mirror of
https://github.com/pytorch/pytorch.git
synced 2025-11-05 00:14:54 +08:00
This PR is ALMOST basically just following the steps from #106677 EXCEPT! We do add one feature. Similar to fused_adam(w), for the CUDA dispatches: when the scalar tensor is on CPU, we .item and redispatch to the normal scalar overload. Otherwise, the cuda kernel will complain about mismatch in devices between the scalar and the tensors. Why do we add this feature? Our optimizers want to allow lr as a tensor, and lr could be a CPU tensor. lr is used with foreach_div_ in Adam, so our CI will break otherwise. After this PR, `_foreach_mul` and `_foreach_div` will accept either a CPU or a GPU tensor for the scalar tensor (vs only a GPU tensor). They join the ranks of `fused_adam(w)` in this characteristic. I did not yet do the same thing for foreach_add (the only other foreach op with a .Tensor overload) because there is no use case and will be more involved. Pull Request resolved: https://github.com/pytorch/pytorch/pull/113688 Approved by: https://github.com/mlazos, https://github.com/albanD
979 lines
45 KiB
Python
979 lines
45 KiB
Python
# Owner(s): ["module: mta"]
|
|
|
|
from contextlib import nullcontext
|
|
from numbers import Number
|
|
import random
|
|
import re
|
|
import torch
|
|
import unittest
|
|
import itertools
|
|
import weakref
|
|
|
|
from torch.testing import make_tensor
|
|
from torch.testing._comparison import default_tolerances
|
|
from torch.testing._internal.common_utils import \
|
|
TestCase, run_tests, TEST_WITH_ROCM, skipIfTorchDynamo, parametrize, gradcheck
|
|
from torch.testing._internal.common_device_type import \
|
|
(instantiate_device_type_tests, dtypes, onlyCUDA, ops, OpDTypes)
|
|
from torch.testing._internal.common_methods_invocations import (
|
|
foreach_unary_op_db, foreach_binary_op_db, foreach_pointwise_op_db,
|
|
foreach_reduce_op_db, foreach_other_op_db)
|
|
from torch.testing._internal.common_dtype import (
|
|
all_types_and_complex_and, floating_types_and, floating_types, integral_types_and,
|
|
)
|
|
|
|
|
|
_BOOL_SUB_ERR_MSG = "Subtraction, the `-` operator"
|
|
|
|
|
|
class RegularFuncWrapper:
|
|
def __init__(self, func):
|
|
self.func = func
|
|
|
|
def __call__(self, inputs, values=None, **kwargs):
|
|
if values is not None:
|
|
assert len(inputs) == 3
|
|
if isinstance(values, Number):
|
|
values = [values for _ in range(len(inputs[0]))]
|
|
return [self.func(*i, value=values[idx], **kwargs) for idx, i in enumerate(zip(*inputs))]
|
|
if len(inputs) == 2 and isinstance(inputs[1], (Number, torch.Tensor)):
|
|
# binary op with tensorlist and scalar.
|
|
inputs[1] = [inputs[1] for _ in range(len(inputs[0]))]
|
|
return [self.func(*i, **kwargs) for i in zip(*inputs)]
|
|
|
|
|
|
class ForeachFuncWrapper:
|
|
def __init__(self, func):
|
|
self.func = func
|
|
# Some foreach functions don't have in-place implementations.
|
|
self.is_inplace = False if func is None else func.__name__.endswith('_')
|
|
|
|
def __call__(self, inputs, is_cuda, expect_fastpath, **kwargs):
|
|
actual = None
|
|
zero_size = kwargs.pop("zero_size", False)
|
|
if (
|
|
is_cuda and
|
|
torch.autograd.kineto_available() and
|
|
torch.profiler.ProfilerActivity.CUDA in torch.profiler.supported_activities()
|
|
):
|
|
with torch.profiler.profile() as p:
|
|
actual = self.func(*inputs, **kwargs)
|
|
keys = tuple([e.key for e in p.key_averages()])
|
|
mta_called = any("multi_tensor_apply_kernel" in k for k in keys)
|
|
assert mta_called == (expect_fastpath and (not zero_size))
|
|
else:
|
|
actual = self.func(*inputs, **kwargs)
|
|
# note(mkozuki): inplace foreach functions are void functions.
|
|
return inputs[0] if self.is_inplace else actual
|
|
|
|
|
|
class InplaceForeachVersionBumpCheck:
|
|
|
|
def __init__(self, testcase: TestCase, tensorlist: "List[torch.Tensor]") -> None:
|
|
self._testcase = testcase
|
|
self._tensorlist = tensorlist
|
|
self._orig_version_counts = [t._version for t in tensorlist]
|
|
|
|
def __enter__(self):
|
|
pass
|
|
|
|
def __exit__(self, exc_type, exc_value, traceback):
|
|
# note(crcrpar): some methods e.g. `_binary_test` could call the given inplace function multiple times
|
|
self._testcase.assertGreaterEqual([t._version for t in self._tensorlist], self._orig_version_counts)
|
|
|
|
|
|
def get_transform_func(num_tensors, dtype, device, is_fastpath):
|
|
def transform(t):
|
|
if not torch.is_tensor(t):
|
|
return t
|
|
if torch.is_tensor(t) and t.ndim == 0:
|
|
return t
|
|
return make_tensor(
|
|
(num_tensors, num_tensors), dtype=dtype, device=device,
|
|
requires_grad=True, noncontiguous=not is_fastpath,
|
|
)
