mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Further cleaning up of torch_cpu header inclusions. Pull Request resolved: https://github.com/pytorch/pytorch/pull/109964 Approved by: https://github.com/ezyang, https://github.com/Skylion007
747 lines
30 KiB
C++
747 lines
30 KiB
C++
#include <gtest/gtest.h>
|
|
|
|
#include <ATen/Functions.h>
|
|
#include <test/cpp/jit/test_utils.h>
|
|
#include <torch/csrc/jit/ir/irparser.h>
|
|
#include <torch/csrc/jit/passes/concat_opt.h>
|
|
#include <torch/csrc/jit/passes/variadic_ops.h>
|
|
#include <torch/csrc/jit/runtime/interpreter.h>
|
|
#include <torch/csrc/jit/testing/file_check.h>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
|
|
TEST(ConcatOptTest, SimpleCommonInputsEliminationPrefix) {
|
|
auto graph = std::make_shared<Graph>();
|
|
|
|
const std::string input =
|
|
R"IR(
|
|
graph(%0: Float(64, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
|
|
%1: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
|
|
%2: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu)):
|
|
%5 : int = prim::Constant[value=0]()
|
|
%concat.2 : Float(96, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = prim::VarConcat(%0, %1, %5)
|
|
%concat.3 : Float(128, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = prim::VarConcat(%0, %1, %2, %5)
|
|
%res : Tensor[] = prim::ListConstruct(%concat.2, %concat.3)
|
|
return (%res)
|
|
)IR";
|
|
parseIR(input, graph.get());
|
|
std::vector<at::Tensor> inputs = {
|
|
at::rand({64, 56, 56}, at::kCPU),
|
|
at::rand({32, 56, 56}, at::kCPU),
|
|
at::rand({32, 56, 56}, at::kCPU)};
|
|
auto orig_outputs = runGraph(graph, inputs);
|
|
|
|
ASSERT_TRUE(EliminateConcatCommonInputs(graph));
|
|
graph->lint();
|
|
auto opt_outputs = runGraph(graph, inputs);
|
|
ASSERT_TRUE(exactlyEqual(orig_outputs, opt_outputs));
|
|
|
|
// Graph after EliminateConcatCommonInputs:
|
|
// graph(%0 : ...,
|
|
// %1 : ...,
|
|
// %2 : ...):
|
|
// %3 : int = prim::Constant[value=0]()
|
|
// %4 : Tensor = prim::VarConcat(%0, %1, %3)
|
|
// %7 : Tensor = prim::VarConcat(%4, %2, %3) // UPDATED
|
|
// %8 : Tensor[] = prim::ListConstruct(%4, %7)
|
|
// return (%8)
|
|
|
|
testing::FileCheck()
|
|
.check_count("= prim::VarConcat(%0, %1, %3)", 1, /*exactly*/ true)
|
|
->check_count("= prim::VarConcat(%4, %2, %3)", 1, /*exactly*/ true)
|
|
->check_count("= prim::ListConstruct(%4, %7)", 1, /*exactly*/ true)
|
|
->check_count("= aten::cat(", 0, /*exactly*/ true)
|
|
->check_count("= prim::ListConstruct(", 0, /*exactly*/ true)
|
|
->run(*graph);
|
|
}
|
|
|
|
TEST(ConcatOptTest, SimpleCommonInputsEliminationSuffix) {
|
|
auto graph = std::make_shared<Graph>();
|
|
|
|
const std::string input =
|
|
R"IR(
|
|
graph(%0: Float(64, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
|
|
%1: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
|
|
%2: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu)):
|
|
%5 : int = prim::Constant[value=0]()
|
|
%concat.2 : Float(96, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = prim::VarConcat(%1, %2, %5)
|
|
%concat.3 : Float(128, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = prim::VarConcat(%0, %1, %2, %5)
|
|
%res : Tensor[] = prim::ListConstruct(%concat.2, %concat.3)
|
|
return (%res)
|
|
)IR";
|
|
parseIR(input, graph.get());
|
|
std::vector<at::Tensor> inputs = {
|
|
at::rand({64, 56, 56}, at::kCPU),
|
|
at::rand({32, 56, 56}, at::kCPU),
|
|
at::rand({32, 56, 56}, at::kCPU)};
|
|
auto orig_outputs = runGraph(graph, inputs);
|
|
|
|
ASSERT_TRUE(EliminateConcatCommonInputs(graph));
|
|
graph->lint();
|
|
auto opt_outputs = runGraph(graph, inputs);
|
|
ASSERT_TRUE(exactlyEqual(orig_outputs, opt_outputs));
|
|
|
|
// Graph after EliminateConcatCommonInputs:
|
|
