mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77756 Approved by: https://github.com/desertfire
780 lines
27 KiB
C++
780 lines
27 KiB
C++
#include <c10/core/TensorImpl.h>
|
|
|
|
#include <c10/core/Backend.h>
|
|
#include <c10/core/InferenceMode.h>
|
|
#include <c10/core/SymIntArrayRef.h>
|
|
#include <c10/core/WrapDimMinimal.h>
|
|
#include <c10/core/impl/LocalDispatchKeySet.h>
|
|
#include <c10/util/Optional.h>
|
|
#include <c10/util/irange.h>
|
|
|
|
C10_DEFINE_bool(
|
|
caffe2_keep_on_shrink,
|
|
true,
|
|
"If set, keeps memory when a tensor is shrinking its size.");
|
|
|
|
C10_DEFINE_int64(
|
|
caffe2_max_keep_on_shrink_memory,
|
|
LLONG_MAX,
|
|
"The maximum memory in bytes to keep on shrink, if the difference between "
|
|
"tensor sizes is bigger than this then tensor will be reset.");
|
|
|
|
namespace c10 {
|
|
|
|
const char* const TensorImpl::err_msg_tensor_metadata_change_not_allowed =
|
|
"is not allowed on a Tensor created from .data or .detach().\n"
|
|
"If your intent is to change the metadata of a Tensor (such as sizes / strides / storage / storage_offset)\n"
|
|
"without autograd tracking the change, remove the .data / .detach() call and wrap the change in a `with torch.no_grad():` block.\n"
|
|
"For example, change:\n"
|
|
" x.data.set_(y)\n"
|
|
"to:\n"
|
|
" with torch.no_grad():\n"
|
|
" x.set_(y)";
|
|
|
|
at::Tensor& TensorImpl::mutable_grad() {
|
|
if (!autograd_meta_)
|
|
autograd_meta_ = impl::GetAutogradMetaFactory()->make();
|
|
return autograd_meta_->mutable_grad();
|
|
}
|
|
|
|
const at::Tensor& TensorImpl::grad() const {
|
|
// Yes, I know this looks really weird. But I don't really have a choice as
|
|
// long as this function returns a const reference to Tensor. I'm not
|
|
// really sure how I would have designed this API differently, but it
|
|
// is not so easy to fix right now because the mutable counterpart of
|
|
// this function must keep working so that "x.grad() = ..." keeps working
|
|
// (part of public API).
|
|
if (!autograd_meta_)
|
|
return impl::GetAutogradMetaFactory()->undefined_tensor();
|
|
return autograd_meta_->grad();
|
|
}
|
|
|
|
const at::Tensor& TensorImpl::_fw_grad(
|
|
uint64_t level,
|
|
const at::TensorBase& self) const {
|
|
// See TensorImpl::grad() above for explanation about the line below
|
|
if (!autograd_meta_)
|
|
return impl::GetAutogradMetaFactory()->undefined_tensor();
|
|
return autograd_meta_->fw_grad(level, self);
|
|
}
|
|
|
|
void TensorImpl::_set_fw_grad(
|
|
const at::TensorBase& new_grad,
|
|
const at::TensorBase& self,
|
|
uint64_t level,
|
|
bool is_inplace_op) {
|
|
if (!autograd_meta_)
|
|
autograd_meta_ = impl::GetAutogradMetaFactory()->make();
|
|
autograd_meta_->set_fw_grad(new_grad, self, level, is_inplace_op);
|
|
}
|
|
|
|
// some compiler does not generate the destructor correctly
|
|
TensorImpl::~TensorImpl() = default;
|
|
|
|
TensorImpl::TensorImpl(
|
|
Storage&& storage,
|
|
DispatchKeySet key_set,
|
|
const caffe2::TypeMeta data_type)
|
|
// Use std::forward to suppress static analyzer false positive.
|
|
: TensorImpl(
|
|
std::forward<Storage>(storage),
|
|
key_set,
|
|
data_type,
|
|
storage.device()) {}
|
|
|
|
// [Note: Python key removal]
|
|
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
// In most constructors for TensorImpl, you will see Python and
|
|
// PythonTLSSnapshot keys are removed from the passed in DispatchKeySet. Why?
|
|
//
|
|
// INVARIANT: Python and PythonTLSSnapshot dispatch keys are set iff PyObject
|
|
// for the Tensor has a nontrivial __torch_dispatch__ implementation.
|
|
//
|
|
// When a fresh TensorImpl is created, there is *no* PyObject (this only gets
|
|
// initialized lazily at the first point in time the Tensor passes into Python).
|
|
// So we would violate the invariant.
|
|
//
|
|
// In practice, what will happen shortly afterwards is that the TensorImpl
|
|
// will get its PyObject initialized by Tensor._make_subclass; at this point
|
|
// the Python and PythonTLSSnapshot dispatch keys will be set and all is well.
|
|
// The point is to delay the dispatch key setting until that point.
