mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Fix https://github.com/pytorch/pytorch/issues/79384 Pull Request resolved: https://github.com/pytorch/pytorch/pull/79465 Approved by: https://github.com/kulinseth, https://github.com/malfet
1068 lines
44 KiB
Python
1068 lines
44 KiB
Python
import difflib
|
|
import os
|
|
import io
|
|
import shutil
|
|
import struct
|
|
import sys
|
|
import torch
|
|
import tarfile
|
|
import tempfile
|
|
import warnings
|
|
from contextlib import closing, contextmanager
|
|
from ._utils import _import_dotted_name
|
|
from ._six import string_classes as _string_classes
|
|
from torch._sources import get_source_lines_and_file
|
|
from torch.types import Storage
|
|
from torch.storage import _get_dtype_from_pickle_storage_type
|
|
from typing import Any, BinaryIO, cast, Dict, Optional, Type, Tuple, Union, IO
|
|
import copyreg
|
|
import pickle
|
|
import pathlib
|
|
|
|
DEFAULT_PROTOCOL = 2
|
|
|
|
LONG_SIZE = struct.Struct('=l').size
|
|
INT_SIZE = struct.Struct('=i').size
|
|
SHORT_SIZE = struct.Struct('=h').size
|
|
|
|
MAGIC_NUMBER = 0x1950a86a20f9469cfc6c
|
|
PROTOCOL_VERSION = 1001
|
|
STORAGE_KEY_SEPARATOR = ','
|
|
|
|
class SourceChangeWarning(Warning):
|
|
pass
|
|
|
|
|
|
@contextmanager
|
|
def mkdtemp():
|
|
path = tempfile.mkdtemp()
|
|
yield path
|
|
shutil.rmtree(path)
|
|
|
|
|
|
_package_registry = []
|
|
|
|
|
|
def _is_zipfile(f) -> bool:
|
|
# This is a stricter implementation than zipfile.is_zipfile().
|
|
# zipfile.is_zipfile() is True if the magic number appears anywhere in the
|
|
# binary. Since we expect the files here to be generated by torch.save or
|
|
# torch.jit.save, it's safe to only check the start bytes and avoid
|
|
# collisions and assume the zip has only 1 file.
|
|
# See bugs.python.org/issue28494.
|
|
|
|
# Read the first 4 bytes of the file
|
|
read_bytes = []
|
|
start = f.tell()
|
|
|
|
byte = f.read(1)
|
|
while byte != "":
|
|
read_bytes.append(byte)
|
|
if len(read_bytes) == 4:
|
|
break
|
|
byte = f.read(1)
|
|
f.seek(start)
|
|
|
|
local_header_magic_number = [b'P', b'K', b'\x03', b'\x04']
|
|
return read_bytes == local_header_magic_number
|
|
|
|
|
|
def register_package(priority, tagger, deserializer):
|
|
queue_elem = (priority, tagger, deserializer)
|
|
_package_registry.append(queue_elem)
|
|
_package_registry.sort()
|
|
|
|
|
|
def check_module_version_greater_or_equal(module, req_version_tuple, error_if_malformed=True):
|
|
'''
|
|
Check if a module's version satisfies requirements
|
|
|
|
Usually, a module's version string will be like 'x.y.z', which would be represented
|
|
as a tuple (x, y, z), but sometimes it could be an unexpected format. If the version
|
|
string does not match the given tuple's format up to the length of the tuple, then
|
|
error and exit or emit a warning.
|
|
|
|
Args:
|
|
module: the module to check the version of
|
|
req_version_tuple: tuple (usually of ints) representing the required version
|
|
error_if_malformed: whether we should exit if module version string is malformed
|
|
|
|
Returns:
|
|
requirement_is_met: bool
|
|
'''
|
|
try:
|
|
version_strs = module.__version__.split('.')
|
|
# Cast module version fields to match the types of the required version
|
|
module_version = tuple(
|
|
type(req_field)(version_strs[idx]) for idx, req_field in enumerate(req_version_tuple)
|
|
)
|
|
requirement_is_met = module_version >= req_version_tuple
|
|
|
|
except Exception as e:
|
|
message = (
|
|
"'%s' module version string is malformed '%s' and cannot be compared"
|
|
" with tuple %s"
|
|
) % (
|
|
module.__name__, module.__version__, str(req_version_tuple)
|
|
)
|
|
if error_if_malformed:
|
|
raise RuntimeError(message) from e
|
|
else:
|
|
warnings.warn(message + ', but continuing assuming that requirement is met')
|
|
requirement_is_met = True
|
|
|
|
return requirement_is_met
|
|
|
|
|
|
def _cpu_tag(obj):
|
|
if obj.device.type == 'cpu':
|
|
return 'cpu'
|
|
|
|
|
|
def _cuda_tag(obj):
|
|
if obj.device.type == 'cuda':
|
|
return 'cuda:' + str(obj.device.index)
|
|
|
|
|
|
def _mps_tag(obj):
|
|
if obj.device.type == 'mps':
|
|
return 'mps'
|
|
|
|
|
|
def _cpu_deserialize(obj, location):
|
|
if location == 'cpu':
|
|
return obj
|
|
|
|
|
|
def validate_cuda_device(location):
|
|
device = torch.cuda._utils._get_device_index(location, True)
|
|
|
|
if not torch.cuda.is_available():
|
|
raise RuntimeError('Attempting to deserialize object on a CUDA '
|
|
'device but torch.cuda.is_available() is False. '
|
|
'If you are running on a CPU-only machine, '
|
|
'please use torch.load with map_location=torch.device(\'cpu\') '
|
|
'to map your storages to the CPU.')
|
|
device_count = torch.cuda.device_count()
|
|
if device >= device_count:
|
|
raise RuntimeError('Attempting to deserialize object on CUDA device '
|
|
f'{device} but torch.cuda.device_count() is {device_count}. Please use '
|
|
'torch.load with map_location to map your storages '
|
|
'to an existing device.')