// graph(%0 : ...,
|
|
// %1 : ...,
|
|
// %2 : ...):
|
|
// %3 : int = prim::Constant[value=0]()
|
|
// %4 : Tensor = prim::VarConcat(%1, %2, %3)
|
|
// %7 : Tensor = prim::VarConcat(%0, %4, %3) // UPDATED
|
|
// %8 : Tensor[] = prim::ListConstruct(%4, %7)
|
|
// return (%8)
|
|
|
|
testing::FileCheck()
|
|
.check_count("= prim::VarConcat(%1, %2, %3)", 1, /*exactly*/ true)
|
|
->check_count("= prim::VarConcat(%0, %4, %3)", 1, /*exactly*/ true)
|
|
->check_count("= prim::ListConstruct(%4, %7)", 1, /*exactly*/ true)
|
|
->check_count("= aten::cat(", 0, /*exactly*/ true)
|
|
->check_count("= prim::ListConstruct(", 0, /*exactly*/ true)
|
|
->run(*graph);
|
|
}
|
|
|
|
TEST(ConcatOptTest, CommonInputsEliminationWithDifferentOrderInputs) {
|
|
auto graph = std::make_shared<Graph>();
|
|
|
|
const std::string input =
|
|
R"IR(
|
|
graph(%0: Float(64, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
|
|
%1: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
|
|
%2: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu)):
|
|
%5 : int = prim::Constant[value=0]()
|
|
|
|
#CHECK: prim::VarConcat
|
|
%concat.1 : Float(96, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = prim::VarConcat(%0, %1, %5)
|
|
|
|
#CHECK: prim::VarConcat
|
|
%concat.2 : Float(96, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = prim::VarConcat(%1, %0, %2, %5)
|
|
|
|
#CHECK: prim::ListConstruct
|
|
%res : Tensor[] = prim::ListConstruct(%concat.1, %concat.2)
|
|
return (%res)
|
|
)IR";
|
|
parseIR(input, graph.get());
|
|
std::vector<at::Tensor> inputs = {
|
|
at::rand({64, 56, 56}, at::kCPU),
|
|
at::rand({32, 56, 56}, at::kCPU),
|
|
at::rand({32, 56, 56}, at::kCPU)};
|
|
auto orig_outputs = runGraph(graph, inputs);
|
|
|
|
ASSERT_FALSE(EliminateConcatCommonInputs(graph));
|
|
graph->lint();
|
|
auto opt_outputs = runGraph(graph, inputs);
|
|
|
|
ASSERT_TRUE(exactlyEqual(orig_outputs, opt_outputs));
|
|
|
|
// No optimizations should have happened in this case since the inputs
|
|
// to the `cat` are in different order.
|
|
testing::FileCheck().run(input, *graph);
|
|
}
|
|
|
|
TEST(ConcatOptTest, MoreCommonInputsElimination) {
|
|
auto graph = std::make_shared<Graph>();
|
|
|
|
const std::string input =
|
|
R"IR(
|
|
graph(%0: Float(64, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
|
|
%1: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
|
|
%2: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
|
|
%3: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
|
|
%4: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu)):
|
|
%5 : int = prim::Constant[value=0]()
|
|
%concat.1 : Float(96, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = prim::VarConcat(%0, %1, %5)
|
|
%concat.2 : Float(128, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = prim::VarConcat(%0, %1, %2, %5)
|
|
%concat.3 : Float(160, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = prim::VarConcat(%0, %1, %2, %3, %5)
|
|
%concat.4 : Float(192, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = prim::VarConcat(%0, %1, %2, %3, %4, %5)
|
|
%res : Tensor[] = prim::ListConstruct(%concat.1, %concat.2, %concat.3, %concat.4)
|
|
return (%res)
|
|
)IR";
|
|
parseIR(input, graph.get());
|
|
std::vector<at::Tensor> inputs = {
|
|
at::rand({64, 56, 56}, at::kCPU),
|
|
at::rand({32, 56, 56}, at::kCPU),
|
|
at::rand({32, 56, 56}, at::kCPU),
|
|
at::rand({32, 56, 56}, at::kCPU),
|
|
at::rand({32, 56, 56}, at::kCPU)};
|
|
auto orig_outputs = runGraph(graph, inputs);
|
|
|
|
ASSERT_TRUE(EliminateConcatCommonInputs(graph));
|
|
graph->lint();
|
|
auto opt_outputs = runGraph(graph, inputs);
|
|
ASSERT_TRUE(exactlyEqual(orig_outputs, opt_outputs));
|
|
|
|
testing::FileCheck()
|
|