|
|
|
|
return transform
|
|
|
|
|
|
# note(crcrpar): `zero_size` is `False` unless (dtype, device) == (torch.float32, "cuda")
|
|
# as the pair would go through `multi_tensor_apply_kernel` if inputs are not zero size.
|
|
class TestForeach(TestCase):
|
|
@property
|
|
def is_cuda(self):
|
|
return self.device_type == 'cuda'
|
|
|
|
def _get_funcs(self, op):
|
|
return (
|
|
ForeachFuncWrapper(op.method_variant),
|
|
RegularFuncWrapper(op.ref),
|
|
ForeachFuncWrapper(op.inplace_variant),
|
|
RegularFuncWrapper(op.ref_inplace),
|
|
)
|
|
|
|
# note(crcrpar): Make sure 0-size tensors are appropriately ignored by `multi_tensor_apply`
|
|
# which is originally reported in https://github.com/pytorch/pytorch/issues/94865.
|
|
# rel:
|
|
# - https://github.com/pytorch/pytorch/pull/94655
|
|
# - https://github.com/pytorch/pytorch/issues/100701
|
|
# - https://github.com/pytorch/pytorch/pull/100811
|
|
@onlyCUDA
|
|
@ops(
|
|
foreach_unary_op_db + foreach_binary_op_db + foreach_pointwise_op_db + foreach_reduce_op_db + foreach_other_op_db,
|
|
dtypes=(torch.float32,)
|
|
)
|
|
def test_all_zero_size_tensors_do_not_launch_kernel(self, device, dtype, op):
|
|
wrapped_op, _, inplace_op, _ = self._get_funcs(op)
|
|
|
|
for sample in op.sample_zero_size_inputs(device, dtype):
|
|
if not op.has_no_out_of_place:
|
|
wrapped_op((sample.input, *sample.args), is_cuda=self.is_cuda, expect_fastpath=True, zero_size=True)
|
|
with InplaceForeachVersionBumpCheck(self, sample.input):
|
|
inplace_op((sample.input, *sample.args), is_cuda=self.is_cuda, expect_fastpath=True, zero_size=True)
|
|
|
|
@unittest.skipIf(TEST_WITH_ROCM, "Skipped on ROCm, since it is failing on ROCm 5.7")
|
|
@ops(
|
|
foreach_unary_op_db + foreach_binary_op_db + foreach_pointwise_op_db + foreach_reduce_op_db + foreach_other_op_db,
|
|
)
|
|
@parametrize(
|
|
"noncontiguous,inplace",
|
|
[(False, False), (False, True), (True, False), (True, True)],
|
|
name_fn=lambda x, y: '{}_{}'.format(
|
|
'fastpath' if not x else 'slowpath', 'inplace' if y else 'outplace'
|
|
)
|
|
)
|
|
def test_parity(self, device, dtype, op, noncontiguous, inplace):
|
|
if inplace:
|
|
_, _, func, ref = self._get_funcs(op)
|
|
else:
|
|
func, ref, _, _ = self._get_funcs(op)
|
|
for sample in op.sample_inputs(device, dtype, noncontiguous=noncontiguous):
|
|
ref_kwargs = sample.kwargs
|
|
kwargs = ref_kwargs.copy()
|
|
# div promotes ints to floats, so we cannot go on the fastpath there
|
|
div_slowpath = dtype in integral_types_and(torch.bool) and op.name == '_foreach_div'
|
|
expect_fastpath = not (noncontiguous or sample.disable_fastpath or div_slowpath)
|
|
if op in foreach_pointwise_op_db:
|
|
values = kwargs.pop("values", None)
|
|
if values is not None:
|
|
sample.args = (*sample.args, values)
|
|
ref_input, ctxmgr = sample.input, nullcontext()
|
|
if inplace:
|
|
with torch.no_grad():
|
|
ref_input = [t.clone().detach() for t in sample.input]
|
|
ctxmgr = InplaceForeachVersionBumpCheck(self, sample.input)
|
|
try:
|
|
with ctxmgr:
|
|
actual = func([sample.input, *sample.args], self.is_cuda, expect_fastpath, **kwargs)
|
|
except Exception as e:
|
|
with (
|
|
self.assertRaisesRegex(type(e), re.escape(str(e)))
|
|
if not (op.has_no_in_place or op.has_no_out_of_place)
|
|
else self.assertRaises(type(e))
|
|
):
|
|
ref([ref_input, *sample.ref_args], **ref_kwargs)
|
|
else:
|
|
expected = ref([ref_input, *sample.ref_args], **ref_kwargs)
|
|
self.assertEqual(expected, actual)
|
|
|
|
def _binary_test(
|
|
self,
|
|
dtype, op, ref, inputs, is_fastpath, is_inplace,
|
|
*,
|
|
alpha, scalar_self_arg: bool,
|
|
):
|
|
ref_inputs = [[t.clone().detach() for t in inputs[0]], inputs[1]] if is_inplace else inputs
|
|
try:
|
|
with InplaceForeachVersionBumpCheck(self, inputs[0]) if op.is_inplace else nullcontext():
|
|
actual = op(inputs, self.is_cuda, is_fastpath)
|
|
except RuntimeError as e:
|
|
with self.assertRaisesRegex(type(e), re.escape(str(e))):
|
|
if not scalar_self_arg:
|
|
ref(ref_inputs)
|
|
else:
|
|
[ref.func(ref_inputs[0], t) for t in ref_inputs[1]]
|
|
else:
|
|
expected = ref(ref_inputs) if not scalar_self_arg else [ref.func(ref_inputs[0], t) for t in ref_inputs[1]]
|
|
self.assertEqual(actual, expected)
|
|
if alpha is not None and not scalar_self_arg:
|
|
kwargs = {'alpha': alpha}
|
|
ref_inputs = inputs
|
|
try:
|
|
op_kwargs = {}
|
|
op_kwargs.update(kwargs)
|
|
with InplaceForeachVersionBumpCheck(self, inputs[0]) if op.is_inplace else nullcontext():
