mirror of
				https://github.com/pytorch/pytorch.git
				synced 2025-11-04 08:00:58 +08:00 
			
		
		
		
	Prune models from TorchInductor dashboard to reduce ci cost. This PR prunes torchbench models according to the [doc](https://docs.google.com/document/d/1nLPNNAU-_M9Clx9FMrJ1ycdPxe-xRA54olPnsFzdpoU/edit?tab=t.0), which removes timm and huggingface models from torchbench. Pull Request resolved: https://github.com/pytorch/pytorch/pull/164816 Approved by: https://github.com/anijain2305, https://github.com/seemethere, https://github.com/huydhn, https://github.com/malfet
		
			
				
	
	
		
			137 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			137 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import argparse
 | 
						|
import os
 | 
						|
import sys
 | 
						|
import textwrap
 | 
						|
 | 
						|
import pandas as pd
 | 
						|
 | 
						|
 | 
						|
# Hack to have something similar to DISABLED_TEST. These models are flaky.
 | 
						|
 | 
						|
flaky_models = {
 | 
						|
    "yolov3",
 | 
						|
    "detectron2_maskrcnn_r_101_c4",
 | 
						|
    "XGLMForCausalLM",  # discovered in https://github.com/pytorch/pytorch/pull/128148
 | 
						|
    "detectron2_fcos_r_50_fpn",
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
def get_field(csv, model_name: str, field: str):
 | 
						|
    try:
 | 
						|
        return csv.loc[csv["name"] == model_name][field].item()
 | 
						|
    except Exception:
 | 
						|
        return None
 | 
						|
 | 
						|
 | 
						|
def check_graph_breaks(actual_csv, expected_csv, expected_filename):
 | 
						|
    failed = []
 | 
						|
    improved = []
 | 
						|
 | 
						|
    if "rocm" in expected_filename:
 | 
						|
        flaky_models.update(
 | 
						|
            {
 | 
						|
                "alexnet",
 | 
						|
                "demucs",
 | 
						|
                "densenet121",
 | 
						|
                "detectron2_fcos_r_50_fpn",
 | 
						|
                "doctr_det_predictor",
 | 
						|
                "doctr_reco_predictor",
 | 
						|
                "levit_128",
 | 
						|
                "llava",
 | 
						|
                "microbench_unbacked_tolist_sum",
 | 
						|
                "resnet50",
 | 
						|
                "resnet152",
 | 
						|
                "sam",
 | 
						|
                "sam_fast",
 | 
						|
                "stable_diffusion_text_encoder",
 | 
						|
                "stable_diffusion_unet",
 | 
						|
                "timm_efficientdet",
 | 
						|
                "torchrec_dlrm",
 | 
						|
                "vgg16",
 | 
						|
                # LLM
 | 
						|
                "meta-llama/Llama-3.2-1B",
 | 
						|
                "google/gemma-2-2b",
 | 
						|
                "google/gemma-3-4b-it",
 | 
						|
                "openai/whisper-tiny",
 | 
						|
                "Qwen/Qwen3-0.6B",
 | 
						|
                "mistralai/Mistral-7B-Instruct-v0.3",
 | 
						|
                "openai/gpt-oss-20b",
 | 
						|
            }
 | 
						|
        )
 | 
						|
 | 
						|
    for model in actual_csv["name"]:
 | 
						|
        graph_breaks = get_field(actual_csv, model, "graph_breaks")
 | 
						|
        expected_graph_breaks = get_field(expected_csv, model, "graph_breaks")
 | 
						|
        flaky = model in flaky_models
 | 
						|
 | 
						|
        if expected_graph_breaks is None:
 | 
						|
            status = "MISSING:"
 | 
						|
            improved.append(model)
 | 
						|
        elif graph_breaks == expected_graph_breaks:
 | 
						|
            status = "PASS_BUT_FLAKY" if flaky else "PASS"
 | 
						|
            print(f"{model:34}  {status}")
 | 
						|
            continue
 | 
						|
        elif graph_breaks > expected_graph_breaks:
 | 
						|
            if flaky:
 | 
						|
                status = "FAIL_BUT_FLAKY:"
 | 
						|
            else:
 | 
						|
                status = "FAIL:"
 | 
						|
                failed.append(model)
 | 
						|
        elif graph_breaks < expected_graph_breaks:
 | 
						|
            if flaky:
 | 
						|
                status = "IMPROVED_BUT_FLAKY:"
 | 
						|
            else:
 | 
						|
                status = "IMPROVED:"
 | 
						|
                improved.append(model)
 | 
						|
        print(
 | 
						|
            f"{model:34}  {status:19} graph_breaks={graph_breaks}, expected={expected_graph_breaks}"
 | 
						|
        )
 | 
						|
 | 
						|
    msg = ""
 | 
						|
    if failed or improved:
 | 
						|
        if failed:
 | 
						|
            msg += textwrap.dedent(
 | 
						|
                f"""
 | 
						|
            Error: {len(failed)} models have new dynamo graph breaks:
 | 
						|
                {" ".join(failed)}
 | 
						|
 | 
						|
            """
 | 
						|
            )
 | 
						|
        if improved:
 | 
						|
            msg += textwrap.dedent(
 | 
						|
                f"""
 | 
						|
            Improvement: {len(improved)} models have fixed dynamo graph breaks:
 | 
						|
                {" ".join(improved)}
 | 
						|
 | 
						|
            """
 | 
						|
            )
 | 
						|
        sha = os.getenv("SHA1", "{your CI commit sha}")
 | 
						|
        msg += textwrap.dedent(
 | 
						|
            f"""
 | 
						|
        If this change is expected, you can update `{expected_filename}` to reflect the new baseline.
 | 
						|
        from pytorch/pytorch root, run
 | 
						|
        `python benchmarks/dynamo/ci_expected_accuracy/update_expected.py {sha}`
 | 
						|
        and then `git add` the resulting local changes to expected CSVs to your commit.
 | 
						|
        """
 | 
						|
        )
 | 
						|
    return failed or improved, msg
 | 
						|
 | 
						|
 | 
						|
def main():
 | 
						|
    parser = argparse.ArgumentParser()
 | 
						|
    parser.add_argument("--actual", type=str, required=True)
 | 
						|
    parser.add_argument("--expected", type=str, required=True)
 | 
						|
    args = parser.parse_args()
 | 
						|
 | 
						|
    actual = pd.read_csv(args.actual)
 | 
						|
    expected = pd.read_csv(args.expected)
 | 
						|
 | 
						|
    failed, msg = check_graph_breaks(actual, expected, args.expected)
 | 
						|
    if failed:
 | 
						|
        print(msg)
 | 
						|
        sys.exit(1)
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    main()
 |