.check_count("= prim::VarConcat(%0, %1, %5)", 1, /*exactly*/ true)
|
|
->check_count("= prim::VarConcat(%6, %2, %5)", 1, /*exactly*/ true)
|
|
->check_count("= prim::VarConcat(%11, %3, %5)", 1, /*exactly*/ true)
|
|
->check_count("= prim::VarConcat(%12, %4, %5)", 1, /*exactly*/ true)
|
|
->check_count("= aten::cat(", 0, /*exactly*/ true)
|
|
->run(*graph);
|
|
}
|
|
|
|
TEST(ConcatOptTest, ExpandConcat) {
|
|
auto graph = std::make_shared<Graph>();
|
|
|
|
const std::string input =
|
|
R"IR(
|
|
graph(%0: Float(64, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
|
|
%1: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu)):
|
|
%2 : int = prim::Constant[value=0]()
|
|
%3 : float = prim::Constant[value=0.5]()
|
|
%4 : Float(64, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::clamp_max(%0, %3)
|
|
%5 : Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::clamp_max(%1, %3)
|
|
%input : Tensor[] = prim::ListConstruct(%4, %5)
|
|
%concat : Float(96, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::cat(%input, %2)
|
|
return (%concat)
|
|
)IR";
|
|
parseIR(input, graph.get());
|
|
std::vector<at::Tensor> inputs = {
|
|
at::rand({64, 56, 56}, at::kCPU), at::rand({32, 56, 56}, at::kCPU)};
|
|
auto orig_outputs = runGraph(graph, inputs);
|
|
|
|
ExpandConcatAndEliminateRedundancy(graph);
|
|
graph->lint();
|
|
auto opt_outputs = runGraph(graph, inputs);
|
|
|
|
ASSERT_TRUE(exactlyEqual(orig_outputs, opt_outputs));
|
|
|
|
// After full concat optimization we should have the following graph:
|
|
//
|
|
// graph(%0 : ...,
|
|
// %1 : ...):
|
|
// ...
|
|
// %4 : Tensor = aten::clamp_max(...)
|
|
// %5 : Tensor = aten::clamp_max(...)
|
|
// %13 : int[] = prim::ListConstruct(...)
|
|
// %14 : Tensor = aten::empty(%13, ...) // concat buffer
|
|
// %17 : Tensor = aten::slice(%14, ...) // slice for %4
|
|
// %18 : Tensor = aten::copy_(%17, %4)
|
|
// %20 : Tensor = aten::slice(%14, ...) // slice for %5
|
|
// %21 : Tensor = aten::copy_(%20, %5)
|
|
// return (%14)
|
|
testing::FileCheck()
|
|
.check_count("= aten::cat(", 0, /*exactly*/ true)
|
|
->check_count("= aten::clamp_max(", 2, /*exactly*/ true)
|
|
->check_count("= aten::empty(", 1, /*exactly*/ true)
|
|
->check_count("= aten::slice(", 1, /*exactly*/ true)
|
|
->check_count("= aten::copy_(", 1, /*exactly*/ true)
|
|
->check_count("= aten::slice(", 1, /*exactly*/ true)
|
|
->check_count("= aten::copy_(", 1, /*exactly*/ true)
|
|
->check_count("= aten::cat(", 0, /*exactly*/ true)
|
|
->run(*graph);
|
|
}
|
|
|
|
TEST(ConcatOptTest, ConcatWithoutResultShape) {
|
|
auto graph = std::make_shared<Graph>();
|
|
|
|
const std::string input =
|
|
R"IR(
|
|
graph(%0: Float(64, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
|
|
%1: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu)):
|
|
%2 : int = prim::Constant[value=0]()
|
|
%3 : float = prim::Constant[value=0.5]()
|
|
# CHECK: clamp_max
|
|
%4 : Float(64, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::clamp_max(%0, %3)
|
|
# CHECK: clamp_max
|
|
%5 : Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::clamp_max(%1, %3)
|
|
# CHECK: prim::ListConstruct
|
|
%6 : Tensor[] = prim::ListConstruct(%4, %5)
|
|
# CHECK: aten::cat
|
|
%7 : Tensor = aten::cat(%6, %2)
|
|
return (%7)
|
|
)IR";
|
|
parseIR(input, graph.get());
|
|
std::vector<at::Tensor> inputs = {
|
|
at::rand({64, 56, 56}, at::kCPU), at::rand({32, 56, 56}, at::kCPU)};
|
|
auto orig_outputs = runGraph(graph, inputs);
|
|
|
|
ExpandConcatAndEliminateRedundancy(graph);
|
|
graph->lint();
|
|
auto opt_outputs = runGraph(graph, inputs);
|
|
|
|
ASSERT_TRUE(exactlyEqual(orig_outputs, opt_outputs));
|
|
|
|
// No optimizations should have happened in this case since the output
|
|
// shape of `aten::cat` is not known.