|
|
actual = op(inputs, self.is_cuda, is_fastpath, **op_kwargs)
|
|
except RuntimeError as e:
|
|
with self.assertRaisesRegex(type(e), re.escape(str(e))):
|
|
ref(ref_inputs, **kwargs)
|
|
else:
|
|
expected = ref(ref_inputs, **kwargs)
|
|
if dtype in (torch.float16, torch.bfloat16) and TEST_WITH_ROCM:
|
|
self.assertEqual(expected, actual, atol=1.e-3, rtol=default_tolerances(dtype)[0])
|
|
else:
|
|
self.assertEqual(expected, actual)
|
|
|
|
@ops(filter(lambda op: op.supports_scalar_self_arg, foreach_binary_op_db))
|
|
@parametrize("is_fastpath", (True, False))
|
|
def test_binary_op_with_scalar_self_support(self, device, dtype, op, is_fastpath):
|
|
|
|
def clone(arg):
|
|
if isinstance(arg, (list, tuple)):
|
|
return [clone(a) for a in arg]
|
|
if torch.is_tensor(arg):
|
|
return arg.clone().detach().requires_grad_()
|
|
else:
|
|
return arg
|
|
|
|
scalar_self_arg_test_complete = False
|
|
for i, sample in enumerate(op.sample_inputs(device, dtype, noncontiguous=not is_fastpath)):
|
|
(rhs_arg,) = sample.args
|
|
kwargs = {} or sample.kwargs
|
|
alpha = kwargs.pop("alpha", None)
|
|
wrapped_op, ref, inplace_op, inplace_ref = self._get_funcs(op)
|
|
if isinstance(rhs_arg, Number) and not scalar_self_arg_test_complete:
|
|
scalar_self_arg_test_complete = True
|
|
self._binary_test(
|
|
dtype, wrapped_op, ref, [rhs_arg, sample.input], is_fastpath, False,
|
|
alpha=alpha, scalar_self_arg=True,
|
|
)
|
|
if op.supports_autograd and dtype == torch.float32:
|
|
transformed_sample = sample.transform(
|
|
get_transform_func(len(sample.input), dtype, device, is_fastpath))
|
|
tensors = transformed_sample.input
|
|
(rhs_arg,) = transformed_sample.args
|
|
ref_tensors, ref_rhs_arg = clone(tensors), clone(rhs_arg)
|
|
sum(wrapped_op(
|
|
[rhs_arg, tensors], is_cuda=False, expect_fastpath=False
|
|
)).mean().backward()
|
|
sum([ref.func(ref_rhs_arg, t) for t in ref_tensors]).mean().backward()
|
|
self.assertEqual([t.grad for t in tensors], [t.grad for t in ref_tensors])
|
|
|
|
@ops(foreach_pointwise_op_db)
|
|
@parametrize("is_fastpath", (True, False))
|
|
def test_pointwise_op_with_tensor_of_scalarlist_overload(self, device, dtype, op, is_fastpath):
|
|
for sample in op.sample_inputs(device, dtype, noncontiguous=not is_fastpath):
|
|
assert isinstance(sample.args, tuple)
|
|
assert len(sample.args) == 2
|
|
inputs = [sample.input, *sample.args]
|
|
kwargs = sample.kwargs
|
|
disable_fastpath = sample.disable_fastpath and is_fastpath
|
|
wrapped_op, ref, inplace_op, inplace_ref = self._get_funcs(op)
|
|
values = kwargs.pop("values", None)
|
|
|
|
if is_fastpath and isinstance(values, list):
|
|
sample = sample.transform(lambda t: t.clone().detach() if torch.is_tensor(t) else t)
|
|
inputs = [sample.input, *sample.args]
|
|
tensor_values = torch.tensor(values)
|
|
# 1D Tensor of scalars
|
|
for is_inplace, op_, ref_ in ((False, wrapped_op, ref), (True, inplace_op, inplace_ref)):
|
|
self._pointwise_test(
|
|
op_, ref_, inputs, is_fastpath and not disable_fastpath, is_inplace,
|
|
values=tensor_values)
|
|
self._pointwise_test(
|
|
op_, ref_, inputs, is_fastpath and not disable_fastpath, is_inplace,
|
|
values=tensor_values[0],
|
|
custom_values_err="Expected packed scalar Tensor to be of dimension 1. Got 0 instead.",
|
|
)
|
|
if self.is_cuda:
|
|
self._pointwise_test(
|
|
op_, ref_, inputs, is_fastpath and not disable_fastpath, is_inplace,
|
|
values=tensor_values.cuda(),
|
|
custom_values_err="Expected scalars to be on CPU, got cuda:0 instead.",
|
|
)
|
|
self._pointwise_test(
|
|
op_, ref_, inputs, is_fastpath and not disable_fastpath, is_inplace,
|
|
values=tensor_values[:2],
|
|
custom_values_err=f"Expected length of scalars to match input of length {len(values)} but got 2 instead.",
|
|
)
|
|
self._pointwise_test(
|
|
op_, ref_, inputs, is_fastpath and not disable_fastpath, is_inplace,
|
|
values=torch.tensor([[0, 1], [2, 3]])[:, 1],
|
|
custom_values_err="Expected scalars to be contiguous.",
|
|
)
|
|
|
|
# Tests of implicit broadcasting
|
|
N = len(sample.input)
|
|
inputs = [
|
|
[make_tensor((N, N), device=device, dtype=dtype, noncontiguous=not is_fastpath) for _ in range(N)],
|
|
[
|
|
make_tensor((N - i, 1), device=device, dtype=dtype, noncontiguous=not is_fastpath)
|
|
for i in range(N)
|
|
],
|
|
[
|
|
make_tensor((1, N - i), device=device, dtype=dtype, noncontiguous=not is_fastpath)
|
|
for i in range(N)
|
|