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
|
|
TensorImpl::TensorImpl(
|
|
ImplType type,
|
|
Storage&& storage,
|
|
DispatchKeySet key_set,
|
|
const caffe2::TypeMeta data_type)
|
|
: storage_(std::move(storage)),
|
|
pyobj_interpreter_(nullptr),
|
|
pyobj_(nullptr),
|
|
storage_offset_(0),
|
|
numel_(0),
|
|
data_type_(data_type),
|
|
device_opt_(storage_.device()),
|
|
key_set_(key_set - c10::python_ks) { // See [Note: Python key removal]
|
|
init_bitfields();
|
|
// Inference tensor doesn't have version counter.
|
|
if (!is_inference()) {
|
|
version_counter_ = VariableVersion(/*version=*/0);
|
|
}
|
|
}
|
|
|
|
TensorImpl::TensorImpl(
|
|
DispatchKeySet key_set,
|
|
const caffe2::TypeMeta data_type,
|
|
c10::optional<c10::Device> device_opt)
|
|
// NOLINTNEXTLINE(performance-move-const-arg)
|
|
: TensorImpl({}, key_set, data_type, std::move(device_opt)) {}
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
|
|
TensorImpl::TensorImpl(
|
|
Storage&& storage,
|
|
DispatchKeySet key_set,
|
|
const caffe2::TypeMeta data_type,
|
|
c10::optional<c10::Device> device_opt)
|
|
: storage_(std::move(storage)),
|
|
pyobj_interpreter_(nullptr),
|
|
pyobj_(nullptr),
|
|
storage_offset_(0),
|
|
numel_(0),
|
|
data_type_(data_type),
|
|
device_opt_(device_opt) {
|
|
init_bitfields();
|
|
|
|
if (!key_set.empty()) {
|
|
TORCH_INTERNAL_ASSERT(
|
|
data_type == ScalarType::Undefined || device_opt_.has_value());
|
|
// UndefinedTensorImpl is a singleton, so we skip logging it
|
|
C10_LOG_API_USAGE_ONCE("tensor.create");
|
|
}
|
|
|
|
bool inference_mode = c10::InferenceMode::is_enabled();
|
|
|
|
// TODO: be more explicit about the full key set at call sites so we
|
|
// don't have to keep recomputing it here
|
|
auto k = key_set.highestBackendKey();
|
|
|
|
key_set = key_set | getAutocastRelatedKeySetFromBackend(k);
|
|
|
|
// See [Note: Python key removal]
|
|
key_set = key_set - c10::python_ks;
|
|
|
|
// Inference tensor doesn't have autograd related keys.
|
|
if (inference_mode) {
|
|
// See Note [Expected TLS state in InferenceMode] for why we exclude
|
|
// Autograd & ADInplaceOrView keys. Normally key_set only contains backend
|
|
// keys but we do the substraction here to make sure.
|
|
key_set_ = key_set - c10::autograd_dispatch_keyset_with_ADInplaceOrView;
|
|
} else {
|
|
// TODO: Ideally we only add AutogradBackend key when the tensor requires
|
|
// grad.
|
|
// See Note [Dream: skip VariableType kernel when requires_grad=false]
|
|
key_set_ = key_set | getAutogradRelatedKeySetFromBackend(k);
|
|
}
|
|
|
|
// Inference tensor doesn't have version counter.
|
|
if (!is_inference()) {
|
|
version_counter_ = VariableVersion(/*version=*/0);
|
|
}
|
|
|
|
// we would also like to check that non-cpu devices have an index, but some
|
|
// Caffe2 operators create Storages with default devices.
|
|
}
|
|
|
|
void TensorImpl::HandleResize() {
|
|
// If needed, we will free the data. the next mutable_data() call
|
|
// will create the data storage.
