mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
# Summary Use the private _scaled_dot_product_attention to support _native_multiheaded_attention. _SDP provides access to fused kernels when certain conditions are meant enabling a speed up for MHA. cc @cpuhrsch @jbschlosser @bhosmer @mikaylagawarecki Pull Request resolved: https://github.com/pytorch/pytorch/pull/87312 Approved by: https://github.com/cpuhrsch
332 lines
13 KiB
Python
332 lines
13 KiB
Python
# Owner(s): ["module: nn"]
|
|
import math
|
|
import copy
|
|
|
|
import torch
|
|
from torch.testing._internal.common_device_type import (
|
|
dtypes,
|
|
dtypesIfCUDA,
|
|
instantiate_device_type_tests,
|
|
onlyCUDA,
|
|
skipMeta,
|
|
)
|
|
from torch.testing._internal.common_utils import parametrize, run_tests, TestCase
|
|
|
|
class TestMHADeviceType(TestCase):
|
|
@torch.no_grad()
|
|
def _test_transform_bias_rescale_qkv_impl(
|
|
self, device, dtype, use_nt, use_padding=False
|
|
):
|
|
tests = [
|
|
(64, 4, 16, 8),
|
|
# dim_per_head = 12 does not divide evenly by CPU vectorization length of 8
|
|
(24, 2, 4, 2),
|
|
# Make sure CUDA can handle small input sizes
|
|
(2, 2, 2, 2),
|
|
# dim_per_head = 6 does not divide evenly by CUDA vectorization length of 4,
|
|
# causes alignment issues
|
|
(24, 4, 4, 2),
|
|
(48, 4, 16, 8),
|
|
]
|
|
for (embed_dim, num_heads, bs, sl) in tests:
|
|
with self.subTest(embed_dim=embed_dim, num_heads=num_heads, bs=bs, sl=sl):
|
|
torch.manual_seed(9343)
|
|
dense_x = x = (
|
|
torch.randn(bs, sl, 3 * embed_dim, device=device, dtype=dtype) * 10
|
|
)
|
|
if use_padding:
|
|
x[0][-1] = torch.full(x[0][-1].shape, float("-Inf"))
|
|
if use_nt:
|
|
xs = list(torch.unbind(x))
|
|
if use_padding:
|
|
xs[0] = xs[0][:-1]
|
|
x = torch.nested.nested_tensor(xs, device=device, dtype=dtype)
|
|
qkv = torch.nn.Linear(embed_dim, 3 * embed_dim, device=device, dtype=dtype)
|
|
|
|
# We have to use inference_mode here because q/k/v are
|
|
# all views of the same Tensor, which autograd doesn't
|
|
# like. This is fine because this function is only
|
|
# exposed to Python for purposes of writing this test.
|
|
with torch.inference_mode():
|
|
(q, k, v) = torch._transform_bias_rescale_qkv(
|
|
x, qkv.bias, num_heads=num_heads
|
|
)
|
|
|
|
def simple_transform_bias_rescale_qkv(qkv, bias):
|
|
(q, k, v) = torch.split(qkv, embed_dim, dim=-1)
|
|
(q_bias, k_bias, v_bias) = torch.split(bias, embed_dim, dim=-1)
|
|
|
|
def embiggen(x):
|
|
if not use_nt:
|
|
return x
|
|
b, t, d = x.size()
|
|
t = t + (8 - t % 8) % 8
|
|
newsize = (b, t, d)
|
|