],
|
|
]
|
|
self._pointwise_test(
|
|
wrapped_op, ref, inputs, is_fastpath and disable_fastpath, is_inplace=False,
|
|
values=values)
|
|
self._pointwise_test(
|
|
inplace_op, inplace_ref, inputs, is_fastpath and disable_fastpath,
|
|
is_inplace=True, values=values)
|
|
|
|
def _pointwise_test(
|
|
self,
|
|
op, ref, inputs, is_fastpath, is_inplace,
|
|
*,
|
|
values=None, custom_values_err=None,
|
|
):
|
|
kwargs = {}
|
|
ref_inputs = [[t.clone().detach() for t in inputs[0]], inputs[1], inputs[2]] if is_inplace else inputs
|
|
try:
|
|
with (InplaceForeachVersionBumpCheck(self, inputs[0]) if is_inplace else nullcontext()):
|
|
actual = op(inputs, self.is_cuda, is_fastpath, **kwargs)
|
|
except RuntimeError as e:
|
|
with self.assertRaisesRegex(type(e), re.escape(str(e))):
|
|
ref(ref_inputs)
|
|
else:
|
|
expected = ref(ref_inputs)
|
|
self.assertEqual(expected, actual)
|
|
if values is not None:
|
|
try:
|
|
actual = op(inputs + [values], self.is_cuda, is_fastpath, **kwargs)
|
|
except RuntimeError as e:
|
|
# Match with error messages from regular non-foreach reference if no
|
|
# custom error message was provided.
|
|
if custom_values_err is None:
|
|
with self.assertRaisesRegex(type(e), re.escape(str(e))):
|
|
ref(ref_inputs, values=values)
|
|
else:
|
|
self.assertEqual(re.escape(str(e)), re.escape(custom_values_err))
|
|
else:
|
|
expected = ref(ref_inputs, values=values)
|
|
self.assertEqual(expected, actual)
|
|
|
|
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16))
|
|
def test_add_scalar_with_empty_list_and_empty_tensor(self, device, dtype):
|
|
# TODO: enable empty list case
|
|
for tensors in [[torch.randn([0], device=device, dtype=dtype)]]:
|
|
res = torch._foreach_add(tensors, 1)
|
|
self.assertEqual(res, tensors)
|
|
|
|
torch._foreach_add_(tensors, 1)
|
|
self.assertEqual(res, tensors)
|
|
|
|
@ops(
|
|
filter(lambda op: not op.has_no_out_of_place, foreach_binary_op_db),
|
|
dtypes=OpDTypes.supported,
|
|
)
|
|
def test_binary_op_scalar_with_overlapping_tensors(self, device, dtype, op):
|
|
foreach_op, ref = op.method_variant, op.ref
|
|
tensors = [torch.ones(1, 1, device=device, dtype=dtype).expand(2, 1, 3)]
|
|
|
|
if ref == torch.sub and dtype == torch.bool:
|
|
with self.assertRaisesRegex(RuntimeError, re.escape(_BOOL_SUB_ERR_MSG)):
|
|
[ref(t, 1) for t in tensors]
|
|
with self.assertRaisesRegex(RuntimeError, re.escape(_BOOL_SUB_ERR_MSG)):
|
|
foreach_op(tensors, 1)
|
|
return
|
|
|
|
expected = [ref(t, 1) for t in tensors]
|
|
res = foreach_op(tensors, 1)
|
|
self.assertEqual(res, expected)
|
|
|
|
@ops(
|
|
filter(lambda op: not op.has_no_out_of_place, foreach_binary_op_db),
|
|
allowed_dtypes=[torch.float],
|
|
)
|
|
def test_binary_op_scalar_with_different_tensor_dtypes(self, device, dtype, op):
|
|
foreach_op = op.method_variant
|
|
tensors = [
|
|
torch.tensor([1.1], dtype=torch.float, device=device),
|
|
torch.tensor([1], dtype=torch.long, device=device),
|
|
]
|
|
runtime_error = None
|
|
try:
|
|
foreach_op(tensors, 1)
|
|
except RuntimeError as e:
|
|
runtime_error = e
|
|
self.assertIsNone(runtime_error)
|
|
|
|
@skipIfTorchDynamo("Different error msgs, TODO")
|
|
@ops(
|
|
filter(lambda op: not op.has_no_out_of_place, foreach_binary_op_db),
|
|
dtypes=OpDTypes.supported,
|
|
)
|
|
def test_binary_op_list_error_cases(self, device, dtype, op):
|
|
foreach_op, foreach_op_, ref, ref_ = op.method_variant, op.inplace_variant, op.ref, op.ref_inplace
|
|
tensors1 = []
|
|
tensors2 = []
|
|
ops_to_test = [foreach_op, foreach_op_]
|
|
|
|
# Empty lists
|
|
for fop in ops_to_test:
|
|
with self.assertRaisesRegex(RuntimeError, "There were no tensor arguments to this function"):
|
|
fop(tensors1, tensors2)
|
|
|
|
# One empty list
|
|
tensors1.append(torch.tensor([1], device=device, dtype=dtype))
|
|
for fop in ops_to_test:
|
|
with self.assertRaisesRegex(RuntimeError, "Tensor list must have same number of elements as scalar list."):
|
|
fop(tensors1, tensors2)
|
|
|
|
# Lists have different amount of tensors
|
|
tensors2.append(torch.tensor([1], device=device))
|
|
tensors2.append(torch.tensor([1], device=device))
|
|
for fop in ops_to_test:
|
|
with self.assertRaisesRegex(RuntimeError, "Tensor lists must have the same number of tensors, got 1 and 2"):
|
|
fop(tensors1, tensors2)
|
|
with self.assertRaisesRegex(RuntimeError, "Tensor lists must have the same number of tensors, got 2 and 1"):
|
|
fop(tensors2, tensors1)