|
|
bool reset_tensor = false;
|
|
if (reserved_) {
|
|
// If tensor is reserved then don't claim its memeory unless nbytes()
|
|
// is smaller than new size
|
|
reset_tensor =
|
|
storage_.nbytes() < (storage_offset_ + numel_) * data_type_.itemsize();
|
|
} else {
|
|
reset_tensor = storage_.nbytes() <
|
|
(storage_offset_ + numel_) * data_type_.itemsize() ||
|
|
!FLAGS_caffe2_keep_on_shrink ||
|
|
storage_.nbytes() - (storage_offset_ + numel_) * data_type_.itemsize() >
|
|
static_cast<size_t>(FLAGS_caffe2_max_keep_on_shrink_memory);
|
|
}
|
|
|
|
if (reset_tensor && storage_initialized()) {
|
|
FreeMemory();
|
|
}
|
|
}
|
|
|
|
bool TensorImpl::compute_contiguous() const {
|
|
bool is_contiguous = true;
|
|
if (is_empty())
|
|
return is_contiguous;
|
|
int64_t z = 1;
|
|
for (int64_t d = dim() - 1; d >= 0; d--) {
|
|
const auto size_d = sizes_and_strides_.size_at_unchecked(d);
|
|
if (size_d != 1) {
|
|
if (sizes_and_strides_.stride_at_unchecked(d) == z) {
|
|
z *= size_d;
|
|
} else {
|
|
is_contiguous = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return is_contiguous;
|
|
}
|
|
|
|
bool TensorImpl::compute_channels_last_contiguous_2d() const {
|
|
// Please don't combine these code, constant array is used here to let
|
|
// compiler fully unroll the loop to get better performance
|
|
switch (sizes_and_strides_.size()) {
|
|
case 4: {
|
|
int64_t expected = 1;
|
|
for (auto& d : {1, 3, 2, 0}) {
|
|
const auto size_d = sizes_and_strides_.size_at_unchecked(d);
|
|
if (size_d != 1) {
|
|
if (sizes_and_strides_.stride_at_unchecked(d) != expected) {
|
|
return false;
|
|
}
|
|
expected *= size_d;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
// NOLINTNEXTLINE(bugprone-branch-clone)
|
|
case 3:
|
|
// TODO dim == 3 case will be enabled once it is fully tested
|
|
return false;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool TensorImpl::compute_channels_last_contiguous_3d() const {
|
|
// Please don't combine these code, constant array is used here to let
|
|
// compiler fully unroll the loop to get better performance
|
|
switch (sizes_and_strides_.size()) {
|
|
case 5: {
|
|
int64_t expected = 1;
|
|
for (auto& d : {1, 4, 3, 2, 0}) {
|
|
const auto size_d = sizes_and_strides_.size_at_unchecked(d);
|
|
if (size_d != 1) {
|
|
if (sizes_and_strides_.stride_at_unchecked(d) != expected) {
|
|
return false;
|
|
}
|
|
expected *= size_d;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
// NOLINTNEXTLINE(bugprone-branch-clone)
|
|
case 4:
|
|
// TODO dim == 4 case will be enabled once it is fully tested
|
|
return false;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool TensorImpl::compute_strides_like_channels_last_2d() const {
|
|
return is_channels_last_strides_2d(
|
|
TensorImpl::sizes(), TensorImpl::strides());
|
|
}
|
|
|
|
bool TensorImpl::compute_strides_like_channels_last_3d() const {
|
|
return is_channels_last_strides_3d(
|
|
TensorImpl::sizes(), TensorImpl::strides());
|
|
}
|
|
|
|
bool TensorImpl::compute_non_overlapping_and_dense() const {
|
|
if (dim() == 1) {
|
|
return sizes_and_strides_.size_at_unchecked(0) < 2 ||
|
|
sizes_and_strides_.stride_at_unchecked(0) == 1;
|
|
}
|
|
SmallVector<int64_t, 5> perm;
|
|
perm.resize(dim());
|
|
for (const auto i : c10::irange(dim())) {
|
|
perm[i] = i;
|
|
}
|
|
// Sort by strides, leaving 0 and 1 sized dims at the end of the array
|
|
std::sort(perm.begin(), perm.end(), [&](int64_t a, int64_t b) {
|
|
if (sizes_and_strides_.size_at_unchecked(a) < 2) {
|
|
return false;
|
|
} else if (sizes_and_strides_.size_at_unchecked(b) < 2) {
|
|
return true;
|
|
}
|
|
return sizes_and_strides_.stride_at_unchecked(a) <
|
|
sizes_and_strides_.stride_at_unchecked(b);
|
|
});
|
|
auto require_stride = 1;
|
|
for (const auto i : c10::irange(dim())) {
|
|
const auto size_perm_i = sizes_and_strides_.size_at_unchecked(perm[i]);
|
|
if (size_perm_i < 2) {
|
|
return true;
|
|
}
|
|
if (sizes_and_strides_.stride_at_unchecked(perm[i]) != require_stride) {
|
|
return false;
|
|
}
|
|
require_stride *= size_perm_i;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void TensorImpl::release_resources() {
|
|
autograd_meta_.reset();
|
|
if (storage_) {
|
|
storage_ = {};
|
|
}
|
|
if (owns_pyobj()) {
|
|
TORCH_INTERNAL_ASSERT(pyobj_interpreter_ != nullptr);
|
|
TORCH_INTERNAL_ASSERT(pyobj_ != nullptr);
|
|
pyobj_interpreter_.load(std::memory_order_acquire)
|
|
->decref(_unchecked_untagged_pyobj(), /*is_tensor*/ true);
|
|
// NB: this destructor can only be entered when there are no
|
|
// references to this C++ object (obviously), NOR any references
|
|
// to the PyObject (if there are references to the PyObject,
|
|
// then the PyObject holds an owning reference to the tensor).