new_x = torch.zeros(newsize, device=device, dtype=dtype)
|
|
new_x[:x.size()[0], :x.size()[1], :x.size()[2]] = x
|
|
return new_x
|
|
return tuple(
|
|
embiggen(x).reshape(
|
|
(bs, -1, num_heads, embed_dim // num_heads)
|
|
).transpose(2, 1)
|
|
for x in (
|
|
(q + q_bias) / math.sqrt(embed_dim // num_heads),
|
|
(k + k_bias),
|
|
(v + v_bias),
|
|
)
|
|
)
|
|
|
|
correct_q, correct_k, correct_v = simple_transform_bias_rescale_qkv(
|
|
dense_x, qkv.bias
|
|
)
|
|
if use_nt and use_padding:
|
|
for t in (correct_q, correct_k, correct_v):
|
|
t[t == float("-Inf")] = 0
|
|
|
|
self.assertEqual(q.size(), correct_q.size())
|
|
torch.testing.assert_close(q, correct_q)
|
|
torch.testing.assert_close(k, correct_k)
|
|
torch.testing.assert_close(v, correct_v)
|
|
|
|
@dtypesIfCUDA(torch.float)
|
|
@dtypes(torch.float)
|
|
@skipMeta
|
|
def test_transform_bias_rescale_qkv(self, device, dtype):
|
|
for use_padding in (False, True):
|
|
with self.subTest(use_padding=use_padding):
|
|
self._test_transform_bias_rescale_qkv_impl(
|
|
device, dtype, use_nt=False, use_padding=use_padding
|
|
)
|
|
|
|
@dtypesIfCUDA(torch.float)
|
|
@dtypes(torch.float)
|
|
@skipMeta
|
|
@onlyCUDA
|
|
def test_transform_bias_rescale_qkv_nested(self, device, dtype):
|
|
for use_padding in (False, True):
|
|
with self.subTest(use_padding=use_padding):
|
|
self._test_transform_bias_rescale_qkv_impl(
|
|
device, dtype, use_nt=True, use_padding=use_padding
|
|
)
|
|
|
|
def _test_multihead_attention_impl(
|
|
self, device, dtype, mode, use_nt, need_weights, average_attn_weights, use_padding=False, pad_all=False
|
|
):
|
|
embed_dim = 64
|
|
num_heads = 4
|
|
bs = 16
|
|
sl = 8
|
|
|
|
q = 6 * torch.rand(bs, sl, embed_dim, device=device, dtype=torch.float32) - 3
|
|
if use_padding:
|
|
if pad_all:
|
|
for q_i in q:
|
|
q_i[-1] = torch.zeros_like(q[0][-1], device=device, dtype=torch.float32)
|
|
mask = torch.zeros(q.shape[:-1], device=device, dtype=torch.bool)
|
|
for mask_i in mask:
|
|
mask_i[-1] = True
|
|
else:
|
|
q[0][-1] = torch.zeros_like(q[0][-1], device=device, dtype=torch.float32)
|
|
mask = torch.zeros(q.shape[:-1], device=device, dtype=torch.bool)
|
|
mask[0][-1] = True
|
|
if mode == "self":
|
|
k = q
|
|
v = q
|
|
elif mode == "encdec":
|
|
k = 6 * torch.rand(bs, sl, embed_dim, device=device, dtype=torch.float32) - 3
|
|
v = k
|
|
elif mode == "generic":
|
|
k = 6 * torch.rand(bs, sl, embed_dim, device=device, dtype=torch.float32) - 3
|
|
v = 6 * torch.rand(bs, sl, embed_dim, device=device, dtype=torch.float32) - 3
|
|
else:
|
|
self.fail(f"invalid mode `{mode}`!")