|
|
return device
|
|
|
|
|
|
def _cuda_deserialize(obj, location):
|
|
if location.startswith('cuda'):
|
|
device = validate_cuda_device(location)
|
|
if getattr(obj, "_torch_load_uninitialized", False):
|
|
with torch.cuda.device(device):
|
|
return torch._UntypedStorage(obj.nbytes(), device=torch.device(location))
|
|
else:
|
|
return obj.cuda(device)
|
|
|
|
def _mps_deserialize(obj, location):
|
|
if location == 'mps':
|
|
return obj.mps()
|
|
|
|
|
|
register_package(10, _cpu_tag, _cpu_deserialize)
|
|
register_package(20, _cuda_tag, _cuda_deserialize)
|
|
register_package(21, _mps_tag, _mps_deserialize)
|
|
|
|
|
|
def location_tag(storage: Union[Storage, torch.storage._TypedStorage, torch._UntypedStorage]):
|
|
for _, tagger, _ in _package_registry:
|
|
location = tagger(storage)
|
|
if location:
|
|
return location
|
|
raise RuntimeError("don't know how to determine data location of "
|
|
+ torch.typename(storage))
|
|
|
|
|
|
def default_restore_location(storage, location):
|
|
for _, _, fn in _package_registry:
|
|
result = fn(storage, location)
|
|
if result is not None:
|
|
return result
|
|
raise RuntimeError("don't know how to restore data location of "
|
|
+ torch.typename(storage) + " (tagged with "
|
|
+ location + ")")
|
|
|
|
|
|
def normalize_storage_type(storage_type):
|
|
return getattr(torch, storage_type.__name__)
|
|
|
|
|
|
def storage_to_tensor_type(storage):
|
|
storage_type = type(storage)
|
|
module = _import_dotted_name(storage_type.__module__)
|
|
return getattr(module, storage_type.__name__.replace('Storage', 'Tensor'))
|
|
|
|
|
|
def _is_path(name_or_buffer):
|
|
return isinstance(name_or_buffer, str) or \
|
|
isinstance(name_or_buffer, pathlib.Path)
|
|
|
|
|
|
class _opener(object):
|
|
def __init__(self, file_like):
|
|
self.file_like = file_like
|
|
|
|
def __enter__(self):
|
|
return self.file_like
|
|
|
|
def __exit__(self, *args):
|
|
pass
|
|
|
|
|
|
class _open_file(_opener):
|
|
def __init__(self, name, mode):
|
|
super(_open_file, self).__init__(open(name, mode))
|
|
|
|
def __exit__(self, *args):
|
|
self.file_like.close()
|
|
|
|
|
|
class _open_buffer_reader(_opener):
|
|
def __init__(self, buffer):
|
|
super(_open_buffer_reader, self).__init__(buffer)
|
|
_check_seekable(buffer)
|
|
|
|
|
|
class _open_buffer_writer(_opener):
|
|
def __exit__(self, *args):
|
|
self.file_like.flush()
|
|
|
|
|
|
def _open_file_like(name_or_buffer, mode):
|
|
if _is_path(name_or_buffer):
|
|
return _open_file(name_or_buffer, mode)
|
|
else:
|
|
if 'w' in mode:
|
|
return _open_buffer_writer(name_or_buffer)
|
|
elif 'r' in mode:
|
|
return _open_buffer_reader(name_or_buffer)
|
|
else:
|
|
raise RuntimeError(f"Expected 'r' or 'w' in mode but got {mode}")
|
|
|
|
|
|
class _open_zipfile_reader(_opener):
|
|
def __init__(self, name_or_buffer) -> None:
|
|
super(_open_zipfile_reader, self).__init__(torch._C.PyTorchFileReader(name_or_buffer))
|
|
|
|
|
|
class _open_zipfile_writer_file(_opener):
|
|
def __init__(self, name) -> None:
|
|
super(_open_zipfile_writer_file, self).__init__(torch._C.PyTorchFileWriter(str(name)))
|
|
|
|
def __exit__(self, *args) -> None:
|
|
self.file_like.write_end_of_file()
|
|
|
|
|
|
class _open_zipfile_writer_buffer(_opener):
|
|
def __init__(self, buffer) -> None:
|
|
self.buffer = buffer
|
|
super(_open_zipfile_writer_buffer, self).__init__(torch._C.PyTorchFileWriter(buffer))
|
|
|
|
def __exit__(self, *args) -> None:
|
|
self.file_like.write_end_of_file()
|
|
self.buffer.flush()
|
|
|
|
|
|
def _open_zipfile_writer(name_or_buffer):
|
|
container: Type[_opener]
|
|
if _is_path(name_or_buffer):
|
|
container = _open_zipfile_writer_file
|
|
else:
|
|
container = _open_zipfile_writer_buffer
|
|
return container(name_or_buffer)
|
|
|
|
|
|
def _is_compressed_file(f) -> bool:
|
|
compress_modules = ['gzip']
|
|
try:
|
|
return f.__module__ in compress_modules
|
|
except AttributeError:
|
|
return False
|
|
|
|
|
|
def _should_read_directly(f):
|
|
"""
|
|
Checks if f is a file that should be read directly. It should be read
|
|
directly if it is backed by a real file (has a fileno) and is not a
|
|
a compressed file (e.g. gzip)
|
|
"""
|
|
if _is_compressed_file(f):
|
|
return False
|
|
try:
|
|
return f.fileno() >= 0
|
|
except io.UnsupportedOperation:
|
|
return False
|
|
except AttributeError:
|
|
return False
|
|
|
|
|
|
def _check_seekable(f) -> bool:
|
|
|
|
def raise_err_msg(patterns, e):
|
|
for p in patterns:
|
|
if p in str(e):
|
|
msg = (str(e) + ". You can only torch.load from a file that is seekable."
|
|
+ " Please pre-load the data into a buffer like io.BytesIO and"
|
|
+ " try to load from it instead.")
|
|
raise type(e)(msg)
|
|
raise e
|
|
|
|
try:
|
|
f.seek(f.tell())
|
|
return True
|
|
except (io.UnsupportedOperation, AttributeError) as e:
|
|
raise_err_msg(["seek", "tell"], e)
|
|
return False
|
|
|
|
def _check_dill_version(pickle_module) -> None:
|
|
'''Checks if using dill as the pickle module, and if so, checks if it is the correct version.