|
|
testing::FileCheck().run(input, *graph);
|
|
}
|
|
|
|
TEST(ConcatOptTest, ConcatWithoutInputShape) {
|
|
auto graph = std::make_shared<Graph>();
|
|
|
|
const std::string input =
|
|
R"IR(
|
|
graph(%0: Float(64, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
|
|
%1: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu)):
|
|
%2 : int = prim::Constant[value=0]()
|
|
%3 : float = prim::Constant[value=0.5]()
|
|
# CHECK: clamp_max
|
|
%4 : Float(64, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::clamp_max(%0, %3)
|
|
# CHECK: clamp_max
|
|
%5 : Tensor = aten::clamp_max(%1, %3)
|
|
# CHECK: prim::ListConstruct
|
|
%6 : Tensor[] = prim::ListConstruct(%4, %5)
|
|
# CHECK: aten::cat
|
|
%7 : Float(96, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::cat(%6, %2)
|
|
return (%7)
|
|
)IR";
|
|
parseIR(input, graph.get());
|
|
std::vector<at::Tensor> inputs = {
|
|
at::rand({64, 56, 56}, at::kCPU), at::rand({32, 56, 56}, at::kCPU)};
|
|
auto orig_outputs = runGraph(graph, inputs);
|
|
|
|
ExpandConcatAndEliminateRedundancy(graph);
|
|
graph->lint();
|
|
auto opt_outputs = runGraph(graph, inputs);
|
|
|
|
ASSERT_TRUE(exactlyEqual(orig_outputs, opt_outputs));
|
|
|
|
// No optimizations should have happened in this case since the shape of %5,
|
|
// which is an input to `aten::cat`, is not known.
|
|
testing::FileCheck().run(input, *graph);
|
|
}
|
|
|
|
TEST(ConcatOptTest, UseVariadicCat) {
|
|
auto graph = std::make_shared<Graph>();
|
|
|
|
const std::string input =
|
|
R"IR(
|
|
graph(%0: Float(64, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
|
|
%1: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
|
|
%2: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
|
|
%3: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
|
|
%4: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
|
|
%5: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu)):
|
|
%10 : int = prim::Constant[value=0]()
|
|
%input : Tensor[] = prim::ListConstruct(%0, %1, %2, %3, %4, %5)
|
|
%concat : Float(224, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::cat(%input, %10)
|
|
return (%concat)
|
|
)IR";
|
|
parseIR(input, graph.get());
|
|
std::vector<at::Tensor> inputs = {
|
|
at::rand({64, 56, 56}, at::kCPU),
|
|
at::rand({32, 56, 56}, at::kCPU),
|
|
at::rand({32, 56, 56}, at::kCPU),
|
|
at::rand({32, 56, 56}, at::kCPU),
|
|
at::rand({32, 56, 56}, at::kCPU),
|
|
at::rand({32, 56, 56}, at::kCPU)};
|
|
auto orig_outputs = runGraph(graph, inputs);
|
|
|
|
ASSERT_TRUE(UseVariadicCat(graph));
|
|
graph->lint();
|
|
auto opt_outputs = runGraph(graph, inputs);
|
|
|
|
ASSERT_TRUE(exactlyEqual(orig_outputs, opt_outputs));
|
|
|
|
// After replacing `aten::cat` with `prim::VarConcat` we should have the
|
|
// following graph:
|
|
//
|
|
// graph(%0 : ...,
|
|
// %1 : ...):
|
|
// %zero : int = prim:Constant[value=0]()
|
|
// %varcat : Tensor = prim::VarConcat(%0, %1, %2, %3, %4, %5, %zero)
|
|
// return (%varcat)
|
|
testing::FileCheck()
|
|
.check_count("= prim::VarConcat(", 1, /*exactly*/ true)
|
|
->check_count("= aten::cat(", 0, /*exactly*/ true)
|
|
->check_count("= prim::ListConstruct(", 0, /*exactly*/ true)
|
|
->run(*graph);
|
|
}
|
|
|
|
TEST(OptimizeConcatTest, UseVariadicCatReplaceMultiple) {
|
|
auto graph = std::make_shared<Graph>();
|
|
|
|
const std::string input =
|
|
R"IR(
|
|
graph(%0: Float(64, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
|
|
%1: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
|
|
%2: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
|
|
%3: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu)):
|
|
%10 : int = prim::Constant[value=0]()
|
|
%input1 : Tensor[] = prim::ListConstruct(%0, %1)