|
|
|
|
qkv = torch.nn.Linear(embed_dim, 3 * embed_dim, device=device, dtype=torch.float32)
|
|
native_qkv = copy.deepcopy(qkv).to(dtype=dtype)
|
|
|
|
proj = torch.nn.Linear(embed_dim, embed_dim, device=device, dtype=torch.float32)
|
|
native_proj = copy.deepcopy(proj).to(dtype=dtype)
|
|
|
|
pt = torch.nn.MultiheadAttention(
|
|
embed_dim, num_heads, batch_first=True, device=device, dtype=torch.float32
|
|
)
|
|
|
|
pt.in_proj_weight = qkv.weight
|
|
pt.in_proj_bias = qkv.bias
|
|
pt.out_proj.weight = proj.weight
|
|
pt.out_proj.bias = proj.bias
|
|
|
|
class NativeMHA(torch.nn.Module):
|
|
def __init__(self, embed_dim, num_heads, qkv, proj):
|
|
super().__init__()
|
|
self.qkv = qkv
|
|
self.proj = proj
|
|
self.embed_dim = embed_dim
|
|
self.num_heads = num_heads
|
|
|
|
def forward(self, q, k, v, key_padding_mask):
|
|
return torch._native_multi_head_attention(
|
|
q,
|
|
k,
|
|
v,
|
|
self.embed_dim,
|
|
self.num_heads,
|
|
self.qkv.weight,
|
|
self.qkv.bias,
|
|
self.proj.weight,
|
|
self.proj.bias,
|
|
key_padding_mask,
|
|
need_weights=need_weights,
|
|
average_attn_weights=average_attn_weights,
|
|
mask_type=1, # mask_type = 1 => src_key_padding_mask, mask_type = 0 => src_mask
|
|
)
|
|
|
|
npt = NativeMHA(
|
|
embed_dim=embed_dim, num_heads=num_heads, qkv=native_qkv, proj=native_proj
|
|
).to(dtype)
|
|
|
|
if device == "cuda":
|
|
pt = pt.cuda()
|
|
npt = npt.cuda()
|
|
|
|
ypt, weight_pt = pt(
|
|
q,
|
|
k,
|
|
v,
|
|
need_weights=need_weights,
|
|
average_attn_weights=average_attn_weights,
|
|
key_padding_mask=mask if use_padding else None,
|
|
)
|
|
if use_nt:
|
|
qs = list(torch.unbind(q))
|
|
if use_padding:
|
|
if pad_all:
|
|
qs = [x[:-1] for x in qs]
|
|
else:
|
|
qs[0] = qs[0][:-1]
|
|
q = torch.nested.nested_tensor(qs, device=device, dtype=dtype)
|
|
if mode == "self":
|
|
k = v = q
|
|
elif mode == "encdec":
|
|
k = torch.nested.nested_tensor(torch.unbind(k), device=device, dtype=dtype)
|
|
v = k
|
|
else:
|
|
k = torch.nested.nested_tensor(torch.unbind(k), device=device, dtype=dtype)
|
|
v = torch.nested.nested_tensor(torch.unbind(v), device=device, dtype=dtype)
|
|
|
|
native_q = q.to(dtype=dtype)
|
|
native_k = k.to(dtype=dtype)
|
|
native_v = v.to(dtype=dtype)
|
|
|
|
ynpt, weight_npt = npt(
|
|
native_q, native_k, native_v, key_padding_mask=mask if use_padding and not use_nt else None
|
|
)
|
|
if use_nt:
|
|
ynpt = ynpt.to_padded_tensor(0)
|
|
if pad_all:
|
|
ynpt_final = torch.zeros_like(ypt)
|
|
ynpt_final[:, :ynpt.shape[1], :] = ynpt
|
|
ynpt = ynpt_final
|
|
|
|
def do_pad_all(tensors):
|
|
for t in tensors:
|
|
for t_i in t:
|
|
t_i[-1] = torch.zeros_like(t_i[-1], device=device, dtype=dtype)