|
|
If dill version is lower than 0.3.1, a ValueError is raised.
|
|
|
|
Args:
|
|
pickle_module: module used for pickling metadata and objects
|
|
|
|
'''
|
|
if pickle_module.__name__ == 'dill':
|
|
required_dill_version = (0, 3, 1)
|
|
if not check_module_version_greater_or_equal(pickle_module, required_dill_version, False):
|
|
raise ValueError((
|
|
"'torch' supports dill >= %s, but you have dill %s."
|
|
" Please upgrade dill or switch to 'pickle'"
|
|
) % (
|
|
'.'.join([str(num) for num in required_dill_version]),
|
|
pickle_module.__version__
|
|
))
|
|
|
|
def save(obj, f: Union[str, os.PathLike, BinaryIO, IO[bytes]],
|
|
pickle_module=pickle, pickle_protocol=DEFAULT_PROTOCOL, _use_new_zipfile_serialization=True) -> None:
|
|
# Reference: https://github.com/pytorch/pytorch/issues/54354
|
|
# The first line of this docstring overrides the one Sphinx generates for the
|
|
# documentation. We need it so that Sphinx doesn't leak `pickle`s path from
|
|
# the build environment (e.g. `<module 'pickle' from '/leaked/path').
|
|
|
|
"""save(obj, f, pickle_module=pickle, pickle_protocol=DEFAULT_PROTOCOL, _use_new_zipfile_serialization=True)
|
|
|
|
Saves an object to a disk file.
|
|
|
|
See also: :ref:`saving-loading-tensors`
|
|
|
|
Args:
|
|
obj: saved object
|
|
f: a file-like object (has to implement write and flush) or a string or
|
|
os.PathLike object containing a file name
|
|
pickle_module: module used for pickling metadata and objects
|
|
pickle_protocol: can be specified to override the default protocol
|
|
|
|
.. note::
|
|
A common PyTorch convention is to save tensors using .pt file extension.
|
|
|
|
.. note::
|
|
PyTorch preserves storage sharing across serialization. See
|
|
:ref:`preserve-storage-sharing` for more details.
|
|
|
|
.. note::
|
|
The 1.6 release of PyTorch switched ``torch.save`` to use a new
|
|
zipfile-based file format. ``torch.load`` still retains the ability to
|
|
load files in the old format. If for any reason you want ``torch.save``
|
|
to use the old format, pass the kwarg ``_use_new_zipfile_serialization=False``.
|
|
|
|
Example:
|
|
>>> # Save to file
|
|
>>> x = torch.tensor([0, 1, 2, 3, 4])
|
|
>>> torch.save(x, 'tensor.pt')
|
|
>>> # Save to io.BytesIO buffer
|
|
>>> buffer = io.BytesIO()
|
|
>>> torch.save(x, buffer)
|
|
"""
|
|
_check_dill_version(pickle_module)
|
|
|
|
with _open_file_like(f, 'wb') as opened_file:
|
|
if _use_new_zipfile_serialization:
|
|
with _open_zipfile_writer(opened_file) as opened_zipfile:
|
|
_save(obj, opened_zipfile, pickle_module, pickle_protocol)
|
|
return
|
|
_legacy_save(obj, opened_file, pickle_module, pickle_protocol)
|
|
|
|
|
|
def _legacy_save(obj, f, pickle_module, pickle_protocol) -> None:
|
|
import torch.nn as nn
|
|
serialized_container_types = {}
|
|
serialized_storages = {}
|
|
|
|
# Since loading storages that view the same data with different dtypes is
|
|
# not supported, we need to keep track of the dtype associated with each
|
|
# storage data_ptr and throw an error if the dtype is ever different.
|
|
# TODO: This feature could be added in the future
|
|
storage_dtypes: Dict[int, torch.dtype] = {}
|
|
|
|
def persistent_id(obj: Any) -> Optional[Tuple]:
|
|
# FIXME: the docs say that persistent_id should only return a string
|
|
# but torch store returns tuples. This works only in the binary protocol
|
|
# see
|
|
# https://docs.python.org/2/library/pickle.html#pickling-and-unpickling-external-objects
|
|
# https://github.com/python/cpython/blob/master/Lib/pickle.py#L527-L537
|
|
if isinstance(obj, type) and issubclass(obj, nn.Module):
|
|
if obj in serialized_container_types:
|
|
return None
|
|
serialized_container_types[obj] = True
|
|
source_file = source = None
|
|
try:
|
|
source_lines, _, source_file = get_source_lines_and_file(obj)
|
|
source = ''.join(source_lines)
|
|
except Exception: # saving the source is optional, so we can ignore any errors
|
|
warnings.warn("Couldn't retrieve source code for container of "
|
|
"type " + obj.__name__ + ". It won't be checked "
|
|
"for correctness upon loading.")
