Files
pytorch/torch/distributions/bernoulli.py
Maggie Moss b13cd141b3 Add pyrefly suppressions (#164748)
Adds suppressions to pyrefly will typecheck clean: https://github.com/pytorch/pytorch/issues/163283

Test plan:
dmypy restart && python3 scripts/lintrunner.py -a
pyrefly check

step 1: delete lines in the pyrefly.toml file from the `project-excludes` field
step 2: run pyrefly check
step 3: add suppressions, clean up unused suppressions
before: https://gist.github.com/maggiemoss/4b3bf2037014e116bc00706a16aef199

after:

0 errors (4,263 ignored)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164748
Approved by: https://github.com/oulgen
2025-10-07 17:31:18 +00:00

146 lines
4.7 KiB
Python

# mypy: allow-untyped-defs
from typing import Optional, Union
import torch
from torch import nan, Tensor
from torch.distributions import constraints
from torch.distributions.exp_family import ExponentialFamily
from torch.distributions.utils import (
broadcast_all,
lazy_property,
logits_to_probs,
probs_to_logits,
)
from torch.nn.functional import binary_cross_entropy_with_logits
from torch.types import _Number, Number
__all__ = ["Bernoulli"]
class Bernoulli(ExponentialFamily):
r"""
Creates a Bernoulli distribution parameterized by :attr:`probs`
or :attr:`logits` (but not both).
Samples are binary (0 or 1). They take the value `1` with probability `p`
and `0` with probability `1 - p`.
Example::
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> m = Bernoulli(torch.tensor([0.3]))
>>> m.sample() # 30% chance 1; 70% chance 0
tensor([ 0.])
Args:
probs (Number, Tensor): the probability of sampling `1`
logits (Number, Tensor): the log-odds of sampling `1`
validate_args (bool, optional): whether to validate arguments, None by default
"""
# pyrefly: ignore # bad-override
arg_constraints = {"probs": constraints.unit_interval, "logits": constraints.real}
support = constraints.boolean
has_enumerate_support = True
_mean_carrier_measure = 0
def __init__(
self,
probs: Optional[Union[Tensor, Number]] = None,
logits: Optional[Union[Tensor, Number]] = None,
validate_args: Optional[bool] = None,
) -> None:
if (probs is None) == (logits is None):
raise ValueError(
"Either `probs` or `logits` must be specified, but not both."
)
if probs is not None:
is_scalar = isinstance(probs, _Number)
# pyrefly: ignore # read-only
(self.probs,) = broadcast_all(probs)
else:
assert logits is not None # helps mypy
is_scalar = isinstance(logits, _Number)
# pyrefly: ignore # read-only
(self.logits,) = broadcast_all(logits)
self._param = self.probs if probs is not None else self.logits
if is_scalar:
batch_shape = torch.Size()
else:
batch_shape = self._param.size()
super().__init__(batch_shape, validate_args=validate_args)
def expand(self, batch_shape, _instance=None):
new = self._get_checked_instance(Bernoulli, _instance)
batch_shape = torch.Size(batch_shape)
if "probs" in self.__dict__:
new.probs = self.probs.expand(batch_shape)
new._param = new.probs
if "logits" in self.__dict__:
new.logits = self.logits.expand(batch_shape)
new._param = new.logits
super(Bernoulli, new).__init__(batch_shape, validate_args=False)
new._validate_args = self._validate_args
return new
def _new(self, *args, **kwargs):
return self._param.new(*args, **kwargs)
@property
def mean(self) -> Tensor:
return self.probs
@property
def mode(self) -> Tensor:
mode = (self.probs >= 0.5).to(self.probs)
mode[self.probs == 0.5] = nan
return mode
@property
def variance(self) -> Tensor:
return self.probs * (1 - self.probs)
@lazy_property
def logits(self) -> Tensor:
return probs_to_logits(self.probs, is_binary=True)
@lazy_property
def probs(self) -> Tensor:
return logits_to_probs(self.logits, is_binary=True)
@property
def param_shape(self) -> torch.Size:
return self._param.size()
def sample(self, sample_shape=torch.Size()):
shape = self._extended_shape(sample_shape)
with torch.no_grad():
return torch.bernoulli(self.probs.expand(shape))
def log_prob(self, value):
if self._validate_args:
self._validate_sample(value)
logits, value = broadcast_all(self.logits, value)
return -binary_cross_entropy_with_logits(logits, value, reduction="none")
def entropy(self):
return binary_cross_entropy_with_logits(
self.logits, self.probs, reduction="none"
)
def enumerate_support(self, expand=True):
values = torch.arange(2, dtype=self._param.dtype, device=self._param.device)
values = values.view((-1,) + (1,) * len(self._batch_shape))
if expand:
values = values.expand((-1,) + self._batch_shape)
return values
@property
def _natural_params(self) -> tuple[Tensor]:
return (torch.logit(self.probs),)
# pyrefly: ignore # bad-override
def _log_normalizer(self, x):
return torch.log1p(torch.exp(x))