|
|
// So it is OK to clear pyobj_ here as it is impossible for it to
|
|
// be used again (modulo weak reference races)
|
|
pyobj_ = nullptr; // for safety
|
|
}
|
|
}
|
|
|
|
#ifndef C10_DISABLE_TENSORIMPL_EXTENSIBILITY
|
|
bool TensorImpl::has_storage() const {
|
|
return storage_;
|
|
}
|
|
#endif
|
|
|
|
void TensorImpl::throw_storage_access_error() const {
|
|
TORCH_CHECK_NOT_IMPLEMENTED(
|
|
false, "Cannot access storage of ", tensorimpl_type_name());
|
|
}
|
|
|
|
bool TensorImpl::is_contiguous_custom(at::MemoryFormat memory_format) const {
|
|
if (is_python_dispatch()) {
|
|
auto interpreter = pyobj_interpreter_.load(std::memory_order_acquire);
|
|
if (interpreter) {
|
|
return interpreter->is_contiguous(this);
|
|
}
|
|
TORCH_CHECK(
|
|
false,
|
|
"cannot access PyObject for Tensor on interpreter ",
|
|
pyobj_interpreter_.load()->name());
|
|
}
|
|
TORCH_CHECK(
|
|
false,
|
|
"Tensors of type ",
|
|
tensorimpl_type_name(),
|
|
" do not have is_contiguous");
|
|
}
|
|
|
|
IntArrayRef TensorImpl::sizes_custom() const {
|
|
TORCH_CHECK(
|
|
false, "Tensors of type ", tensorimpl_type_name(), " do not have sizes");
|
|
}
|
|
c10::SymIntArrayRef TensorImpl::sym_sizes_custom() const {
|
|
TORCH_CHECK(
|
|
false,
|
|
"Tensors of type ",
|
|
tensorimpl_type_name(),
|
|
" do not have sym sizes");
|
|
}
|
|
IntArrayRef TensorImpl::strides_custom() const {
|
|
TORCH_CHECK(
|
|
false,
|
|
"Tensors of type ",
|
|
tensorimpl_type_name(),
|
|
" do not have strides");
|
|
}
|
|
int64_t TensorImpl::dim_custom() const {
|
|
TORCH_CHECK(
|
|
false, "Tensors of type ", tensorimpl_type_name(), " do not have dim");
|
|
}
|
|
int64_t TensorImpl::numel_custom() const {
|
|
TORCH_CHECK(
|
|
false, "Tensors of type ", tensorimpl_type_name(), " do not have numel");
|
|
}
|
|
|
|
static void deletePlacementDeleteContext(void* ptr) {
|
|
delete static_cast<PlacementDeleteContext*>(ptr);
|
|
}
|
|
|
|
at::DataPtr PlacementDeleteContext::makeDataPtr(
|
|
at::DataPtr&& data_ptr,
|
|
PlacementDtor placement_dtor,
|
|
size_t size,
|
|
at::Device device) {
|
|
auto* ptr = data_ptr.get();
|
|
return {
|
|
ptr,
|
|
new PlacementDeleteContext(std::move(data_ptr), placement_dtor, size),
|
|
&deletePlacementDeleteContext,
|
|
device};
|
|
}
|
|
|
|
AutogradMetaInterface::~AutogradMetaInterface() = default;
|
|
|
|
// Setting requires_grad to true on inference tensor outside InferenceMode
|
|
// is forbidden. Ideally it would also be illegal inside InferenceMode.