|
|
%concat1 : Float(96, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::cat(%input1, %10)
|
|
%input2 : Tensor[] = prim::ListConstruct(%2, %3)
|
|
%concat2 : Float(64, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::cat(%input2, %10)
|
|
return (%concat1, %concat2)
|
|
)IR";
|
|
parseIR(input, graph.get());
|
|
std::vector<at::Tensor> inputs = {
|
|
at::rand({64, 56, 56}, at::kCPU),
|
|
at::rand({32, 56, 56}, at::kCPU),
|
|
at::rand({32, 56, 56}, at::kCPU),
|
|
at::rand({32, 56, 56}, at::kCPU)};
|
|
auto orig_outputs = runGraph(graph, inputs);
|
|
|
|
ASSERT_TRUE(UseVariadicCat(graph));
|
|
graph->lint();
|
|
auto opt_outputs = runGraph(graph, inputs);
|
|
|
|
ASSERT_TRUE(exactlyEqual(orig_outputs, opt_outputs));
|
|
|
|
// After full concat optimization we should have the following graph:
|
|
//
|
|
// graph(%0 : ...,
|
|
// %1 : ...,
|
|
// %2 : ...,
|
|
// %3 : ....):
|
|
// %zero : int = prim:Constant[value=0]()
|
|
// %varcat1 : Tensor = prim::VarConcat(%0, %1, %zero)
|
|
// %varcat2 : Tensor = prim::VarConcat(%2, %3, %zero)
|
|
// return (%varcat1, %varcat2)
|
|
testing::FileCheck()
|
|
.check_count("= prim::VarConcat(", 2, /*exactly*/ true)
|
|
->check_count("= aten::cat(", 0, /*exactly*/ true)
|
|
->check_count("= prim::ListConstruct(", 0, /*exactly*/ true)
|
|
->run(*graph);
|
|
}
|
|
|
|
TEST(ConcatOptTest, UseVariadicCatWithMultipleListUses) {
|
|
auto graph = std::make_shared<Graph>();
|
|
|
|
const std::string input =
|
|
R"IR(
|
|
graph(%0: Float(64, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
|
|
%1: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu)):
|
|
%2 : int = prim::Constant[value=0]()
|
|
%input : Tensor[] = prim::ListConstruct(%0, %1)
|
|
%concat : Float(96, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::cat(%input, %2)
|
|
return (%concat, %input)
|
|
)IR";
|
|
parseIR(input, graph.get());
|
|
std::vector<at::Tensor> inputs = {
|
|
at::rand({64, 56, 56}, at::kCPU), at::rand({32, 56, 56}, at::kCPU)};
|
|
auto orig_outputs = runGraph(graph, inputs);
|
|
|
|
ASSERT_TRUE(UseVariadicCat(graph));
|
|
graph->lint();
|
|
auto opt_outputs = runGraph(graph, inputs);
|
|
|
|
ASSERT_TRUE(exactlyEqual(orig_outputs, opt_outputs));
|
|
|
|
// After replacing `aten::cat` with `prim::VarConcat` we should have the
|
|
// following graph:
|
|
//
|
|
// graph(%0 : ...,
|
|
// %1 : ...):
|
|
// %zero : int = prim:Constant[value=0]()
|
|
// %input : Tensor[] = prim::ListConstruct(%0, %1)
|
|
// %varcat : Tensor = prim::VarConcat(%0, %1, %zero)
|
|
// return (%varcat, %input)
|
|
testing::FileCheck()
|
|
.check_count("= prim::ListConstruct(", 1, /*exactly*/ true)
|
|
->check_count("= prim::VarConcat(", 1, /*exactly*/ true)
|
|
->check_count("= aten::cat(", 0, /*exactly*/ true)
|
|
->run(*graph);
|
|
}
|
|
|
|
TEST(ConcatOptTest, UseVariadicCatWithListMutationAfterCat) {
|
|
auto graph = std::make_shared<Graph>();
|
|
|
|
const std::string input =
|
|
R"IR(
|
|
graph(%0: Float(64, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
|
|
%1: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
|
|
%2: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu)):
|
|
%10 : int = prim::Constant[value=0]()
|
|
%input : Tensor[] = prim::ListConstruct(%0, %1)
|
|
%concat : Float(96, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::cat(%input, %10)
|
|
%11 : Tensor = aten::append(%input, %2)
|
|
return (%concat, %input)
|
|
)IR";
|
|
parseIR(input, graph.get());
|
|
std::vector<at::Tensor> inputs = {
|
|
at::rand({64, 56, 56}, at::kCPU),
|
|
at::rand({32, 56, 56}, at::kCPU),
|
|
at::rand({32, 56, 56}, at::kCPU)};
|
|
auto orig_outputs = runGraph(graph, inputs);
|
|
|
|
