Files
pytorch/c10/metal/utils.h
Nikita Shulga e2a5c42e7e [BE][MPS] Build metal kernels of MacOS-14+ (#159733)
Which makes `#if __METAL_VERSION__ >= 310` guards for `bfloat` use support unnecessary.
Rename `kernels_bfloat.metallib` into `kernels_basic` and remove custom build/selection logic.

Part of https://github.com/pytorch/pytorch/issues/159275
Pull Request resolved: https://github.com/pytorch/pytorch/pull/159733
Approved by: https://github.com/dcci
ghstack dependencies: #159731, #159732
2025-08-03 20:53:58 +00:00

333 lines
7.6 KiB
C++

// Metal helper functions
#pragma once
#include <c10/metal/common.h>
#include <metal_stdlib>
namespace c10 {
namespace metal {
namespace detail {
template <typename T>
struct vectypes {};
template <>
struct vectypes<float> {
using type4 = float4;
using type3 = float3;
using type2 = float2;
};
template <>
struct vectypes<half> {
using type4 = half4;
using type3 = half3;
using type2 = half2;
};
template <>
struct vectypes<bfloat> {
using type4 = bfloat4;
using type3 = bfloat3;
using type2 = bfloat2;
};
template <>
struct vectypes<short> {
using type4 = short4;
using type3 = short3;
using type2 = short2;
};
template <>
struct vectypes<int> {
using type4 = int4;
using type3 = int3;
using type2 = int2;
};
template <>
struct vectypes<long> {
using type4 = short4;
using type3 = short3;
using type2 = short2;
};
template <typename T>
struct OpMathType {
using type = T;
};
template <>
struct OpMathType<half> {
using type = float;
};
template <>
struct OpMathType<short> {
using type = int;
};
template <>
struct OpMathType<char> {
using type = int;
};
template <>
struct OpMathType<uchar> {
using type = int;
};
template <>
struct OpMathType<bfloat> {
using type = float;
};
// Type promotion structure for higher precision accumulation
template <typename T>
struct AccumulationType {
using type = T;
};
// Specialization for half - promote to float for accumulation
template <>
struct AccumulationType<half> {
using type = float;
};
// Specialization for bfloat - promote to float for accumulation
template <>
struct AccumulationType<bfloat> {
using type = float;
};
} // namespace detail
template <typename T>
::metal::enable_if_t<::metal::is_floating_point_v<T>, T> max(T a, T b) {
return ::metal::isunordered(a, b) ? NAN : ::metal::max(a, b);
}
template <typename T, typename U>
::metal::enable_if_t<::metal::is_integral_v<T>&& ::metal::is_integral_v<U>, T>
max(T a, U b) {
return ::metal::max(a, static_cast<T>(b));
}
template <typename T>
::metal::enable_if_t<::metal::is_floating_point_v<T>, T> min(T a, T b) {
return ::metal::isunordered(a, b) ? NAN : ::metal::min(a, b);
}
template <typename T, typename U>
::metal::enable_if_t<::metal::is_integral_v<T>&& ::metal::is_integral_v<U>, T>
min(T a, U b) {
return ::metal::min(a, static_cast<T>(b));
}
template <>
inline bfloat min(bfloat a, bfloat b) {
return bfloat(
::metal::isunordered(a, b) ? NAN : ::metal::min(float(a), float(b)));
}
template <>
inline bfloat max(bfloat a, bfloat b) {
return bfloat(
::metal::isunordered(a, b) ? NAN : ::metal::max(float(a), float(b)));
}
template <typename T>
using vec2type_t = typename detail::vectypes<T>::type2;
template <typename T>
using vec4type_t = typename detail::vectypes<T>::type4;
template <typename T>
using opmath_t = typename detail::OpMathType<T>::type;
template <typename T>
using accum_t = typename detail::AccumulationType<T>::type;
// TODO: Move it to type_traits header may be
template <typename F, typename... Args>
using result_of = decltype(::metal::declval<F>()(::metal::declval<Args>()...));
template <typename T>
constexpr constant bool is_complex_v =
::metal::is_same_v<T, float2> || ::metal::is_same_v<T, half2>;
template <typename T>
constexpr constant bool is_scalar_floating_point_v =
::metal::is_floating_point_v<T> && ::metal::is_scalar_v<T>;
template <typename T>
constexpr constant bool is_scalar_integral_v =
::metal::is_integral_v<T> && ::metal::is_scalar_v<T>;