|
|
// But there's no way that we can directly allocate a tensor to have
|
|
// requires_grad = true in C++ constructor so set_requires_grad is widely
|
|
// used in C++ frontend. Forbidding it inside InferenceMode will force users
|
|
// to delete these setter code in their code which is not ideal.
|
|
void TensorImpl::set_requires_grad(bool requires_grad) {
|
|
TORCH_CHECK(
|
|
!(requires_grad && is_inference() && !c10::InferenceMode::is_enabled()),
|
|
"Setting requires_grad=True on inference tensor outside InferenceMode is not allowed.");
|
|
if (!requires_grad && !autograd_meta_)
|
|
return;
|
|
if (!autograd_meta_)
|
|
autograd_meta_ = impl::GetAutogradMetaFactory()->make();
|
|
// NB: In principle, setting requires_grad to false could result in
|
|
// the AutogradMeta becoming equal to a default constructed state,
|
|
// in which case we could apply the nullptr AutogradMeta optimization
|
|
// (see autograd_meta_ docs). But we don't do this right now. Note
|
|
// that it is unsound to unconditionally set AutogradMeta to false
|
|
// when you set requires_grad to False, as there may be nontrivial
|
|
// information content in the other fields; for example, we may
|
|
// have set the string name for a Variable, or there may be hooks
|
|
// registered for it.
|
|
autograd_meta_->set_requires_grad(requires_grad, this);
|
|
}
|
|
|
|
bool TensorImpl::requires_grad() const {
|
|
if (!autograd_meta_)
|
|
return false;
|
|
return autograd_meta_->requires_grad();
|
|
}
|
|
|
|
void TensorImpl::set_autograd_meta(
|
|
std::unique_ptr<c10::AutogradMetaInterface> autograd_meta) {
|
|
// NB: autograd_meta may be null! That just means it's the default
|
|
// constructor
|
|
autograd_meta_ = std::move(autograd_meta);
|
|
}
|
|
|
|
c10::AutogradMetaInterface* TensorImpl::autograd_meta() const {
|
|
// NB: Might return null!
|
|
return autograd_meta_.get();
|
|
}
|
|
|
|
template <typename VariableVersion>
|
|
c10::intrusive_ptr<TensorImpl> TensorImpl::shallow_copy_and_detach_core(
|
|
VariableVersion&& version_counter,
|
|
bool allow_tensor_metadata_change) const {
|
|
if (key_set_.has(DispatchKey::Python) &&
|
|
!c10::impl::tls_is_dispatch_key_excluded(DispatchKey::Python)) {
|
|
auto r = pyobj_interpreter_.load(std::memory_order_acquire)->detach(this);
|
|
if (r) {
|
|
r->set_version_counter(std::forward<VariableVersion>(version_counter));
|
|
r->set_allow_tensor_metadata_change(allow_tensor_metadata_change);
|
|
return r;
|
|
}
|
|
// otherwise just copy the TensorImpl and not the PyObject. Since
|
|
// the interpreter is dead no one can call us out on it
|
|
}
|
|
auto impl = c10::make_intrusive<TensorImpl>(
|
|
// No need to populate Storage; copy_tensor_metadata will do it for us.
|
|
key_set_,
|
|
data_type_,
|
|
device_opt_);
|
|
copy_tensor_metadata(
|
|
/*src_impl=*/this,
|
|
/*dest_impl=*/impl.get(),
|
|
/*version_counter=*/std::forward<VariableVersion>(version_counter),
|
|
/*allow_tensor_metadata_change=*/allow_tensor_metadata_change);
|
|
impl->refresh_numel();
|
|
impl->refresh_contiguous();
|
|
return impl;
|
|
}
|
|
|
|
c10::intrusive_ptr<TensorImpl> TensorImpl::shallow_copy_and_detach(
|
|
const c10::VariableVersion& version_counter,
|
|
bool allow_tensor_metadata_change) const {
|
|
return shallow_copy_and_detach_core(
|
|
version_counter, allow_tensor_metadata_change);
|
|
}
|
|
|
|
c10::intrusive_ptr<TensorImpl> TensorImpl::shallow_copy_and_detach(
|
|
c10::VariableVersion&& version_counter,
|
|
bool allow_tensor_metadata_change) const {
|
|
return shallow_copy_and_detach_core(
|
|
std::move(version_counter), allow_tensor_metadata_change);
|
|
}
|
|
|
|
// This function copies all of the metadata from the src tensor except for:
|
|
// - key_set_
|
|
// - storage_
|
|
// - storage_access_should_throw_
|
|
// - sizes_strides_policy_
|
|
// - version_counter_
|
|
// - allow_tensor_metadata_change_
|
|
// The idea is that if we have a "wrapper tensor" (like in functionalization),
|
|
// all of the above are properties that the wrapper will want to customize,
|
|
// while everything else should be mirrored between the wrapper and the inner
|
|
// tensor.
