Files
pytorch/test/cpp/jit/torch_python_test.cpp
Michael Andreas Dagitses 606b234336 turn on -Werror=unused-function in our Bazel CPU build
Summary:
We also fix any existing issues. Note that we only do this for the CPU
build because nvcc is considered a C++ toolchain but it does not have
the same flag support. Adding flags to the GPU build will cause nvcc
errors.

Test Plan: Built locally, rely on CI to confirm.

Reviewers: malfet

Subscribers:

Tasks:

Tags:

Pull Request resolved: https://github.com/pytorch/pytorch/pull/79154

Approved by: https://github.com/seemethere, https://github.com/osalpekar, https://github.com/albanD
2022-06-10 22:11:54 +00:00

88 lines
2.3 KiB
C++

#include <ATen/core/ivalue.h>
#include <c10/util/Exception.h>
#include <torch/csrc/Export.h>
#include <torch/csrc/jit/api/module.h>
#include <torch/script.h>
namespace torch {
namespace jit {
#ifdef _MSC_VER
#define JIT_TEST_API
#else
#define JIT_TEST_API TORCH_API
#endif
namespace {
bool isSandcastle() {
return (
(std::getenv("SANDCASTLE")) ||
(std::getenv("TW_JOB_USER") &&
std::string(std::getenv("TW_JOB_USER")) == "sandcastle"));
}
void testEvalModeForLoadedModule() {
if (isSandcastle())
return; // The module file to load is not generated in Sandcastle
std::string module_path = "dropout_model.pt";
torch::jit::Module module = torch::jit::load(module_path);
AT_ASSERT(module.attr("dropout").toModule().is_training());
module.eval();
AT_ASSERT(!module.attr("dropout").toModule().is_training());
module.train();
AT_ASSERT(module.attr("dropout").toModule().is_training());
}
// TODO: this test never ran before and is broken.
// void testSerializationInterop() {
// if (isSandcastle()) {
// // The module file to load is not generated in Sandcastle
// return;
// }
// // This should be generated by `test/cpp/jit/tests_setup.py`
// std::ifstream input_stream("ivalue.pt");
// std::vector<char> input;
// input.insert(
// input.begin(),
// std::istream_iterator<char>(input_stream),
// std::istream_iterator<char>());
// IValue ivalue = pickle_load(input);
// auto elements = ivalue.toTupleRef().elements();
// auto ones = torch::ones({2, 2});
// AT_ASSERT(ones.equal(elements.at(0).toTensor()));
// // NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
// auto twos = torch::ones({3, 5}) * 2;
// AT_ASSERT(twos.equal(elements.at(1).toTensor()));
// }
void testTorchSaveError() {
if (isSandcastle()) {
// The file to load is not generated in Sandcastle
return;
}
// This should be generated by `test/cpp/jit/tests_setup.py`
bool passed = true;
try {
torch::jit::load("eager_value.pt");
passed = false;
} catch (const std::exception& c) {
}
// Ensure torch::jit::load did not run
AT_ASSERT(passed);
}
} // namespace
JIT_TEST_API void runJITCPPTests() {
// TODO: this test never ran before and is broken.
// testSerializationInterop();
testEvalModeForLoadedModule();
testTorchSaveError();
}
} // namespace jit
} // namespace torch