ASSERT_TRUE(UseVariadicCat(graph));
|
|
graph->lint();
|
|
auto opt_outputs = runGraph(graph, inputs);
|
|
ASSERT_TRUE(exactlyEqual(orig_outputs, opt_outputs));
|
|
|
|
// The input list to `aten::cat` is mutated only after `aten::cat` op. So,
|
|
// it should have been replaced with `prim::VarConcat`. The transformed graph
|
|
// should look like the following:
|
|
//
|
|
// graph(%0 : ...,
|
|
// %1 : ...,
|
|
// %2 : ...):
|
|
// %3 : int = prim:Constant[value=0]()
|
|
// %4 : Tensor[] = prim::ListConstruct(%0, %1)
|
|
// %7 : Tensor = prim::VarConcat(%0, %1, %3)
|
|
// %6 : Tensor = aten::append(%4, %2)
|
|
// return (%7, %4)
|
|
testing::FileCheck()
|
|
.check_count("= prim::ListConstruct(", 1, /*exactly*/ true)
|
|
->check_count("= prim::VarConcat(", 1, /*exactly*/ true)
|
|
->check_count("= aten::cat(", 0, /*exactly*/ true)
|
|
->run(*graph);
|
|
}
|
|
|
|
TEST(ConcatOptTest, UseVariadicCatWithListMutationBeforeCat) {
|
|
auto graph = std::make_shared<Graph>();
|
|
|
|
const std::string input =
|
|
R"IR(
|
|
graph(%0: Float(64, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
|
|
%1: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
|
|
%2: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu)):
|
|
%10 : int = prim::Constant[value=0]()
|
|
%input : Tensor[] = prim::ListConstruct(%0, %1)
|
|
%11 : Tensor = aten::append(%input, %2)
|
|
%concat : Float(128, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::cat(%input, %10)
|
|
return (%concat)
|
|
)IR";
|
|
parseIR(input, graph.get());
|
|
std::vector<at::Tensor> inputs = {
|
|
at::rand({64, 56, 56}, at::kCPU),
|
|
at::rand({32, 56, 56}, at::kCPU),
|
|
at::rand({32, 56, 56}, at::kCPU)};
|
|
auto orig_outputs = runGraph(graph, inputs);
|
|
|
|
{
|
|
ASSERT_FALSE(UseVariadicCat(graph));
|
|
graph->lint();
|
|
auto opt_outputs = runGraph(graph, inputs);
|
|
ASSERT_TRUE(exactlyEqual(orig_outputs, opt_outputs));
|
|
|
|
// No transformation should have happened since the `prim::ListConstruct` is
|
|
// mutated before `aten::cat`.
|
|
testing::FileCheck()
|
|
.check_count("= prim::ListConstruct(", 1, /*exactly*/ true)
|
|
->check_count("= aten::cat(", 1, /*exactly*/ true)
|
|
->check_count("= prim::VarConcat(", 0, /*exactly*/ true)
|
|
->run(*graph);
|
|
}
|
|
|
|
{
|
|
ASSERT_TRUE(RemoveListMutationAndUseVariadicCat(graph));
|
|
graph->lint();
|
|
auto opt_outputs = runGraph(graph, inputs);
|
|
ASSERT_TRUE(exactlyEqual(orig_outputs, opt_outputs));
|
|
|
|
// The mutation of the list must be removed and the `aten::cat` op must
|
|
// be replaced with the `prim::VarConcat` op in the graph. The transformed
|
|
// graph should look like the following:
|
|
//
|
|
// graph(%0 : ...,
|
|
// %1 : ...,
|
|
// %2 : ...):
|
|
// %3 : int = prim:Constant[value=0]()
|
|
// %7 : Tensor = prim::VarConcat(%0, %1, %2, %3)
|
|
// return (%7)
|
|
testing::FileCheck()
|
|
.check_count("= prim::VarConcat(", 1, /*exactly*/ true)
|
|
->check_count("= prim::ListConstruct(", 0, /*exactly*/ true)
|
|
->check_count("= aten::cat(", 0, /*exactly*/ true)
|
|
->run(*graph);
|
|
}
|
|
}
|
|
|
|
TEST(ConcatOptTest, UseVariadicCatWithMultipleListMutations) {
|
|
auto graph = std::make_shared<Graph>();
|
|
|
|
const std::string input =
|
|
R"IR(
|
|
graph(%0: Float(64, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
|
|
%1: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
|
|
%2: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
|
|
%3: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
|
|
%4: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu)):
|
|
%10 : int = prim::Constant[value=0]()
|
|
%input : Tensor[] = prim::ListConstruct(%0, %1)
|
|