|
|
|
|
# Corresponding tensors with different sizes that aren't compatible with broadcast
|
|
# If sizes are different then foreach chooses slow path, thus error messages are expected
|
|
# to be the same as torch regular function.
|
|
tensors1 = [torch.zeros(10, 10, device=device, dtype=dtype) for _ in range(10)]
|
|
tensors2 = [torch.ones(11, 11, device=device, dtype=dtype) for _ in range(10)]
|
|
try:
|
|
foreach_op(tensors1, tensors2)
|
|
except RuntimeError as e:
|
|
with self.assertRaisesRegex(type(e), re.escape(str(e))):
|
|
[ref(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
|
|
try:
|
|
foreach_op_(tensors1, tensors2)
|
|
except RuntimeError as e:
|
|
with self.assertRaisesRegex(type(e), re.escape(str(e))):
|
|
[ref_(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
|
|
|
|
# different devices
|
|
if self.device_type == "cuda" and torch.cuda.device_count() > 1:
|
|
tensor1 = torch.zeros(10, 10, device="cuda:0", dtype=dtype)
|
|
tensor2 = torch.ones(10, 10, device="cuda:1", dtype=dtype)
|
|
if dtype == torch.bool and foreach_op == torch._foreach_sub:
|
|
for fop in ops_to_test:
|
|
with self.assertRaisesRegex(RuntimeError, re.escape(_BOOL_SUB_ERR_MSG)):
|
|
fop([tensor1], [tensor2])
|
|
return
|
|
with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"):
|
|
foreach_op([tensor1], [tensor2])
|
|
if dtype in integral_types_and(torch.bool) and foreach_op == torch._foreach_div:
|
|
with self.assertRaisesRegex(RuntimeError, "result type"):
|
|
foreach_op_([tensor1], [tensor2])
|
|
else:
|
|
with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"):
|
|
foreach_op_([tensor1], [tensor2])
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), "CUDA not found")
|
|
@ops(
|
|
filter(lambda op: not op.has_no_out_of_place, foreach_binary_op_db),
|
|
dtypes=OpDTypes.supported,
|
|
)
|
|
def test_binary_op_list_slow_path(self, device, dtype, op):
|
|
foreach_op, native_op, foreach_op_, native_op_ = self._get_funcs(op)
|
|
# 0-strides
|
|
tensor1 = make_tensor((10, 10), dtype=dtype, device=device)
|
|
tensor2 = make_tensor((1,), device=device, dtype=dtype).expand_as(tensor1)
|
|
inputs = ([tensor1], [tensor2])
|
|
self._binary_test(
|
|
dtype, foreach_op, native_op, inputs, is_fastpath=False, is_inplace=False,
|
|
alpha=None, scalar_self_arg=False)
|
|
self._binary_test(
|
|
dtype, foreach_op_, native_op_, inputs, is_fastpath=False, is_inplace=True,
|
|
alpha=None, scalar_self_arg=False)
|
|
|
|
# different strides
|
|
tensor1 = torch.zeros(10, 10, device=device, dtype=dtype)
|
|
tensor2 = torch.ones(10, 10, device=device, dtype=dtype)
|
|
inputs = ([tensor1], [tensor2.t()])
|
|
self._binary_test(
|
|
dtype, foreach_op, native_op, inputs, is_fastpath=False, is_inplace=False,
|
|
alpha=None, scalar_self_arg=False)
|
|
self._binary_test(
|
|
dtype, foreach_op_, native_op_, inputs, is_fastpath=False, is_inplace=True,
|
|
alpha=None, scalar_self_arg=False)
|
|
|
|
# non contiguous
|
|
tensor1 = make_tensor((5, 2, 1, 3), device=device, dtype=dtype, noncontiguous=True)
|
|
tensor2 = make_tensor((5, 2, 1, 3), device=device, dtype=dtype, noncontiguous=True)
|
|
self.assertFalse(tensor1.is_contiguous())
|
|
self.assertFalse(tensor2.is_contiguous())
|
|
inputs = ([tensor1], [tensor2])
|
|
self._binary_test(
|
|
dtype, foreach_op, native_op, inputs, is_fastpath=False, is_inplace=False,
|
|
alpha=None, scalar_self_arg=False)
|
|
self._binary_test(
|
|
dtype, foreach_op_, native_op_, inputs, is_fastpath=False, is_inplace=True,
|
|
alpha=None, scalar_self_arg=False)
|
|
|
|
# sliced tensor
|
|
tensor1 = make_tensor((5, 2, 1, 3), device=device, dtype=dtype)
|
|
tensor2 = make_tensor((5, 2, 1, 3 * 7), device=device, dtype=dtype)[:, :, :, ::7]
|
|
inputs = ([tensor1], [tensor2])
|
|
self._binary_test(
|
|
dtype, foreach_op, native_op, inputs, is_fastpath=False, is_inplace=False,
|
|
alpha=None, scalar_self_arg=False)
|
|
self._binary_test(
|
|
dtype, foreach_op_, native_op_, inputs, is_fastpath=False, is_inplace=True,
|
|
alpha=None, scalar_self_arg=False)
|
|
|
|
@ops(
|
|
filter(lambda op: not op.has_no_out_of_place, foreach_binary_op_db),
|
|
dtypes=floating_types_and(torch.half, torch.bfloat16),
|
|
)
|
|
def test_binary_op_float_inf_nan(self, device, dtype, op):
