mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Signed-off-by: Edward Z. Yang <ezyang@meta.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/105928 Approved by: https://github.com/albanD
57 lines
1.3 KiB
Python
57 lines
1.3 KiB
Python
import scipy.special
|
|
|
|
from . import benchmark
|
|
|
|
|
|
class SoftmaxBench(benchmark.Benchmark):
|
|
def __init__(self, mode, device, dtype, M, N):
|
|
super().__init__(mode, device, dtype)
|
|
self.M = M
|
|
self.N = N
|
|
self.dtype = dtype
|
|
self.inputs = [
|
|
self.randn(
|
|
[M, N], device=device, dtype=dtype, requires_grad=self.requires_grad
|
|
)
|
|
]
|
|
|
|
def forward(self, inputs):
|
|
x = self.add(inputs, 0.001)
|
|
y = self.softmax(x, dim=-1, dtype=self.dtype)
|
|
return y
|
|
|
|
def reference(self):
|
|
return scipy.special.softmax(self.numpy(self.inputs), axis=-1)
|
|
|
|
def config(self):
|
|
return [self.M, self.N]
|
|
|
|
@staticmethod
|
|
def module():
|
|
return "softmax"
|
|
|
|
def memory_workload(self):
|
|
if self.mode == "fwd":
|
|
sol_count = 1 + 1
|
|
algorithmic_count = 3 + 1
|
|
else:
|
|
sol_count = (1 + 1) + (1 + 1)
|
|
algorithmic_count = (3 + 1) + (3 + 1)
|
|
|
|
buffer_size = self.M * self.N
|
|
return {
|
|
"sol": buffer_size * sol_count,
|
|
"algorithmic": buffer_size * algorithmic_count,
|
|
}
|
|
|
|
@staticmethod
|
|
def default_configs():
|
|
return [
|
|
[480, 20],
|
|
[1 << 15, 32],
|
|
[128, 1 << 16],
|
|
]
|
|
|
|
|
|
benchmark.register_benchmark_class(SoftmaxBench)
|