is allowed to initialize CUDA context when imported."""
|
|
|
|
import functools
|
|
import torch
|
|
import torch.cuda
|
|
from torch.testing._internal.common_utils import LazyVal, TEST_NUMBA, TEST_WITH_ROCM, TEST_CUDA, IS_WINDOWS, IS_MACOS
|
|
import inspect
|
|
import contextlib
|
|
import os
|
|
import unittest
|
|
|
|
|
|
CUDA_ALREADY_INITIALIZED_ON_IMPORT = torch.cuda.is_initialized()
|
|
|
|
|
|
TEST_MULTIGPU = TEST_CUDA and torch.cuda.device_count() >= 2
|
|
CUDA_DEVICE = torch.device("cuda:0") if TEST_CUDA else None
|
|
# note: if ROCm is targeted, TEST_CUDNN is code for TEST_MIOPEN
|
|
if TEST_WITH_ROCM:
|
|
TEST_CUDNN = LazyVal(lambda: TEST_CUDA)
|
|
else:
|
|
TEST_CUDNN = LazyVal(lambda: TEST_CUDA and torch.backends.cudnn.is_acceptable(torch.tensor(1., device=CUDA_DEVICE)))
|
|
|
|
TEST_CUDNN_VERSION = LazyVal(lambda: torch.backends.cudnn.version() if TEST_CUDNN else 0)
|
|
|
|
SM53OrLater = LazyVal(lambda: torch.cuda.is_available() and torch.cuda.get_device_capability() >= (5, 3))
|
|
SM60OrLater = LazyVal(lambda: torch.cuda.is_available() and torch.cuda.get_device_capability() >= (6, 0))
|
|
SM70OrLater = LazyVal(lambda: torch.cuda.is_available() and torch.cuda.get_device_capability() >= (7, 0))
|
|
SM75OrLater = LazyVal(lambda: torch.cuda.is_available() and torch.cuda.get_device_capability() >= (7, 5))
|
|
SM80OrLater = LazyVal(lambda: torch.cuda.is_available() and torch.cuda.get_device_capability() >= (8, 0))
|
|
SM89OrLater = LazyVal(lambda: torch.cuda.is_available() and torch.cuda.get_device_capability() >= (8, 9))
|
|
SM90OrLater = LazyVal(lambda: torch.cuda.is_available() and torch.cuda.get_device_capability() >= (9, 0))
|
|
SM100OrLater = LazyVal(lambda: torch.cuda.is_available() and torch.cuda.get_device_capability() >= (10, 0))
|
|
SM120OrLater = LazyVal(lambda: torch.cuda.is_available() and torch.cuda.get_device_capability() >= (12, 0))
|
|
|
|
IS_THOR = LazyVal(lambda: torch.cuda.is_available() and torch.cuda.get_device_capability()[0] == 10
|
|
and torch.cuda.get_device_capability()[1] > 0)
|
|
IS_JETSON = LazyVal(lambda: torch.cuda.is_available() and (torch.cuda.get_device_capability() in [(7, 2), (8, 7)] or IS_THOR))
|
|
IS_SM89 = LazyVal(lambda: torch.cuda.is_available() and torch.cuda.get_device_capability() == (8, 9))
|
|
IS_SM90 = LazyVal(lambda: torch.cuda.is_available() and torch.cuda.get_device_capability() == (9, 0))
|
|
|
|
def evaluate_gfx_arch_within(arch_list):
|
|
if not torch.cuda.is_available():
|
|
return False
|
|
gcn_arch_name = torch.cuda.get_device_properties('cuda').gcnArchName
|
|
effective_arch = os.environ.get('PYTORCH_DEBUG_FLASH_ATTENTION_GCN_ARCH_OVERRIDE', gcn_arch_name)
|
|
# gcnArchName can be complicated strings like gfx90a:sramecc+:xnack-
|
|
# Hence the matching should be done reversely
|
|
return any(arch in effective_arch for arch in arch_list)
|
|
|
|
def CDNA3OrLater():