|
|
return ('module', obj, source_file, source)
|
|
|
|
if isinstance(obj, torch.storage._TypedStorage) or torch.is_storage(obj):
|
|
storage: torch._UntypedStorage
|
|
|
|
if isinstance(obj, torch.storage._TypedStorage):
|
|
# TODO: Once we decide to break serialization FC, this case
|
|
# can be deleted
|
|
storage = obj._storage
|
|
storage_dtype = obj.dtype
|
|
storage_type_str = obj.pickle_storage_type()
|
|
storage_type = getattr(torch, storage_type_str)
|
|
dtype = obj.dtype
|
|
storage_numel = obj.size()
|
|
|
|
elif isinstance(obj, torch._UntypedStorage):
|
|
storage = obj
|
|
storage_dtype = torch.uint8
|
|
storage_type = normalize_storage_type(type(obj))
|
|
dtype = torch.uint8
|
|
storage_numel = storage.nbytes()
|
|
else:
|
|
raise TypeError(f'type not recognized: {type(obj)}')
|
|
|
|
# If storage is allocated, ensure that any other saved storages
|
|
# pointing to the same data all have the same dtype. If storage is
|
|
# not allocated, don't perform this check
|
|
if storage.data_ptr() != 0:
|
|
if storage.data_ptr() in storage_dtypes:
|
|
if storage_dtype != storage_dtypes[storage.data_ptr()]:
|
|
raise RuntimeError(
|
|
'Cannot save multiple tensors or storages that '
|
|
'view the same data as different types')
|
|
else:
|
|
storage_dtypes[storage.data_ptr()] = storage_dtype
|
|
|
|
view_metadata: Optional[Tuple[str, int, int]]
|
|
|
|
# Offset is always 0, but we keep it for backwards compatibility
|
|
# with the old serialization format (which supported storage views)
|
|
offset = 0
|
|
storage_key = str(storage._cdata)
|
|
location = location_tag(storage)
|
|
|
|
# TODO: There's an issue here with FC. It might be impossible to
|
|
# solve, but it's worth noting. Imagine we save a list `[storage,
|
|
# tensor]`, where `tensor.storage()` is the same as `storage`, and
|
|
# `tensor.element_size() > 1`. Let's say that `tensor.dtype ==
|
|
# torch.float`. The storage will be serialized with element size
|
|
# of 1, since we're choosing to serialize the first occurance of
|
|
# a duplicate storage. Since this legacy serialization format saves
|
|
# the numel of the storage, rather than nbytes directly, we'll be
|
|
# effectively saving nbytes in this case. We'll be able to load it
|
|
# and the tensor back up with no problems in _this_ and future
|
|
# versions of pytorch, but in older versions, here's the problem:
|
|
# the storage will be loaded up as a _UntypedStorage, and then the
|
|
# FloatTensor will loaded and the _UntypedStorage will be assigned to
|
|
# it. Since the storage dtype does not match the tensor dtype, this
|
|
# will cause an error. If we reverse the list, like `[tensor,
|
|
# storage]`, then we will save the `tensor.storage()` as a faked
|
|
# `FloatStorage`, and the saved size will be the correct
|
|
# dtype-specific numel count that old versions expect. `tensor`
|
|
# will be able to load up properly in old versions, pointing to
|
|
# a FloatStorage. However, `storage` is still being translated to
|
|
# a _UntypedStorage, and it will try to resolve to the same
|
|
# FloatStorage that `tensor` contains. This will also cause an
|
|
# error. It doesn't seem like there's any way around this.
|
|
# Probably, we just cannot maintain FC for the legacy format if the
|
|
# saved list contains both a tensor and a storage that point to the
|
|
# same data. We should still be able to maintain FC for lists of
|
|
# just tensors, as long as all views share the same dtype as the
|
|
# tensor they are viewing.
|
|
|
|
if storage_key not in serialized_storages:
|
|
serialized_storages[storage_key] = (storage, dtype)
|
|
is_view = storage._cdata != storage._cdata
|
|
if is_view:
|
|
view_metadata = (str(storage._cdata), offset, storage.nbytes())
|
|
else:
|
|
view_metadata = None
|
|
|
|
res = ('storage',
|
|
storage_type,
|
|
storage_key,
|
|
location,
|
|
storage_numel,
|
|
view_metadata)
|
|
return res
|
|
return None
|
|
|
|
sys_info = dict(
|
|
protocol_version=PROTOCOL_VERSION,
|
|
little_endian=sys.byteorder == 'little',
|
|
type_sizes=dict(
|
|
short=SHORT_SIZE,
|
|
int=INT_SIZE,
|
|
long=LONG_SIZE,
|
|
),
|
|
)
|
|
|
|
pickle_module.dump(MAGIC_NUMBER, f, protocol=pickle_protocol)
|
|
pickle_module.dump(PROTOCOL_VERSION, f, protocol=pickle_protocol)
|
|
pickle_module.dump(sys_info, f, protocol=pickle_protocol)
|
|
pickler = pickle_module.Pickler(f, protocol=pickle_protocol)
|
|
pickler.persistent_id = persistent_id
|
|
pickler.dump(obj)
|
|
|
|
serialized_storage_keys = sorted(serialized_storages.keys())
|
|
pickle_module.dump(serialized_storage_keys, f, protocol=pickle_protocol)
|
|
f.flush()
|
|
for key in serialized_storage_keys:
|
|
storage, dtype = serialized_storages[key]
|
|
storage._write_file(f, _should_read_directly(f), True, torch._utils._element_size(dtype))
|
|
|
|
|
|
def _save(obj, zip_file, pickle_module, pickle_protocol):