template <typename U, typename V>
using common_dtype = decltype(U(0) + V(0));
// floor_divide
template <
typename T,
typename U,
::metal::enable_if_t<
is_scalar_integral_v<T> && is_scalar_integral_v<U>,
bool> = true>
inline common_dtype<T, U> floor_divide(T x, U y) {
const auto quot = x / y;
return (x < 0) == (y < 0) ? quot : (x % y != 0) ? quot - 1 : quot;
}
template <
typename T,
typename U,
::metal::enable_if_t<
is_scalar_floating_point_v<T> && is_scalar_floating_point_v<U>,
bool> = true>
inline common_dtype<T, U> floor_divide(T x, U y) {
return ::metal::floor(x / y);
}
// fmod
template <
typename T,
typename U,
::metal::enable_if_t<
is_scalar_integral_v<T> && is_scalar_integral_v<U>,
bool> = true>
inline common_dtype<T, U> fmod(T x, U y) {
return x % y;
}
template <
typename T,
typename U,
::metal::enable_if_t<
is_scalar_floating_point_v<T> && is_scalar_floating_point_v<U>,
bool> = true>
inline common_dtype<T, U> fmod(T x, U y) {
return ::metal::fmod(x, y);
}
// cast_to primitives
// - No-op if types as the same
template <
typename T,
typename U,
::metal::enable_if_t<::metal::is_same_v<U, T>, bool> = true>
inline T cast_to(const U from) {
return from;
}
// - Simple cast between scalar and complex dtypes
template <
typename T,
typename U,
::metal::enable_if_t<
!::metal::is_same_v<U, T> && (is_complex_v<T> == is_complex_v<U>),
bool> = true>
inline T cast_to(const U from) {
return static_cast<T>(from);
}
// - Scalar to complex
template <
typename T,
typename U,
::metal::enable_if_t<is_complex_v<T> && !is_complex_v<U>, bool> = true>
inline T cast_to(const U from) {
return T(float(from), 0.0);
}
// - Complex to scalar (should not really be used, but exists for compliteness)
template <
typename T,
typename U,
::metal::enable_if_t<!is_complex_v<T> && is_complex_v<U>, bool> = true>
inline T cast_to(const U from) {
return static_cast<T>(from.x);
}
// Generalizable math operators (used for both scalar and complex)
template <
typename T,
typename U,
::metal::enable_if_t<!is_complex_v<T>, bool> = true>
inline common_dtype<T, U> mul(const T x, const U y) {
return x * y;
}
template <
typename T,
typename U,
::metal::enable_if_t<is_complex_v<T> && is_complex_v<U>, bool> = true>
inline common_dtype<T, U> mul(const T x, const U y) {
return T(x.x * y.x - x.y * y.y, x.x * y.y + x.y * y.x);
}
template <
typename T,
typename U,
::metal::enable_if_t<!is_complex_v<T>, bool> = true>
inline common_dtype<T, U> div(const T x, const U y) {
return x / y;
}
template <
typename T,
typename U,
::metal::enable_if_t<is_complex_v<T> && is_complex_v<U>, bool> = true>
inline common_dtype<T, U> div(const T x, const U y) {
return T(::metal::dot(x, y), x.y * y.x - x.x * y.y) / ::metal::dot(y, y);
}
// Remainder operator
template <
typename T,
typename U,
::metal::enable_if_t<
is_scalar_floating_point_v<T> || is_scalar_floating_point_v<U>,
bool> = true>
inline float remainder(const T x, const U y) {
const auto x_f = static_cast<float>(x);
const auto y_f = static_cast<float>(y);
return x_f - y_f * floor_divide(x_f, y_f);
}
template <
typename T,
typename U,
::metal::enable_if_t<
is_scalar_integral_v<T> && is_scalar_integral_v<U>,
bool> = true>
inline common_dtype<T, U> remainder(const T x, const U y) {
auto rc = x % y;
return rc == 0 || (x ^ y) > 0 ? rc : rc + y;
}
// Based on algorithm described in
// https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1202
inline float log1p(float x) {
const auto xp1 = 1.0f + x;
// First two elements of Taylor series for log(1+x) in Horner's form are:
// log(1+x) = x * (1 - x * (.5 ...)), but if 1 + x == x, then it's just x
if (xp1 == 1.0f) {
return x;
}
auto rc = ::metal::precise::log(xp1);
if (x > -.5 && x < .5) {
// Order of operations is important here for higher precision
rc *= x / (xp1 - 1.0f);
}
return rc;
}
template <typename T1, typename T2 = T1>
struct pair {
T1 first;
T2 second;
};
} // namespace metal
} // namespace c10