|
|
inputs = (
|
|
[
|
|
torch.tensor([float("inf")], device=device, dtype=dtype),
|
|
torch.tensor([-float("inf")], device=device, dtype=dtype),
|
|
torch.tensor([float("nan")], device=device, dtype=dtype),
|
|
torch.tensor([float("nan")], device=device, dtype=dtype),
|
|
],
|
|
[
|
|
torch.tensor([-float("inf")], device=device, dtype=dtype),
|
|
torch.tensor([float("inf")], device=device, dtype=dtype),
|
|
torch.tensor([float("inf")], device=device, dtype=dtype),
|
|
torch.tensor([float("nan")], device=device, dtype=dtype),
|
|
],
|
|
)
|
|
op, ref, inplace_op, inplace_ref = self._get_funcs(op)
|
|
self._binary_test(dtype, op, ref, inputs, True, False, alpha=None, scalar_self_arg=False)
|
|
self._binary_test(
|
|
dtype, inplace_op, inplace_ref, inputs, True, True, alpha=None, scalar_self_arg=False
|
|
)
|
|
|
|
# note: Below three tests (postfixed with `_tensors_on_different_devices`)
|
|
# checks whether foreach works with lists of tensors on different devices
|
|
# but tensors of the same index are on the same device, e.g., ['cuda', 'cpu].
|
|
@onlyCUDA
|
|
@ops(foreach_unary_op_db)
|
|
def test_unary_op_tensors_on_different_devices(self, device, dtype, op):
|
|
op.has_no_out_of_place = op.name != "_foreach_zero"
|
|
method, ref, inplace_method, ref_inplace = self._get_funcs(op)
|
|
# tensors: ['cuda', 'cpu]
|
|
tensors = list(op.sample_inputs(device, dtype, num_input_tensors=[2]))[0].input
|
|
tensors[1] = tensors[1].to("cpu")
|
|
if op.has_no_out_of_place:
|
|
try:
|
|
actual = method((tensors,), False, False, zero_size=False)
|
|
except RuntimeError as e:
|
|
with self.assertRaisesRegex(type(e), str(e)):
|
|
ref((tensors,))
|
|
else:
|
|
expected = ref((tensors,))
|
|
self.assertEqual(expected, actual)
|
|
|
|
try:
|
|
inplace_method((tensors,), False, False, zero_size=False)
|
|
except RuntimeError as e:
|
|
with self.assertRaisesRegex(type(e), str(e)):
|
|
ref_inplace((tensors,))
|
|
else:
|
|
if op.has_no_out_of_place:
|
|
self.assertEqual(expected, tensors)
|
|
else:
|
|
self.assertEqual([torch.zeros_like(t) for t in tensors], tensors)
|
|
|
|
@onlyCUDA
|
|
@ops(filter(lambda op: not op.has_no_out_of_place, foreach_binary_op_db))
|
|
def test_binary_op_tensors_on_different_devices(self, device, dtype, op):
|
|
# `tensors1`: ['cuda', 'cpu']
|
|
# `tensors2`: ['cuda', 'cpu']
|
|
_cuda_tensors = list(op.sample_inputs(device, dtype, num_input_tensors=[2], same_size=True))[0].input
|
|
_cpu_tensors = list(op.sample_inputs("cpu", dtype, num_input_tensors=[2], same_size=True))[0].input
|
|
tensors1, tensors2 = list(zip(_cuda_tensors, _cpu_tensors))
|
|
|
|
foreach_op, foreach_op_ = op.method_variant, op.inplace_variant
|
|
native_op, native_op_ = op.ref, op.ref_inplace
|
|
try:
|
|
actual = foreach_op(tensors1, tensors2)
|
|
except RuntimeError as e:
|
|
with self.assertRaisesRegex(type(e), re.escape(str(e))):
|
|
[native_op(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
|
|
else:
|
|
expected = [native_op(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
|
|
self.assertEqual(expected, actual)
|
|
try:
|
|
foreach_op_(tensors1, tensors2)
|
|
except RuntimeError as e:
|
|
with self.assertRaisesRegex(type(e), re.escape(str(e))):
|
|
[native_op_(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
|
|
else:
|
|
self.assertEqual(actual, tensors1)
|
|
|
|
@onlyCUDA
|
|
@ops(foreach_pointwise_op_db, allowed_dtypes=floating_types())
|
|
def test_pointwise_op_tensors_on_different_devices(self, device, dtype, op):
|
|
# tensors1: ['cuda', 'cpu]
|
|
# tensors2: ['cuda', 'cpu]
|
|
# tensors3: ['cuda', 'cpu]
|
|
# first tensorlist is zero-size when float32
|
|
_cuda_tensors = list(
|
|
op.sample_inputs(device, dtype, num_input_tensors=[3], same_size=True)
|
|
)[int(dtype == torch.float32)].input
|
|
_cpu_tensors = list(op.sample_inputs("cpu", dtype, num_input_tensors=[3], same_size=True))[0].input
|
|
tensors1, tensors2, tensors3 = list(zip(_cuda_tensors, _cpu_tensors))
|
|
|
|
foreach_op, foreach_op_, native_op = op.method_variant, op.inplace_variant, op.ref
|
|
actual = foreach_op(tensors1, tensors2, tensors3)
|
|
expected = [native_op(*_cuda_tensors), native_op(*_cpu_tensors)]
|
|
self.assertEqual(expected, actual)