|
|
serialized_storages = {}
|
|
id_map: Dict[int, str] = {}
|
|
|
|
# Since loading storages that view the same data with different dtypes is
|
|
# not supported, we need to keep track of the dtype associated with each
|
|
# storage data_ptr and throw an error if the dtype is ever different.
|
|
# TODO: This feature could be added in the future
|
|
storage_dtypes: Dict[int, torch.dtype] = {}
|
|
|
|
def persistent_id(obj):
|
|
# FIXME: the docs say that persistent_id should only return a string
|
|
# but torch store returns tuples. This works only in the binary protocol
|
|
# see
|
|
# https://docs.python.org/2/library/pickle.html#pickling-and-unpickling-external-objects
|
|
# https://github.com/python/cpython/blob/master/Lib/pickle.py#L527-L537
|
|
if isinstance(obj, torch.storage._TypedStorage) or torch.is_storage(obj):
|
|
|
|
if isinstance(obj, torch.storage._TypedStorage):
|
|
# TODO: Once we decide to break serialization FC, this case
|
|
# can be deleted
|
|
storage = obj._storage
|
|
storage_dtype = obj.dtype
|
|
storage_type_str = obj.pickle_storage_type()
|
|
storage_type = getattr(torch, storage_type_str)
|
|
storage_numel = obj.size()
|
|
|
|
else:
|
|
storage = obj
|
|
storage_dtype = torch.uint8
|
|
storage_type = normalize_storage_type(type(obj))
|
|
storage_numel = storage.nbytes()
|
|
|
|
# If storage is allocated, ensure that any other saved storages
|
|
# pointing to the same data all have the same dtype. If storage is
|
|
# not allocated, don't perform this check
|
|
if storage.data_ptr() != 0:
|
|
if storage.data_ptr() in storage_dtypes:
|
|
if storage_dtype != storage_dtypes[storage.data_ptr()]:
|
|
raise RuntimeError(
|
|
'Cannot save multiple tensors or storages that '
|
|
'view the same data as different types')
|
|
else:
|
|
storage_dtypes[storage.data_ptr()] = storage_dtype
|
|
|
|
storage_key = id_map.setdefault(storage._cdata, str(len(id_map)))
|
|
location = location_tag(storage)
|
|
serialized_storages[storage_key] = storage
|
|
|
|
return ('storage',
|
|
storage_type,
|
|
storage_key,
|
|
location,
|
|
storage_numel)
|
|
|
|
return None
|
|
|
|
# Write the pickle data for `obj`
|
|
data_buf = io.BytesIO()
|
|
pickler = pickle_module.Pickler(data_buf, protocol=pickle_protocol)
|
|
pickler.persistent_id = persistent_id
|
|
pickler.dump(obj)
|
|
data_value = data_buf.getvalue()
|
|
zip_file.write_record('data.pkl', data_value, len(data_value))
|
|
|
|
# Write each tensor to a file named tensor/the_tensor_key in the zip archive
|
|
for key in sorted(serialized_storages.keys()):
|
|
name = f'data/{key}'
|
|
storage = serialized_storages[key]
|
|
# given that we copy things around anyway, we might use storage.cpu()
|
|
# this means to that to get tensors serialized, you need to implement
|
|
# .cpu() on the underlying Storage
|
|
if storage.device.type != 'cpu':
|
|
storage = storage.cpu()
|
|
# Now that it is on the CPU we can directly copy it into the zip file
|
|
num_bytes = storage.nbytes()
|
|
zip_file.write_record(name, storage.data_ptr(), num_bytes)
|
|
|
|
|
|
def load(f, map_location=None, pickle_module=pickle, **pickle_load_args):
|
|
# Reference: https://github.com/pytorch/pytorch/issues/54354
|
|
# The first line of this docstring overrides the one Sphinx generates for the
|
|
# documentation. We need it so that Sphinx doesn't leak `pickle`s path from
|
|
# the build environment (e.g. `<module 'pickle' from '/leaked/path').
|
|
|
|
"""load(f, map_location=None, pickle_module=pickle, **pickle_load_args)
|
|
|
|
Loads an object saved with :func:`torch.save` from a file.
|
|
|
|
:func:`torch.load` uses Python's unpickling facilities but treats storages,
|
|
which underlie tensors, specially. They are first deserialized on the
|
|
CPU and are then moved to the device they were saved from. If this fails
|
|
(e.g. because the run time system doesn't have certain devices), an exception
|
|
is raised. However, storages can be dynamically remapped to an alternative
|
|
set of devices using the :attr:`map_location` argument.
|
|
|
|
If :attr:`map_location` is a callable, it will be called once for each serialized
|
|
storage with two arguments: storage and location. The storage argument
|
|
will be the initial deserialization of the storage, residing on the CPU.
|
|
Each serialized storage has a location tag associated with it which
|
|
identifies the device it was saved from, and this tag is the second
|
|
argument passed to :attr:`map_location`. The builtin location tags are ``'cpu'``
|
|
for CPU tensors and ``'cuda:device_id'`` (e.g. ``'cuda:2'``) for CUDA tensors.
|
|
:attr:`map_location` should return either ``None`` or a storage. If
|
|
:attr:`map_location` returns a storage, it will be used as the final deserialized
|
|
object, already moved to the right device. Otherwise, :func:`torch.load` will
|
|
fall back to the default behavior, as if :attr:`map_location` wasn't specified.
|
|
|
|
If :attr:`map_location` is a :class:`torch.device` object or a string containing
|
|
a device tag, it indicates the location where all tensors should be loaded.
|
|
|
|
Otherwise, if :attr:`map_location` is a dict, it will be used to remap location tags
|
|
appearing in the file (keys), to ones that specify where to put the
|
|
storages (values).
|
|
|
|
User extensions can register their own location tags and tagging and
|
|
deserialization methods using :func:`torch.serialization.register_package`.
|
|
|
|
Args:
|
|
f: a file-like object (has to implement :meth:`read`, :meth:`readline`, :meth:`tell`, and :meth:`seek`),
|
|
or a string or os.PathLike object containing a file name
|
|
map_location: a function, :class:`torch.device`, string or a dict specifying how to remap storage
|
|
locations
|
|
pickle_module: module used for unpickling metadata and objects (has to
|
|
match the :attr:`pickle_module` used to serialize file)
|
|
pickle_load_args: (Python 3 only) optional keyword arguments passed over to
|
|
:func:`pickle_module.load` and :func:`pickle_module.Unpickler`, e.g.,
|
|
:attr:`errors=...`.
|
|
|
|
.. warning::
|
|
:func:`torch.load()` uses ``pickle`` module implicitly, which is known to be insecure.
|
|
It is possible to construct malicious pickle data which will execute arbitrary code
|
|
during unpickling. Never load data that could have come from an untrusted
|
|
source, or that could have been tampered with. **Only load data you trust**.
|
|
|
|
.. note::
|
|
When you call :func:`torch.load()` on a file which contains GPU tensors, those tensors
|
|
will be loaded to GPU by default. You can call ``torch.load(.., map_location='cpu')``
|
|
and then :meth:`load_state_dict` to avoid GPU RAM surge when loading a model checkpoint.
|
|
|
|
.. note::
|
|
By default, we decode byte strings as ``utf-8``. This is to avoid a common error
|
|
case ``UnicodeDecodeError: 'ascii' codec can't decode byte 0x...``
|
|
when loading files saved by Python 2 in Python 3. If this default
|
|
is incorrect, you may use an extra :attr:`encoding` keyword argument to specify how
|
|
these objects should be loaded, e.g., :attr:`encoding='latin1'` decodes them
|
|
to strings using ``latin1`` encoding, and :attr:`encoding='bytes'` keeps them
|
|
as byte arrays which can be decoded later with ``byte_array.decode(...)``.