|
|
return evaluate_gfx_arch_within(["gfx940", "gfx941", "gfx942", "gfx950"])
|
|
|
|
def CDNA2OrLater():
|
|
return evaluate_gfx_arch_within(["gfx90a", "gfx942"])
|
|
|
|
def evaluate_platform_supports_flash_attention():
|
|
if TEST_WITH_ROCM:
|
|
arch_list = ["gfx90a", "gfx942", "gfx1100", "gfx1201", "gfx950"]
|
|
if os.environ.get("TORCH_ROCM_AOTRITON_ENABLE_EXPERIMENTAL", "0") != "0":
|
|
arch_list += ["gfx1101", "gfx1150", "gfx1151", "gfx1200"]
|
|
return evaluate_gfx_arch_within(arch_list)
|
|
if TEST_CUDA:
|
|
return not IS_WINDOWS and SM80OrLater
|
|
return False
|
|
|
|
def evaluate_platform_supports_efficient_attention():
|
|
if TEST_WITH_ROCM:
|
|
arch_list = ["gfx90a", "gfx942", "gfx1100", "gfx1201", "gfx950"]
|
|
if os.environ.get("TORCH_ROCM_AOTRITON_ENABLE_EXPERIMENTAL", "0") != "0":
|
|
arch_list += ["gfx1101", "gfx1150", "gfx1151", "gfx1200"]
|
|
return evaluate_gfx_arch_within(arch_list)
|
|
if TEST_CUDA:
|
|
return True
|
|
return False
|
|
|
|
def evaluate_platform_supports_cudnn_attention():
|
|
return (not TEST_WITH_ROCM) and SM80OrLater and (TEST_CUDNN_VERSION >= 90000)
|
|
|
|
PLATFORM_SUPPORTS_FLASH_ATTENTION: bool = LazyVal(lambda: evaluate_platform_supports_flash_attention())
|
|
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION: bool = LazyVal(lambda: evaluate_platform_supports_efficient_attention())
|
|
PLATFORM_SUPPORTS_CUDNN_ATTENTION: bool = LazyVal(lambda: evaluate_platform_supports_cudnn_attention())
|
|
# This condition always evaluates to PLATFORM_SUPPORTS_MEM_EFF_ATTENTION but for logical clarity we keep it separate
|
|
PLATFORM_SUPPORTS_FUSED_ATTENTION: bool = LazyVal(lambda: PLATFORM_SUPPORTS_FLASH_ATTENTION or
|
|
PLATFORM_SUPPORTS_CUDNN_ATTENTION or
|
|
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION)
|
|
|
|
PLATFORM_SUPPORTS_FUSED_SDPA: bool = TEST_CUDA and not TEST_WITH_ROCM
|
|
|
|
PLATFORM_SUPPORTS_BF16: bool = LazyVal(lambda: TEST_CUDA and SM80OrLater)
|
|
|
|
def evaluate_platform_supports_fp8():
|
|
if torch.cuda.is_available():
|
|
if torch.version.hip:
|
|
ROCM_VERSION = tuple(int(v) for v in torch.version.hip.split('.')[:2])
|
|
archs = ['gfx94']
|
|
if ROCM_VERSION >= (6, 3):
|
|
archs.extend(['gfx120'])
|
|
if ROCM_VERSION >= (6, 5):
|
|
archs.append('gfx95')
|
|
for arch in archs:
|
|
if arch in torch.cuda.get_device_properties(0).gcnArchName:
|
|
return True
|
|
else:
|
|
return SM90OrLater or torch.cuda.get_device_capability() == (8, 9)
|
|
return False
|
|
|
|
def evaluate_platform_supports_fp8_grouped_gemm():
|
|
if torch.cuda.is_available():
|
|
if torch.version.hip:
|
|
if "USE_FBGEMM_GENAI" not in torch.__config__.show():
|
|
return False
|
|
archs = ['gfx942']
|
|
for arch in archs:
|
|
if arch in torch.cuda.get_device_properties(0).gcnArchName:
|
|
return True
|
|
else:
|
|
return SM90OrLater and not SM100OrLater
|
|
return False
|
|
|
|