|
|
|
|
# note(mkozuki): Limiting dtypes to FP32&FP64, we can safely run inplace ops.
|
|
foreach_op_(tensors1, tensors2, tensors3)
|
|
self.assertEqual(expected, tensors1)
|
|
|
|
# note: BFloat16 has the same number of exponent bits as FP32
|
|
# so if squared L2 norm overflows in BF16, then it also overflows in FP32.
|
|
@onlyCUDA
|
|
@ops(foreach_reduce_op_db, allowed_dtypes=(torch.half, torch.bfloat16))
|
|
def test_foreach_l2_large_value_input(self, device, dtype, op):
|
|
ord, N = 2, 10
|
|
max_value = torch.finfo(dtype).max
|
|
scaler = torch.tensor([max_value]).sqrt().to(device=device, dtype=dtype)
|
|
inputs = ([
|
|
t * scaler for t in list(
|
|
op.sample_inputs(device, dtype, requries_grad=True, num_input_tensors=[N], low=1)
|
|
)[0].input
|
|
],)
|
|
# make sure that the min. of squared L2 norm value per tensor is greater than the max value of `dtype`.
|
|
self.assertTrue(scaler * scaler * N > max_value)
|
|
fn, ref_fn, *_ = self._get_funcs(op)
|
|
actual = fn(inputs, is_cuda=True, expect_fastpath=True, ord=ord, zero_size=False)
|
|
expect = ref_fn(inputs, ord=ord)
|
|
|
|
if dtype == torch.float16:
|
|
# making sure the reference L2 norm values are in the range of FP16.
|
|
self.assertFalse(any(torch.isinf(e) for e in expect))
|
|
else:
|
|
self.assertTrue(all(
|
|
inputs[0][i].numel() == 0 or torch.isinf(e)
|
|
for i, e in enumerate(expect)))
|
|
self.assertEqual(expect, actual, equal_nan=False)
|
|
|
|
@onlyCUDA
|
|
@ops(foreach_reduce_op_db)
|
|
def test_foreach_reduce_large_input(self, device, dtype, op):
|
|
# test inputs larger than kChunkSize = 65536
|
|
ord, N = 2, 65536 * 2
|
|
disable_fastpath = True
|
|
if ord in (1, 2) and dtype in floating_types_and(torch.half, torch.bfloat16):
|
|
disable_fastpath = False
|
|
inputs = ([make_tensor((N,), dtype=dtype, device=device, noncontiguous=False)],)
|
|
wrapped_op, ref, _, _ = self._get_funcs(op)
|
|
self.assertEqual(
|
|
ref(inputs, ord=ord),
|
|
wrapped_op(inputs, self.is_cuda, not disable_fastpath, ord=ord, zero_size=False),
|
|
)
|
|
|
|
@onlyCUDA
|
|
@ops(
|
|
foreach_unary_op_db + foreach_binary_op_db + foreach_pointwise_op_db + foreach_other_op_db,
|
|
dtypes=(torch.float,),
|
|
)
|
|
def test_inplace_foreach_leaf_check_and_grad_fn(self, device, dtype, op):
|
|
inplace_op = op.inplace_variant
|
|
if inplace_op is None:
|
|
self.skipTest("no in-place op available")
|
|
|
|
sample = list(op.sample_inputs(dtype=dtype, device=device, num_input_tensors=[2], same_size=True))[0]
|
|
sample.input[0].requires_grad_(True)
|
|
with self.assertRaisesRegex(RuntimeError, "a leaf Variable that requires grad"):
|
|
inplace_op(sample.input, *sample.args)
|
|
sample.input[1].requires_grad_(True)
|
|
with self.assertRaisesRegex(RuntimeError, "a leaf Variable that requires grad"):
|
|
inplace_op(sample.input, *sample.args)
|
|
|
|
_tensors = [t.clone().detach().requires_grad_(i == 0) for i, t in enumerate(sample.input)]
|
|
tensors = [t.clone() for t in _tensors]
|
|
inplace_op(tensors, *sample.args)
|
|
self.assertIsNotNone(tensors[0].grad_fn)
|
|
self.assertIsNone(tensors[1].grad_fn)
|
|
|
|
@onlyCUDA
|
|
@ops(
|
|
foreach_unary_op_db + foreach_binary_op_db + foreach_pointwise_op_db + foreach_other_op_db,
|
|
dtypes=(torch.float,),
|
|
)
|
|
def test_outplace_with_invalid_grads(self, device, dtype, op):
|
|
if op.has_no_out_of_place:
|
|
self.skipTest(f"{op.name} does not have out-of-place implementation")
|
|
func, *_ = self._get_funcs(op)
|
|
sample = list(op.sample_inputs(dtype=dtype, device=device, requires_grad=True, num_input_tensors=[2], same_size=True))[0]
|
|
self.assertTrue(all(t.requires_grad for t in sample.input))
|
|
if func.func in foreach_pointwise_op_db:
|
|
sample.kwargs.pop("values", None)
|
|
(out1, out2) = func([sample.input, *sample.args], is_cuda=False, expect_fastpath=False, **sample.kwargs)
|
|
out1.backward(torch.ones_like(out1))
|
|
self.assertIsNotNone(sample.input[0].grad)
|
|