%concat.1 : Float(96, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::cat(%input, %10)
|
|
%11 : Tensor = aten::append(%input, %2)
|
|
%concat.2 : Float(128, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::cat(%input, %10)
|
|
%12 : Tensor = aten::append(%input, %3)
|
|
%concat.3 : Float(160, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::cat(%input, %10)
|
|
%13 : Tensor = aten::append(%input, %4)
|
|
%concat.4 : Float(192, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::cat(%input, %10)
|
|
return (%concat.1, %concat.2, %concat.3, %concat.4)
|
|
)IR";
|
|
parseIR(input, graph.get());
|
|
std::vector<at::Tensor> inputs = {
|
|
at::rand({64, 56, 56}, at::kCPU),
|
|
at::rand({32, 56, 56}, at::kCPU),
|
|
at::rand({32, 56, 56}, at::kCPU),
|
|
at::rand({32, 56, 56}, at::kCPU),
|
|
at::rand({32, 56, 56}, at::kCPU)};
|
|
auto orig_outputs = runGraph(graph, inputs);
|
|
|
|
ASSERT_TRUE(RemoveListMutationAndUseVariadicCat(graph));
|
|
graph->lint();
|
|
auto opt_outputs = runGraph(graph, inputs);
|
|
ASSERT_TRUE(exactlyEqual(orig_outputs, opt_outputs));
|
|
|
|
// All the mutations of the list must be removed and the `aten::cat` ops must
|
|
// be replaced with `prim::VarConcat` ops in the graph. The transformed graph
|
|
// should look like the following:
|
|
//
|
|
// graph(%0 : ...,
|
|
// %1 : ...,
|
|
// %2 : ...,
|
|
// %3 : ...,
|
|
// %4 : ...):
|
|
// %10 : int = prim:Constant[value=0]()
|
|
// %5 : Tensor = prim::VarConcat(%0, %1, %10)
|
|
// %6 : Tensor = prim::VarConcat(%0, %1, %2, %10)
|
|
// %7 : Tensor = prim::VarConcat(%0, %1, %2, %3, %10)
|
|
// %8 : Tensor = prim::VarConcat(%0, %1, %2, %3, %4, %10)
|
|
// return (%5, %6, %7, %8)
|
|
testing::FileCheck()
|
|
.check_count("= prim::VarConcat(", 4, /*exactly*/ true)
|
|
->check_count("= prim::ListConstruct(", 0, /*exactly*/ true)
|
|
->check_count("= aten::cat(", 0, /*exactly*/ true)
|
|
->run(*graph);
|
|
}
|
|
|
|
TEST(
|
|
ConcatOptTest,
|
|
RemoveListMutationUseVariadicCatAndCommonInputsElimination) {
|
|
auto graph = std::make_shared<Graph>();
|
|
|
|
const std::string input =
|
|
R"IR(
|
|
graph(%0: Float(64, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
|
|
%1: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
|
|
%2: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu)):
|
|
%5 : int = prim::Constant[value=0]()
|
|
|
|
%features.2 : Tensor[] = prim::ListConstruct(%0, %1)
|
|
%6 : Tensor [] = aten::append(%features.2, %2)
|
|
%concat.2 : Float(128, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::cat(%features.2, %5)
|
|
|
|
%7 : Tensor [] = aten::append(%features.2, %0)
|
|
%concat.3 : Float(160, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::cat(%features.2, %5)
|
|
|
|
%res : Tensor[] = prim::ListConstruct(%concat.2, %concat.3)
|
|
return (%res)
|
|
)IR";
|
|
parseIR(input, graph.get());
|
|
std::vector<at::Tensor> inputs = {
|
|
at::rand({64, 56, 56}, at::kCPU),
|
|
at::rand({32, 56, 56}, at::kCPU),
|
|
at::rand({32, 56, 56}, at::kCPU)};
|
|
auto orig_outputs = runGraph(graph, inputs);
|
|
|
|
ASSERT_TRUE(RemoveListMutationAndUseVariadicCat(graph));
|
|
ASSERT_TRUE(EliminateConcatCommonInputs(graph));
|
|
graph->lint();
|
|
auto opt_outputs = runGraph(graph, inputs);
|
|
ASSERT_TRUE(exactlyEqual(orig_outputs, opt_outputs));
|
|
|
|
// After performing:
|
|
// * Remove list mutation
|
|
// * Use variadic cat
|
|
// * Eliminate common inputs
|
|
// we should have the following graph:
|
|
//
|
|
// graph(%0 : ...,
|
|
// %1 : ...,
|
|
// %2 : ...):
|
|
// %3 : int = prim::Constant[value=0]()
|
|
// %10 : Tensor = prim::VarConcat(%0, %1, %2, %3)
|
|
// %12 : Tensor = prim::VarConcat(%10, %0, %3) // UPDATED
|
|
// %8 : Tensor[] = prim::ListConstruct(%10, %12)