def evaluate_platform_supports_mx_gemm():
|
|
if torch.cuda.is_available():
|
|
if torch.version.hip:
|
|
ROCM_VERSION = tuple(int(v) for v in torch.version.hip.split('.')[:2])
|
|
if ROCM_VERSION >= (7, 0):
|
|
return 'gfx950' in torch.cuda.get_device_properties(0).gcnArchName
|
|
else:
|
|
return SM100OrLater
|
|
return False
|
|
|
|
PLATFORM_SUPPORTS_MX_GEMM: bool = LazyVal(lambda: evaluate_platform_supports_mx_gemm())
|
|
PLATFORM_SUPPORTS_FP8: bool = LazyVal(lambda: evaluate_platform_supports_fp8())
|
|
PLATFORM_SUPPORTS_FP8_GROUPED_GEMM: bool = LazyVal(lambda: evaluate_platform_supports_fp8_grouped_gemm())
|
|
|
|
if TEST_NUMBA:
|
|
try:
|
|
import numba.cuda
|
|
TEST_NUMBA_CUDA = numba.cuda.is_available()
|
|
except Exception:
|
|
TEST_NUMBA_CUDA = False
|
|
TEST_NUMBA = False
|
|
else:
|
|
TEST_NUMBA_CUDA = False
|
|
|
|
# Used below in `initialize_cuda_context_rng` to ensure that CUDA context and
|
|
# RNG have been initialized.
|
|
__cuda_ctx_rng_initialized = False
|
|
|
|
|
|
# after this call, CUDA context and RNG must have been initialized on each GPU
|
|
def initialize_cuda_context_rng():
|
|
global __cuda_ctx_rng_initialized
|
|
assert TEST_CUDA, 'CUDA must be available when calling initialize_cuda_context_rng'
|
|
if not __cuda_ctx_rng_initialized:
|
|
# initialize cuda context and rng for memory tests
|
|
for i in range(torch.cuda.device_count()):
|
|
torch.randn(1, device=f"cuda:{i}")
|
|
__cuda_ctx_rng_initialized = True
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def tf32_off():
|
|
old_allow_tf32_matmul = torch.backends.cuda.matmul.allow_tf32
|
|
try:
|
|
torch.backends.cuda.matmul.allow_tf32 = False
|
|
with torch.backends.cudnn.flags(enabled=None, benchmark=None, deterministic=None, allow_tf32=False):
|
|
yield
|
|
finally:
|
|
torch.backends.cuda.matmul.allow_tf32 = old_allow_tf32_matmul
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def tf32_on(self, tf32_precision=1e-5):
|
|
if torch.version.hip:
|
|
hip_allow_tf32 = os.environ.get("HIPBLASLT_ALLOW_TF32", None)
|
|
os.environ["HIPBLASLT_ALLOW_TF32"] = "1"
|
|
old_allow_tf32_matmul = torch.backends.cuda.matmul.allow_tf32
|
|
old_precision = self.precision
|
|
try:
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
self.precision = tf32_precision
|
|
with torch.backends.cudnn.flags(enabled=None, benchmark=None, deterministic=None, allow_tf32=True):
|
|
yield
|
|
finally:
|
|
if torch.version.hip:
|
|
if hip_allow_tf32 is not None:
|
|
os.environ["HIPBLASLT_ALLOW_TF32"] = hip_allow_tf32
|
|
else:
|
|
del os.environ["HIPBLASLT_ALLOW_TF32"]
|
|
torch.backends.cuda.matmul.allow_tf32 = old_allow_tf32_matmul
|
|
self.precision = old_precision
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def tf32_enabled():
|
|
"""
|
|
Context manager to temporarily enable TF32 for CUDA operations.
|
|
Restores the previous TF32 state after exiting the context.