|
|
void TensorImpl::copy_generic_tensor_metadata(
|
|
const TensorImpl* src_impl,
|
|
TensorImpl* dest_impl) {
|
|
dest_impl->sizes_and_strides_ = src_impl->sizes_and_strides_;
|
|
dest_impl->storage_offset_ = src_impl->storage_offset_;
|
|
dest_impl->data_type_ = src_impl->data_type_;
|
|
dest_impl->device_opt_ = src_impl->device_opt_;
|
|
dest_impl->is_contiguous_ = src_impl->is_contiguous_;
|
|
dest_impl->is_channels_last_contiguous_ =
|
|
src_impl->is_channels_last_contiguous_;
|
|
dest_impl->is_channels_last_3d_contiguous_ =
|
|
src_impl->is_channels_last_3d_contiguous_;
|
|
dest_impl->is_channels_last_ = src_impl->is_channels_last_;
|
|
dest_impl->is_channels_last_3d_ = src_impl->is_channels_last_3d_;
|
|
dest_impl->is_non_overlapping_and_dense_ =
|
|
src_impl->is_non_overlapping_and_dense_;
|
|
dest_impl->is_wrapped_number_ = src_impl->is_wrapped_number_;
|
|
dest_impl->reserved_ = src_impl->reserved_;
|
|
if (src_impl->named_tensor_meta_ != nullptr) {
|
|
dest_impl->named_tensor_meta_ = src_impl->named_tensor_meta_->clone();
|
|
}
|
|
}
|
|
|
|
void TensorImpl::copy_tensor_metadata_except_version_counter(
|
|
const TensorImpl* src_impl,
|
|
TensorImpl* dest_impl,
|
|
bool allow_tensor_metadata_change) {
|
|
// First call the generic copy function
|
|
copy_generic_tensor_metadata(src_impl, dest_impl);
|
|
// Then copy everything else (see the comment at copy_generic_tensor_metadata
|
|
// for the list of metadata that it does not directly copy).
|
|
dest_impl->storage_ = src_impl->storage_;
|
|
// Copying tensor metadata doesn't change the PyObject (maybe
|
|
// it should), which means that we have to preserve whatever the
|
|
// original Python keyset was (as it's associated with the PyObject
|
|
// being a tensor subclass or not)
|
|
dest_impl->key_set_ = (src_impl->key_set_ - c10::python_ks) |
|
|
(dest_impl->key_set_ & c10::python_ks);
|
|
dest_impl->set_allow_tensor_metadata_change(allow_tensor_metadata_change);
|
|
dest_impl->sizes_strides_policy_ = src_impl->sizes_strides_policy_;
|
|
dest_impl->storage_access_should_throw_ =
|
|
src_impl->storage_access_should_throw_;
|
|
}
|
|
|
|
void TensorImpl::copy_tensor_metadata(
|
|
const TensorImpl* src_impl,
|
|
TensorImpl* dest_impl,
|
|
const c10::VariableVersion& version_counter,
|
|
bool allow_tensor_metadata_change) {
|
|
copy_tensor_metadata_except_version_counter(
|
|
src_impl, dest_impl, allow_tensor_metadata_change);
|
|
// TODO: In the ideal end state, it's okay to set disabled version_counter
|
|
// on inference tensor since it's a no-op. This requires refactor on call
|
|
// sites.