|
|
// return (%8)
|
|
testing::FileCheck()
|
|
.check_count("= prim::VarConcat(%0, %1, %2, %3)", 1, /*exactly*/ true)
|
|
->check_count("= prim::VarConcat(%10, %0, %3)", 1, /*exactly*/ true)
|
|
->check_count("= prim::ListConstruct(%10, %12)", 1, /*exactly*/ true)
|
|
->check_count("= aten::cat(", 0, /*exactly*/ true)
|
|
->check_count("= prim::ListConstruct(", 0, /*exactly*/ true)
|
|
->run(*graph);
|
|
}
|
|
|
|
TEST(ConcatOpt, CombineConcatsSimpleCase) {
|
|
auto graph = std::make_shared<Graph>();
|
|
const std::string input =
|
|
R"IR(
|
|
graph(%0: Tensor):
|
|
%dim : int = prim::Constant[value=0]()
|
|
%input.1 : Tensor[] = prim::ListConstruct(%0, %0)
|
|
%concat.1 : Tensor = aten::cat(%input.1, %dim)
|
|
%input.2 : Tensor[] = prim::ListConstruct(%concat.1, %0)
|
|
%concat.2 : Tensor = aten::cat(%input.2, %dim)
|
|
return (%concat.2)
|
|
)IR";
|
|
parseIR(input, graph.get());
|
|
std::vector<at::Tensor> inputs = {at::rand({1})};
|
|
auto orig_outputs = runGraph(graph, inputs);
|
|
|
|
ASSERT_TRUE(CombineConcats(graph));
|
|
graph->lint();
|
|
auto opt_outputs = runGraph(graph, inputs);
|
|
ASSERT_TRUE(exactlyEqual(orig_outputs, opt_outputs));
|
|
|
|
// After performing CombineConcats:
|
|
// graph(%0 : Tensor):
|
|
// %dim : int = prim::Constant[value=0]()
|
|
// %input : Tensor[] = prim::ListConstruct(%0, %0, %0)
|
|
// %concat : Tensor = aten::cat(%input, %dim)
|
|
// return (%concat)
|
|
testing::FileCheck()
|
|
.check_count("prim::ListConstruct", 1, /*exactly*/ true)
|
|
->check_count("aten::cat", 1, /*exactly*/ true)
|
|
->run(*graph);
|
|
}
|
|
|
|
TEST(ConcatOpt, CombineConcatsLongChain) {
|
|
auto graph = std::make_shared<Graph>();
|
|
const std::string input =
|
|
R"IR(
|
|
graph(%0: Tensor, %1 : Tensor):
|
|
%dim : int = prim::Constant[value=0]()
|
|
%input.1 : Tensor[] = prim::ListConstruct(%0, %0)
|
|
%concat.1 : Tensor = aten::cat(%input.1, %dim)
|
|
%input.2 : Tensor[] = prim::ListConstruct(%1, %concat.1, %1)
|
|
%concat.2 : Tensor = aten::cat(%input.2, %dim)
|
|
%input.3 : Tensor[] = prim::ListConstruct(%0, %concat.2, %0)
|
|
%concat.3 : Tensor = aten::cat(%input.3, %dim)
|
|
return (%concat.3)
|
|
)IR";
|
|
parseIR(input, graph.get());
|
|
std::vector<at::Tensor> inputs = {at::rand({1}), at::randn({1})};
|
|
auto orig_outputs = runGraph(graph, inputs);
|
|
|
|
ASSERT_TRUE(CombineConcats(graph));
|
|
graph->lint();
|
|
auto opt_outputs = runGraph(graph, inputs);
|
|
ASSERT_TRUE(exactlyEqual(orig_outputs, opt_outputs));
|
|
|
|
// After performing CombineConcats:
|
|
// graph(%0 : Tensor):
|
|
// %dim : int = prim::Constant[value=0]()
|
|
// %input : Tensor[] = prim::ListConstruct(%0, %1, %0, %0, %1, %0)
|
|
// %concat : Tensor = aten::cat(%input, %dim)
|
|
// return (%concat)
|
|
testing::FileCheck()
|
|
.check_count("prim::ListConstruct", 1, /*exactly*/ true)
|
|
->check_count("aten::cat", 1, /*exactly*/ true)
|
|
->run(*graph);
|
|
}
|
|
|
|
TEST(ConcatOpt, CombineConcatsMutation) {
|
|
auto graph = std::make_shared<Graph>();
|
|
const std::string input =
|
|
R"IR(
|
|
graph(%0: Tensor, %1 : Tensor):
|
|
%dim : int = prim::Constant[value=0]()
|
|
%input.1 : Tensor[] = prim::ListConstruct(%0, %0)
|
|
%concat.1 : Tensor = aten::cat(%input.1, %dim)
|
|
%input.2 : Tensor[] = prim::ListConstruct(%1, %concat.1, %1)
|
|
%input.3 : Tensor[] = aten::append(%input.2, %0)
|
|
%concat.2 : Tensor = aten::cat(%input.2, %dim)
|
|
return (%concat.2)
|
|
)IR";
|
|
parseIR(input, graph.get());
|
|
std::vector<at::Tensor> inputs = {at::rand({1}), at::randn({1})};
|
|
// No modifications due to aten::append
|
|
ASSERT_FALSE(CombineConcats(graph));
|
|
}
|
|
|
|
} // namespace jit
|
|
} // namespace torch
|