|
|
"""
|
|
old_allow_tf32_matmul = torch.backends.cuda.matmul.allow_tf32
|
|
try:
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
with torch.backends.cudnn.flags(
|
|
enabled=None, benchmark=None, deterministic=None, allow_tf32=True
|
|
):
|
|
yield
|
|
finally:
|
|
torch.backends.cuda.matmul.allow_tf32 = old_allow_tf32_matmul
|
|
|
|
|
|
# This is a wrapper that wraps a test to run this test twice, one with
|
|
# allow_tf32=True, another with allow_tf32=False. When running with
|
|
# allow_tf32=True, it will use reduced precision as specified by the
|
|
# argument. For example:
|
|
# @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
|
|
# @tf32_on_and_off(0.005)
|
|
# def test_matmul(self, device, dtype):
|
|
# a = ...; b = ...;
|
|
# c = torch.matmul(a, b)
|
|
# self.assertEqual(c, expected)
|
|
# In the above example, when testing torch.float32 and torch.complex64 on CUDA
|
|
# on a CUDA >= 11 build on an >=Ampere architecture, the matmul will be running at
|
|
# TF32 mode and TF32 mode off, and on TF32 mode, the assertEqual will use reduced
|
|
# precision to check values.
|
|
#
|
|
# This decorator can be used for function with or without device/dtype, such as
|
|
# @tf32_on_and_off(0.005)
|
|
# def test_my_op(self)
|
|
# @tf32_on_and_off(0.005)
|
|
# def test_my_op(self, device)
|
|
# @tf32_on_and_off(0.005)
|
|
# def test_my_op(self, device, dtype)
|
|
# @tf32_on_and_off(0.005)
|
|
# def test_my_op(self, dtype)
|
|
# if neither device nor dtype is specified, it will check if the system has ampere device
|
|
# if device is specified, it will check if device is cuda
|
|
# if dtype is specified, it will check if dtype is float32 or complex64
|
|
# tf32 and fp32 are different only when all the three checks pass
|
|
def tf32_on_and_off(tf32_precision=1e-5):
|
|
def with_tf32_disabled(self, function_call):
|
|
with tf32_off():
|
|
function_call()
|
|
|
|
def with_tf32_enabled(self, function_call):
|
|
with tf32_on(self, tf32_precision):
|
|
function_call()
|
|
|
|
def wrapper(f):
|
|
params = inspect.signature(f).parameters
|
|
arg_names = tuple(params.keys())
|
|
|
|
@functools.wraps(f)
|
|
def wrapped(*args, **kwargs):
|
|
kwargs.update(zip(arg_names, args))
|
|
cond = torch.cuda.is_tf32_supported()
|
|
if 'device' in kwargs:
|
|
cond = cond and (torch.device(kwargs['device']).type == 'cuda')
|
|
if 'dtype' in kwargs:
|
|
cond = cond and (kwargs['dtype'] in {torch.float32, torch.complex64})
|
|
if cond:
|
|
with_tf32_disabled(kwargs['self'], lambda: f(**kwargs))
|
|
with_tf32_enabled(kwargs['self'], lambda: f(**kwargs))
|
|
else:
|
|
f(**kwargs)
|
|
|
|
return wrapped
|
|
return wrapper
|
|
|
|
|
|
# This is a wrapper that wraps a test to run it with TF32 turned off.
|
|
# This wrapper is designed to be used when a test uses matmul or convolutions
|
|
# but the purpose of that test is not testing matmul or convolutions.
|
|
# Disabling TF32 will enforce torch.float tensors to be always computed
|
|
# at full precision.
|
|
def with_tf32_off(f):
|
|
@functools.wraps(f)
|
|
def wrapped(*args, **kwargs):
|
|
with tf32_off():
|
|
return f(*args, **kwargs)
|
|
|
|
return wrapped
|
|
|
|
def _get_magma_version():
|
|
if 'Magma' not in torch.__config__.show():
|
|
return (0, 0)
|
|
position = torch.__config__.show().find('Magma ')
|
|
version_str = torch.__config__.show()[position + len('Magma '):].split('\n')[0]
|
|
return tuple(int(x) for x in version_str.split("."))
|
|
|
|
def _get_torch_cuda_version():
|
|
if torch.version.cuda is None:
|
|
return (0, 0)
|
|
cuda_version = str(torch.version.cuda)
|
|
return tuple(int(x) for x in cuda_version.split("."))
|
|
|
|
def _get_torch_rocm_version():
|
|
if not TEST_WITH_ROCM or torch.version.hip is None:
|
|
return (0, 0)
|
|
rocm_version = str(torch.version.hip)
|
|
rocm_version = rocm_version.split("-", maxsplit=1)[0] # ignore git sha
|
|
return tuple(int(x) for x in rocm_version.split("."))