|
|
|
|
# PyTorch implementation returns non-zero junk in the padding
|
|
# locations; overwrite it so that the comparison works out.
|
|
if use_padding:
|
|
ypt[0][-1] = torch.zeros_like(ypt[0][-1], device=device, dtype=dtype)
|
|
ynpt[0][-1] = torch.zeros_like(ynpt[0][-1], device=device, dtype=dtype)
|
|
if pad_all:
|
|
do_pad_all((ypt, ynpt))
|
|
# Zero the last row of each TxT weight matrix
|
|
if need_weights:
|
|
if average_attn_weights:
|
|
weight_pt[0][-1] = torch.zeros_like(weight_pt[0][-1], device=device, dtype=dtype)
|
|
weight_npt[0][-1] = torch.zeros_like(weight_npt[0][-1], device=device, dtype=dtype)
|
|
if pad_all:
|
|
do_pad_all((weight_pt, weight_npt))
|
|
else:
|
|
for nh in range(num_heads):
|
|
weight_pt[0][nh][-1] = torch.zeros_like(weight_pt[0][nh][-1], device=device, dtype=dtype)
|
|
weight_npt[0][nh][-1] = torch.zeros_like(weight_npt[0][nh][-1], device=device, dtype=dtype)
|
|
|
|
if dtype == torch.half:
|
|
torch.testing.assert_close(ypt, ynpt.to(torch.float32), atol=1e-3, rtol=1e-3)
|
|
else:
|
|
# High rtol seems necessary for
|
|
# test_native_multihead_attention_cpu_float32 on Windows,
|
|
# otherwise 2e-4 would likely be fine.
|
|
torch.testing.assert_close(ypt, ynpt, atol=2e-5, rtol=2e-3)
|
|
|
|
if need_weights:
|
|
torch.testing.assert_close(weight_pt, weight_npt.to(torch.float32), atol=5e-4, rtol=5e-4)
|
|
else:
|
|
self.assertEqual(weight_pt, weight_npt)
|
|
|
|
@dtypesIfCUDA(torch.float, torch.half)
|
|
@dtypes(torch.float)
|
|
@skipMeta
|
|
@parametrize("use_nt", [False, True])
|
|
@parametrize("use_padding, pad_all", [(False, False), (True, False), (True, True)])
|
|
@parametrize("need_weights", [False])
|
|
@parametrize("average_attn_weights", [False, True])
|
|
@parametrize("fused", [False, True])
|
|
@torch.no_grad()
|
|
def test_native_multihead_self_attention(self, device, dtype, use_nt,
|
|
need_weights, average_attn_weights, use_padding, pad_all, fused):
|
|
for need_weights in (False, not pad_all):
|
|
with self.subTest(use_padding=use_padding, pad_all=pad_all,
|
|
use_nt=use_nt, need_weights=need_weights,
|
|
average_attn_weights=average_attn_weights):
|
|
with torch.backends.cuda.sdp_kernel(
|
|
enable_flash=False, enable_mem_efficient=False
|
|
) if not fused else torch.backends.cuda.sdp_kernel(
|
|
enable_flash=True, enable_mem_efficient=True
|
|
):
|
|
self._test_multihead_attention_impl(
|
|
device,
|
|
dtype,
|
|
"self",
|
|
use_nt=use_nt,
|
|
use_padding=use_padding,
|
|
pad_all=pad_all,
|
|
need_weights=need_weights,
|
|
average_attn_weights=average_attn_weights,
|
|
)
|
|
|
|
@dtypesIfCUDA(torch.float, torch.half)
|
|
@dtypes(torch.float)
|
|
@skipMeta
|
|
@torch.no_grad()
|
|
def test_native_multihead_encoder_decoder_attention(self, device, dtype):
|
|
self._test_multihead_attention_impl(
|
|
device,
|
|
dtype,
|
|
"encdec",
|
|
use_nt=False,
|
|
need_weights=False,
|
|
average_attn_weights=False,
|
|
)
|
|
|
|
@dtypesIfCUDA(torch.float, torch.half)
|
|
@dtypes(torch.float)
|
|
@skipMeta
|
|
@torch.no_grad()
|
|
def test_native_multihead_attention(self, device, dtype):
|
|
self._test_multihead_attention_impl(
|
|
device,
|
|
dtype,
|
|
"generic",
|
|
use_nt=False,
|
|
need_weights=False,
|
|
average_attn_weights=False,
|
|
)
|
|
|
|
|
|
instantiate_device_type_tests(TestMHADeviceType, globals())
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|