|
|
if (!dest_impl->is_inference()) {
|
|
dest_impl->set_version_counter(version_counter);
|
|
}
|
|
}
|
|
|
|
void TensorImpl::copy_tensor_metadata(
|
|
const TensorImpl* src_impl,
|
|
TensorImpl* dest_impl,
|
|
c10::VariableVersion&& version_counter,
|
|
bool allow_tensor_metadata_change) {
|
|
copy_tensor_metadata_except_version_counter(
|
|
src_impl, dest_impl, allow_tensor_metadata_change);
|
|
if (!dest_impl->is_inference()) {
|
|
dest_impl->set_version_counter(std::move(version_counter));
|
|
}
|
|
}
|
|
|
|
// Legacy Caffe2 operations
|
|
|
|
void TensorImpl::Extend(int64_t num, float growthPct) {
|
|
TORCH_CHECK(sizes_and_strides_.size() >= 1u);
|
|
TORCH_CHECK(num >= 0, "`num` must be non-negative for Extend");
|
|
TORCH_CHECK(
|
|
is_contiguous_,
|
|
"Right now Extend is only supported for contiguous Tensor.");
|
|
using SizesVector = SmallVector<int64_t, 5>;
|
|
SizesVector newDims(
|
|
sizes_and_strides_.sizes_begin(), sizes_and_strides_.sizes_end());
|
|
newDims[0] += num;
|
|
if (!storage_.data()) {
|
|
Resize(newDims);
|
|
return;
|
|
}
|
|
const auto newNumel = c10::multiply_integers(newDims.begin(), newDims.end());
|
|
if (newNumel * data_type_.itemsize() <= storage_.nbytes()) {
|
|
sizes_and_strides_.set_sizes(newDims);
|
|
numel_ = newNumel;
|
|
return;
|
|
}
|
|
SizesVector newCapacity(
|
|
sizes_and_strides_.sizes_begin(), sizes_and_strides_.sizes_end());
|
|
newCapacity[0] = std::max(
|
|
newDims[0],
|
|
static_cast<int64_t>(std::ceil(
|
|
sizes_and_strides_.size_at_unchecked(0) * (1 + growthPct / 100))));
|
|
auto oldData = std::move(storage_.data_ptr());
|
|
auto oldSize = numel_;
|
|
Resize(newCapacity);
|
|
auto* newData = raw_mutable_data(data_type_);
|
|
if (data_type_.copy()) {
|
|
TORCH_CHECK(
|
|
device_type() == DeviceType::CPU, "non-POD types work only on CPU");
|
|
data_type_.copy()(oldData.get(), newData, oldSize);
|
|
} else {
|
|
// The following copy uses the current (thread local) stream for copying
|
|
// and also takes the GPU id from the device() field passed in.
|
|
//
|
|
// TODO: Potentially more enforcements are necessary to avoid accidental
|
|
// switch to sync copy if the currently set device is wrong.
|
|
//
|
|
// Specifically, we might need to switch to a different context device
|
|
// here explicitly to avoid relying on user synchronizing things
|
|
// properly.
|
|
CopyBytes(
|
|
oldSize * itemsize(),
|
|
oldData.get(),
|
|
device(),
|
|
newData,
|
|
device(),
|
|
true); // non-blocking
|
|
}
|
|
reserved_ = true;
|
|
sizes_and_strides_.set_sizes(newDims);
|
|
numel_ = newNumel;
|
|
}
|
|
|
|
void TensorImpl::ReserveSpace(int64_t outer_dim) {
|
|
TORCH_CHECK(
|
|
is_contiguous_,
|
|
"Right now ReserveSpace is only supported for contiguous Tensor.");
|
|
TORCH_CHECK(storage_.unique(), "Can't call ReserveSpace on shared storage.");
|
|
// TODO: eliminate newCapacity.
|
|
SmallVector<int64_t, 5> newCapacity(
|
|
sizes_and_strides_.sizes_begin(), sizes_and_strides_.sizes_end());
|
|
newCapacity[0] = outer_dim;
|
|
auto newNumel = c10::multiply_integers(newCapacity);
|
|
if (newNumel * data_type_.itemsize() <= storage_.nbytes()) {
|
|
return;
|
|
}
|
|
// Old data is discarded
|
|
storage_.data_ptr().clear();
|
|
auto oldSize = numel_;
|
|
SmallVector<int64_t, 5> oldDims(
|
|
sizes_and_strides_.sizes_begin(), sizes_and_strides_.sizes_end());
|
|
Resize(newCapacity);
|
|
// Allocate new memory but don't copy over the data
|
|
raw_mutable_data(data_type_);
|
|
sizes_and_strides_.set_sizes(oldDims);
|
|
numel_ = oldSize;
|
|
reserved_ = true;
|
|
}
|
|
|
|
void TensorImpl::Reshape(const std::vector<int64_t>& dims) {
|
|
TORCH_CHECK(
|
|
is_contiguous_,
|
|
"Right now Reshape is only supported for contiguous Tensor.");
|
|
int64_t new_size = 1;
|
|
for (auto d : dims) {
|
|
TORCH_CHECK(d >= 0);
|
|
new_size *= d;
|
|
}
|
|
TORCH_CHECK(
|
|
new_size == numel_,
|
|
"New size and old size are not equal. You cannot use Reshape, "
|
|
"but should use Resize."