|
|
|
|
Example:
|
|
>>> torch.load('tensors.pt')
|
|
# Load all tensors onto the CPU
|
|
>>> torch.load('tensors.pt', map_location=torch.device('cpu'))
|
|
# Load all tensors onto the CPU, using a function
|
|
>>> torch.load('tensors.pt', map_location=lambda storage, loc: storage)
|
|
# Load all tensors onto GPU 1
|
|
>>> torch.load('tensors.pt', map_location=lambda storage, loc: storage.cuda(1))
|
|
# Map tensors from GPU 1 to GPU 0
|
|
>>> torch.load('tensors.pt', map_location={'cuda:1':'cuda:0'})
|
|
# Load tensor from io.BytesIO object
|
|
>>> with open('tensor.pt', 'rb') as f:
|
|
... buffer = io.BytesIO(f.read())
|
|
>>> torch.load(buffer)
|
|
# Load a module with 'ascii' encoding for unpickling
|
|
>>> torch.load('module.pt', encoding='ascii')
|
|
"""
|
|
_check_dill_version(pickle_module)
|
|
|
|
if 'encoding' not in pickle_load_args.keys():
|
|
pickle_load_args['encoding'] = 'utf-8'
|
|
|
|
with _open_file_like(f, 'rb') as opened_file:
|
|
if _is_zipfile(opened_file):
|
|
# The zipfile reader is going to advance the current file position.
|
|
# If we want to actually tail call to torch.jit.load, we need to
|
|
# reset back to the original position.
|
|
orig_position = opened_file.tell()
|
|
with _open_zipfile_reader(opened_file) as opened_zipfile:
|
|
if _is_torchscript_zip(opened_zipfile):
|
|
warnings.warn("'torch.load' received a zip file that looks like a TorchScript archive"
|
|
" dispatching to 'torch.jit.load' (call 'torch.jit.load' directly to"
|
|
" silence this warning)", UserWarning)
|
|
opened_file.seek(orig_position)
|
|
return torch.jit.load(opened_file, map_location=map_location)
|
|
return _load(opened_zipfile, map_location, pickle_module, **pickle_load_args)
|
|
return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args)
|
|
|
|
|
|
# Register pickling support for layout instances such as
|
|
# torch.sparse_coo, etc
|
|
def _get_layout(name):
|
|
"""Get layout extension object from its string representation.
|
|
"""
|
|
cache = _get_layout.cache # type: ignore[attr-defined]
|
|
if not cache:
|
|
for v in torch.__dict__.values():
|
|
if isinstance(v, torch.layout):
|
|
cache[str(v)] = v
|
|
return cache[name]
|
|
|
|
# There are yet not good way to type annotate function attributes https://github.com/python/mypy/issues/2087
|
|
_get_layout.cache = {} # type: ignore[attr-defined]
|
|
copyreg.pickle(torch.layout, lambda obj: (_get_layout, (str(obj),)))
|
|
|
|
|
|
def _legacy_load(f, map_location, pickle_module, **pickle_load_args):
|
|
deserialized_objects: Dict[int, Any] = {}
|
|
|
|
restore_location = _get_restore_location(map_location)
|
|
|
|
class UnpicklerWrapper(pickle_module.Unpickler): # type: ignore[name-defined]
|
|
|
|
def find_class(self, mod_name, name):
|
|
if type(name) is str and 'Storage' in name:
|
|
try:
|
|
return StorageType(name)
|
|
except KeyError:
|
|
pass
|
|
return super().find_class(mod_name, name)
|
|
|
|
def _check_container_source(container_type, source_file, original_source):
|
|
try:
|
|
current_source = ''.join(get_source_lines_and_file(container_type)[0])
|
|
except Exception: # saving the source is optional, so we can ignore any errors
|
|
warnings.warn("Couldn't retrieve source code for container of "
|
|
"type " + container_type.__name__ + ". It won't be checked "
|
|
"for correctness upon loading.")
|
|
return
|
|
if original_source != current_source:
|
|
if container_type.dump_patches:
|
|
file_name = container_type.__name__ + '.patch'
|
|
diff = difflib.unified_diff(current_source.split('\n'),
|
|
original_source.split('\n'),
|
|
source_file,
|
|
source_file, lineterm="")
|
|
lines = '\n'.join(diff)
|
|
try:
|
|
with open(file_name, 'a+') as f:
|
|
file_size = f.seek(0, 2)
|
|
f.seek(0)
|
|
if file_size == 0:
|
|
f.write(lines)
|
|
elif file_size != len(lines) or f.read() != lines:
|
|
raise IOError
|
|
msg = ("Saved a reverse patch to " + file_name + ". "
|
|
"Run `patch -p0 < " + file_name + "` to revert your "
|
|
"changes.")
|
|
except IOError:
|
|
msg = ("Tried to save a patch, but couldn't create a "
|
|
"writable file " + file_name + ". Make sure it "
|
|
"doesn't exist and your working directory is "
|
|
"writable.")
|
|
else:
|
|
msg = ("you can retrieve the original source code by "
|
|
"accessing the object's source attribute or set "
|
|
"`torch.nn.Module.dump_patches = True` and use the "
|
|
"patch tool to revert the changes.")