|
|
|
|
def _check_cusparse_generic_available():
|
|
return not TEST_WITH_ROCM
|
|
|
|
def _check_hipsparse_generic_available():
|
|
if not TEST_WITH_ROCM:
|
|
return False
|
|
if not torch.version.hip:
|
|
return False
|
|
|
|
rocm_version = str(torch.version.hip)
|
|
rocm_version = rocm_version.split("-", maxsplit=1)[0] # ignore git sha
|
|
rocm_version_tuple = tuple(int(x) for x in rocm_version.split("."))
|
|
return not (rocm_version_tuple is None or rocm_version_tuple < (5, 1))
|
|
|
|
|
|
TEST_CUSPARSE_GENERIC = _check_cusparse_generic_available()
|
|
TEST_HIPSPARSE_GENERIC = _check_hipsparse_generic_available()
|
|
|
|
# Shared by test_torch.py and test_multigpu.py
|
|
def _create_scaling_models_optimizers(device="cuda", optimizer_ctor=torch.optim.SGD, optimizer_kwargs=None):
|
|
# Create a module+optimizer that will use scaling, and a control module+optimizer
|
|
# that will not use scaling, against which the scaling-enabled module+optimizer can be compared.
|
|
mod_control = torch.nn.Sequential(torch.nn.Linear(8, 8), torch.nn.Linear(8, 8)).to(device=device)
|
|
mod_scaling = torch.nn.Sequential(torch.nn.Linear(8, 8), torch.nn.Linear(8, 8)).to(device=device)
|
|
with torch.no_grad():
|
|
for c, s in zip(mod_control.parameters(), mod_scaling.parameters()):
|
|
s.copy_(c)
|
|
|
|
kwargs = {"lr": 1.0}
|
|
if optimizer_kwargs is not None:
|
|
kwargs.update(optimizer_kwargs)
|
|
opt_control = optimizer_ctor(mod_control.parameters(), **kwargs)
|
|
opt_scaling = optimizer_ctor(mod_scaling.parameters(), **kwargs)
|
|
|
|
return mod_control, mod_scaling, opt_control, opt_scaling
|
|
|
|
# Shared by test_torch.py, test_cuda.py and test_multigpu.py
|
|
def _create_scaling_case(device="cuda", dtype=torch.float, optimizer_ctor=torch.optim.SGD, optimizer_kwargs=None):
|
|
data = [(torch.randn((8, 8), dtype=dtype, device=device), torch.randn((8, 8), dtype=dtype, device=device)),
|
|
(torch.randn((8, 8), dtype=dtype, device=device), torch.randn((8, 8), dtype=dtype, device=device)),
|
|
(torch.randn((8, 8), dtype=dtype, device=device), torch.randn((8, 8), dtype=dtype, device=device)),
|
|
(torch.randn((8, 8), dtype=dtype, device=device), torch.randn((8, 8), dtype=dtype, device=device))]
|
|
|
|
loss_fn = torch.nn.MSELoss().to(device)
|
|
|
|
skip_iter = 2
|
|
|
|
return _create_scaling_models_optimizers(
|
|
device=device, optimizer_ctor=optimizer_ctor, optimizer_kwargs=optimizer_kwargs,
|
|
) + (data, loss_fn, skip_iter)
|
|
|
|
|
|
def xfailIfSM89(func):
|
|
return func if not IS_SM89 else unittest.expectedFailure(func)
|
|
|
|
def xfailIfSM100OrLater(func):
|
|
return func if not SM100OrLater else unittest.expectedFailure(func)
|
|
|
|
def xfailIfSM120OrLater(func):
|
|
return func if not SM120OrLater else unittest.expectedFailure(func)
|
|
|
|
def xfailIfDistributedNotSupported(func):
|
|
return func if not (IS_MACOS or IS_JETSON) else unittest.expectedFailure(func)
|
|
|
|
# Importing this module should NOT eagerly initialize CUDA
|
|
if not CUDA_ALREADY_INITIALIZED_ON_IMPORT:
|
|
assert not torch.cuda.is_initialized()
|