|
|
// TODO(jiayq): remove the following warning after pending diffs
|
|
// stabilize.
|
|
" The old caffe2 mixes Reshape and Resize but this behavior has "
|
|
"been changed. If you find this error, most likely you will need "
|
|
"to change corresponding code from Reshape to Resize.");
|
|
sizes_and_strides_.set_sizes(dims);
|
|
empty_tensor_restride(MemoryFormat::Contiguous);
|
|
}
|
|
|
|
void TensorImpl::FreeMemory() {
|
|
// We'll detach from the old Storage and create a new one
|
|
storage_ = Storage::create_legacy(storage_.device());
|
|
storage_offset_ = 0;
|
|
}
|
|
|
|
void TensorImpl::ShareData(const TensorImpl& src) {
|
|
// Right now, we are assuming the device_type are the same, since it is
|
|
// inherently the same in the non-templatized code. We should probably add
|
|
// an assert here which might affect perf a little bit.
|
|
TORCH_CHECK(
|
|
src.numel_ == numel_,
|
|
"Size mismatch - did you call reshape before sharing the data?");
|
|
// It is possible that the source tensor hasn't called mutable_data() yet,
|
|
// in which case ShareData() doesn't make much sense since we don't really
|
|
// know what to share yet.
|
|
// TODO: Add the assert after all uninitialized states are eliminated
|
|
// TORCH_CHECK(src.dtype_initialized(),
|
|
// "Source tensor don't have a data type (did you call
|
|
// mutable_data<T> on the tensor?)");
|
|
if (!src.dtype_initialized()) {
|
|
C10_LOG_EVERY_MS(WARNING, 1000)
|
|
<< "Source tensor don't have a data type (did you call mutable_data<T> on the tensor?)";
|
|
}
|
|
TORCH_CHECK(
|
|
src.storage_initialized(),
|
|
"Source tensor has no content and has size > 0");
|
|
// Finally, do sharing.
|
|
/* Since we create new Storage whenever we need to change data_type/nbytes
|
|
* this still keeps the original semantics
|
|
*/
|
|
storage_ = src.storage();
|
|
data_type_ = src.dtype();
|
|
device_opt_ = src.device_opt();
|
|
storage_offset_ = src.storage_offset();
|
|
}
|
|
|
|
void TensorImpl::ShareExternalPointer(
|
|
DataPtr&& data_ptr,
|
|
const caffe2::TypeMeta data_type,
|
|
size_t size_bytes) {
|
|
TORCH_CHECK(
|
|
data_type != ScalarType::Undefined,
|
|
"To share with a raw external pointer you need to pass in an "
|
|
"initialized data_type(TypeMeta).");
|
|
if (!size_bytes) {
|
|
size_bytes = numel_ * data_type.itemsize();
|
|
}
|
|
if (storage_.unique()) {
|
|
storage_.UniqueStorageShareExternalPointer(std::move(data_ptr), size_bytes);
|
|
data_type_ = data_type;
|
|
device_opt_ = storage_.device();
|
|
storage_offset_ = 0;
|
|
} else {
|
|
// Create a new Storage
|
|
storage_ = Storage(
|
|
Storage::use_byte_size_t(),
|
|
size_bytes,
|
|
std::move(data_ptr),
|
|
/*allocator=*/nullptr,
|
|
/*resizable=*/false);
|
|
data_type_ = data_type;
|
|
device_opt_ = storage_.device();
|
|
storage_offset_ = 0;
|
|
}
|
|
}
|
|
|
|
namespace impl {
|
|
|
|
namespace {
|
|
AutogradMetaFactory* meta_factory = nullptr;
|
|
} // namespace
|
|
|
|
void SetAutogradMetaFactory(AutogradMetaFactory* factory) {
|
|
meta_factory = factory;
|
|
}
|
|
AutogradMetaFactory* GetAutogradMetaFactory() {
|
|
TORCH_CHECK(
|
|
meta_factory,
|
|
"Support for autograd has not been loaded; have you linked against libtorch.so?")
|
|
return meta_factory;
|
|
}
|
|
|
|
} // namespace impl
|
|
|
|
} // namespace c10
|