|
|
msg = f"source code of class '{torch.typename(container_type)}' has changed. {msg}"
|
|
warnings.warn(msg, SourceChangeWarning)
|
|
|
|
def legacy_load(f):
|
|
deserialized_objects: Dict[int, Any] = {}
|
|
|
|
def persistent_load(saved_id):
|
|
if isinstance(saved_id, tuple):
|
|
# Ignore containers that don't have any sources saved
|
|
if all(saved_id[1:]):
|
|
_check_container_source(*saved_id)
|
|
return saved_id[0]
|
|
return deserialized_objects[int(saved_id)]
|
|
|
|
with closing(tarfile.open(fileobj=f, mode='r:', format=tarfile.PAX_FORMAT)) as tar, \
|
|
mkdtemp() as tmpdir:
|
|
|
|
tar.extract('storages', path=tmpdir)
|
|
with open(os.path.join(tmpdir, 'storages'), 'rb', 0) as f:
|
|
num_storages = pickle_module.load(f, **pickle_load_args)
|
|
for i in range(num_storages):
|
|
args = pickle_module.load(f, **pickle_load_args)
|
|
key, location, storage_type = args
|
|
dtype = storage_type.dtype
|
|
obj = cast(Storage, torch._UntypedStorage)._new_with_file(f, torch._utils._element_size(dtype))
|
|
obj = restore_location(obj, location)
|
|
# TODO: Once we decide to break serialization FC, we can
|
|
# stop wrapping with _TypedStorage
|
|
deserialized_objects[key] = torch.storage._TypedStorage(
|
|
wrap_storage=obj,
|
|
dtype=dtype)
|
|
|
|
storage_views = pickle_module.load(f, **pickle_load_args)
|
|
for target_cdata, root_cdata, offset, numel in storage_views:
|
|
root = deserialized_objects[root_cdata]
|
|
element_size = torch._utils._element_size(root.dtype)
|
|
offset_bytes = offset * element_size
|
|
# TODO: Once we decide to break serialization FC, we can
|
|
# stop wrapping with _TypedStorage
|
|
deserialized_objects[target_cdata] = torch.storage._TypedStorage(
|
|
wrap_storage=root._storage[offset_bytes:offset_bytes + numel * element_size],
|
|
dtype=root.dtype)
|
|
|
|
tar.extract('tensors', path=tmpdir)
|
|
with open(os.path.join(tmpdir, 'tensors'), 'rb', 0) as f:
|
|
num_tensors = pickle_module.load(f, **pickle_load_args)
|
|
for _ in range(num_tensors):
|
|
args = pickle_module.load(f, **pickle_load_args)
|
|
key, storage_id, original_tensor_type = args
|
|
storage = deserialized_objects[storage_id]
|
|
ndim, = struct.unpack('<i', f.read(4))
|
|
# skip next 4 bytes; legacy encoding treated ndim as 8 bytes
|
|
f.read(4)
|
|
numel = struct.unpack(f'<{ndim}q', f.read(8 * ndim))
|
|
stride = struct.unpack(f'<{ndim}q', f.read(8 * ndim))
|
|
storage_offset, = struct.unpack('<q', f.read(8))
|
|
tensor = torch.tensor([], dtype=storage.dtype).set_(
|
|
storage._storage, storage_offset, numel, stride)
|
|
deserialized_objects[key] = tensor
|
|
|
|
pickle_file = tar.extractfile('pickle')
|
|
unpickler = UnpicklerWrapper(pickle_file, **pickle_load_args)
|
|
unpickler.persistent_load = persistent_load
|
|
result = unpickler.load()
|
|
return result
|
|
|
|
deserialized_objects = {}
|
|
|
|
def persistent_load(saved_id):
|
|
assert isinstance(saved_id, tuple)
|
|
typename = _maybe_decode_ascii(saved_id[0])
|
|
data = saved_id[1:]
|
|
|
|
if typename == 'module':
|
|
# Ignore containers that don't have any sources saved
|
|
if all(data[1:]):
|
|
_check_container_source(*data)
|
|
return data[0]
|
|
elif typename == 'storage':
|
|
storage_type, root_key, location, numel, view_metadata = data
|
|
location = _maybe_decode_ascii(location)
|
|
dtype = storage_type.dtype
|
|
|
|
nbytes = numel * torch._utils._element_size(dtype)
|
|
|
|
if root_key not in deserialized_objects:
|
|
obj = cast(Storage, torch._UntypedStorage(nbytes))
|
|
obj._torch_load_uninitialized = True
|
|
# TODO: Once we decide to break serialization FC, we can
|
|
# stop wrapping with _TypedStorage
|
|
deserialized_objects[root_key] = torch.storage._TypedStorage(
|
|
wrap_storage=restore_location(obj, location),
|
|
dtype=dtype)
|
|
|
|
typed_storage = deserialized_objects[root_key]
|
|
if view_metadata is not None:
|
|
view_key, offset, view_size = view_metadata
|
|
offset_bytes = offset * torch._utils._element_size(dtype)
|
|
view_size_bytes = view_size * torch._utils._element_size(dtype)
|
|
if view_key not in deserialized_objects:
|
|
# TODO: Once we decide to break serialization FC, we can
|
|
# stop wrapping with _TypedStorage
|
|
deserialized_objects[view_key] = torch.storage._TypedStorage(
|
|
wrap_storage=typed_storage._storage[offset_bytes:offset_bytes + view_size_bytes],
|
|
dtype=dtype)
|
|
res = deserialized_objects[view_key]
|
|
|
|
else:
|
|
res = typed_storage
|
|
return res
|
|
else:
|
|
raise RuntimeError("Unknown saved id type: %s" % saved_id[0])
|
|
|
|
_check_seekable(f)
|
|
f_should_read_directly = _should_read_directly(f)
|
|
|
|
if f_should_read_directly and f.tell() == 0:
|
|
# legacy_load requires that f has fileno()
|
|
# only if offset is zero we can attempt the legacy tar file loader
|
|
try:
|
|
return legacy_load(f)
|
|
except tarfile.TarError:
|
|
if _is_zipfile(f):
|
|
# .zip is used for torch.jit.save and will throw an un-pickling error here
|
|
raise RuntimeError(
|
|
f"{f.name} is a zip archive (did you mean to use torch.jit.load()?)") from None
|
|
# if not a tarfile, reset file offset and proceed
|
|
f.seek(0)
|
|
|
|
if not hasattr(f, 'readinto') and (3, 8, 0) <= sys.version_info < (3, 8, 2):
|
|
raise RuntimeError(
|
|
"torch.load does not work with file-like objects that do not implement readinto on Python 3.8.0 and 3.8.1. "
|
|
f"Received object of type \"{type(f)}\". Please update to Python 3.8.2 or newer to restore this "
|
|
"functionality.")
|
|
|
|
magic_number = pickle_module.load(f, **pickle_load_args)
|
|
if magic_number != MAGIC_NUMBER:
|
|
raise RuntimeError("Invalid magic number; corrupt file?")
|
|
protocol_version = pickle_module.load(f, **pickle_load_args)
|
|
if protocol_version != PROTOCOL_VERSION:
|
|
raise RuntimeError("Invalid protocol version: %s" % protocol_version)
|
|
|
|
_sys_info = pickle_module.load(f, **pickle_load_args)
|
|
unpickler = UnpicklerWrapper(f, **pickle_load_args)
|
|
unpickler.persistent_load = persistent_load
|
|
result = unpickler.load()
|
|
|
|
deserialized_storage_keys = pickle_module.load(f, **pickle_load_args)
|
|
|
|
offset = f.tell() if f_should_read_directly else None
|
|
for key in deserialized_storage_keys:
|
|
assert key in deserialized_objects
|
|
typed_storage = deserialized_objects[key]
|
|
typed_storage._storage._set_from_file(
|
|
f, offset, f_should_read_directly,
|
|
torch._utils._element_size(typed_storage.dtype))
|
|
if offset is not None:
|
|
offset = f.tell()
|
|
|
|
torch._utils._validate_loaded_sparse_tensors()
|
|
|
|
return result
|
|
|
|
|
|
def _maybe_decode_ascii(bytes_str: Union[bytes, str]) -> str:
|
|
# When using encoding='bytes' in Py3, some **internal** keys stored as
|
|
# strings in Py2 are loaded as bytes. This function decodes them with
|
|
# ascii encoding, one that Py3 uses by default.
|
|
#
|
|
# NOTE: This should only be used on internal keys (e.g., `typename` and
|
|
# `location` in `persistent_load` below!
|
|
if isinstance(bytes_str, bytes):
|
|
return bytes_str.decode('ascii')
|
|
return bytes_str
|
|
|
|
|
|
def _get_restore_location(map_location):
|
|
if map_location is None:
|
|
restore_location = default_restore_location
|
|
elif isinstance(map_location, dict):
|
|
def restore_location(storage, location):
|
|
location = map_location.get(location, location)
|
|
return default_restore_location(storage, location)
|
|
elif isinstance(map_location, _string_classes):
|
|
def restore_location(storage, location):
|
|
return default_restore_location(storage, map_location)
|
|
elif isinstance(map_location, torch.device):
|
|
def restore_location(storage, location):
|
|
return default_restore_location(storage, str(map_location))
|
|
else:
|
|
def restore_location(storage, location):
|
|
result = map_location(storage, location)
|
|
if result is None:
|
|
result = default_restore_location(storage, location)
|
|
return result
|
|
return restore_location
|
|
|
|
class StorageType():
|
|
def __init__(self, name):
|
|
self.dtype = _get_dtype_from_pickle_storage_type(name)
|
|
|
|
def __str__(self):
|
|
return f'StorageType(dtype={self.dtype})'
|
|
|
|
def _load(zip_file, map_location, pickle_module, pickle_file='data.pkl', **pickle_load_args):
|
|
restore_location = _get_restore_location(map_location)
|
|
|
|
loaded_storages = {}
|
|
|
|
def load_tensor(dtype, numel, key, location):
|
|
name = f'data/{key}'
|
|
|
|
storage = zip_file.get_storage_from_record(name, numel, torch._UntypedStorage).storage()._untyped()
|
|
# TODO: Once we decide to break serialization FC, we can
|
|
# stop wrapping with _TypedStorage
|
|
loaded_storages[key] = torch.storage._TypedStorage(
|
|
wrap_storage=restore_location(storage, location),
|
|
dtype=dtype)
|
|
|
|
def persistent_load(saved_id):
|
|
assert isinstance(saved_id, tuple)
|
|
typename = _maybe_decode_ascii(saved_id[0])
|
|
data = saved_id[1:]
|
|
|
|
assert typename == 'storage', \
|
|
f"Unknown typename for persistent_load, expected 'storage' but got '{typename}'"
|
|
storage_type, key, location, numel = data
|
|
if storage_type is torch._UntypedStorage:
|
|
dtype = torch.uint8
|
|
else:
|
|
dtype = storage_type.dtype
|
|
|
|
if key not in loaded_storages:
|
|
nbytes = numel * torch._utils._element_size(dtype)
|
|
load_tensor(dtype, nbytes, key, _maybe_decode_ascii(location))
|
|
|
|
return loaded_storages[key]
|
|
|
|
load_module_mapping: Dict[str, str] = {
|
|
# See https://github.com/pytorch/pytorch/pull/51633
|
|
'torch.tensor': 'torch._tensor'
|
|
}
|
|
|
|
# Need to subclass Unpickler instead of directly monkey-patching the find_class method
|
|
# because it's marked readonly in pickle.
|
|
# The type: ignore is because mypy can't statically determine the type of this class.
|
|
class UnpicklerWrapper(pickle_module.Unpickler): # type: ignore[name-defined]
|
|
# from https://stackoverflow.com/questions/13398462/unpickling-python-objects-with-a-changed-module-path/13405732
|
|
# Lets us override the imports that pickle uses when unpickling an object.
|
|
# This is useful for maintaining BC if we change a module path that tensor instantiation relies on.
|
|
def find_class(self, mod_name, name):
|
|
if type(name) is str and 'Storage' in name:
|
|
try:
|
|
return StorageType(name)
|
|
except KeyError:
|
|
pass
|
|
mod_name = load_module_mapping.get(mod_name, mod_name)
|
|
return super().find_class(mod_name, name)
|
|
|
|
# Load the data (which may in turn use `persistent_load` to load tensors)
|
|
data_file = io.BytesIO(zip_file.get_record(pickle_file))
|
|
|
|
unpickler = UnpicklerWrapper(data_file, **pickle_load_args)
|
|
unpickler.persistent_load = persistent_load
|
|
result = unpickler.load()
|
|
|
|
torch._utils._validate_loaded_sparse_tensors()
|
|
|
|
return result
|
|
|
|
|
|
def _is_torchscript_zip(zip_file):
|
|
return 'constants.pkl' in zip_file.get_all_records()
|