self.assertIsNone(sample.input[1].grad)
|
|
|
|
@ops(
|
|
filter(
|
|
lambda op: op.backward_requires_result,
|
|
foreach_unary_op_db + foreach_binary_op_db + foreach_pointwise_op_db + foreach_other_op_db,
|
|
),
|
|
dtypes=(torch.float32,),
|
|
)
|
|
def test_lifetime_of_grad_fn_when_result_is_saved(self, device, dtype, op):
|
|
|
|
def get_ref(func, sample):
|
|
class Foo:
|
|
pass
|
|
|
|
out = func((sample.input, *sample.args), is_cuda=False, expect_fastpath=False, **sample.kwargs)
|
|
foo = Foo()
|
|
meta_dict = out[0].grad_fn.metadata
|
|
meta_dict[0] = foo
|
|
ref = weakref.ref(foo)
|
|
return out, ref
|
|
|
|
def _test(func, sample):
|
|
out, ref = get_ref(func, sample)
|
|
self.assertIsNotNone(ref())
|
|
del out
|
|
self.assertIsNone(ref())
|
|
|
|
func = self._get_funcs(op)[0]
|
|
for sample in op.sample_inputs(device, dtype, requires_grad=True, num_input_tensors=[1]):
|
|
for key in ("is_fastpath", "disable_fastpath"):
|
|
if key in sample.kwargs:
|
|
del sample.kwargs[key]
|
|
# note: `_foreach_pow.Scalar` and `_foreach_pow.ScalarList` don't depend on `result`
|
|
# see: https://github.com/pytorch/pytorch/blob/5403c777/tools/autograd/derivatives.yaml#L3048-L3049
|
|
if op.name == "_foreach_pow":
|
|
if (
|
|
(isinstance(sample.args[0], list) and isinstance(sample.args[0][0], Number))
|
|
or (isinstance(sample.args[0], Number) and not isinstance(sample.args[0], float))
|
|
):
|
|
continue
|
|
if isinstance(sample.args[0], float):
|
|
new_args = (sample.input,)
|
|
sample.input = sample.args[0]
|
|
sample.args = new_args
|
|
_test(func, sample)
|
|
|
|
@unittest.skipIf(not (torch.cuda.is_available() and torch.cuda.device_count() > 1), "requires multiple GPUs")
|
|
def test_tensors_grouping(self):
|
|
num_tensors_per_list = 10
|
|
num_devices = torch.cuda.device_count()
|
|
dtypes = (torch.float16, torch.float32, torch.float64)
|
|
list1 = [
|
|
torch.tensor(
|
|
i,
|
|
device=torch.device("cuda", random.randint(0, num_devices - 1)),
|
|
dtype=dtypes[random.randint(0, 2)],
|
|
) for i in range(num_tensors_per_list)
|
|
]
|
|
list2 = [None for _ in list1]
|
|
list3 = [torch.rand_like(t) for t in list1]
|
|
nested_tensorlists = [list1, list2, list3]
|
|
grouped_tensors = torch.utils._foreach_utils._group_tensors_by_device_and_dtype(nested_tensorlists, with_indices=True)
|
|
num_tensors_seen = 0
|
|
for (device, dtype), ([l1, l2, l3], indices) in grouped_tensors.items():
|
|
for t in itertools.chain(l1, l3):
|
|
self.assertEqual(t.device, device)
|
|
self.assertEqual(t.dtype, dtype)
|
|
num_tensors_seen += 1
|
|
self.assertEqual(len(l1), len(l2))
|
|
self.assertTrue(all(p is None for p in l2))
|
|
for i, index in enumerate(indices):
|
|
self.assertEqual(l1[i], list1[index])
|
|
self.assertEqual(l2[i], list2[index])
|
|
self.assertEqual(l3[i], list3[index])
|
|
self.assertEqual(num_tensors_seen, 2 * num_tensors_per_list)
|
|
|
|
@onlyCUDA
|
|
def test_0dim_tensor_overload_cpu_ok(self):
|
|
tensors = [torch.ones((), device="cuda", dtype=torch.float32) for _ in range(2)]
|
|
scalar_cpu_tensor = torch.tensor(4.0, device="cpu")
|
|
|
|
# For mul and div, the scalar is allowed to be on CPU too
|
|
actual = torch._foreach_mul(tensors, scalar_cpu_tensor)
|
|
self.assertEqual(actual, [t.mul(scalar_cpu_tensor) for t in tensors])
|
|
actual = torch._foreach_div(tensors, scalar_cpu_tensor)
|
|
self.assertEqual(actual, [t.div(scalar_cpu_tensor) for t in tensors])
|
|
|
|
|
|
@onlyCUDA
|
|
def test_0dim_tensor_overload_exception(self):
|
|
# check exceptions of fast path
|
|
tensors = [make_tensor((2, 2), dtype=torch.float, device="cuda") for _ in range(2)]
|
|
with self.assertRaisesRegex(RuntimeError, "scalar tensor expected to be on"):
|
|
torch._foreach_add(tensors, torch.tensor(1.0, device="cpu"), alpha=1.0)
|
|
|
|
tensors = [make_tensor((2, 2), dtype=torch.float, device=d) for d in ("cpu", "cuda")]
|
|
with self.assertRaisesRegex(RuntimeError, "scalar tensor expected to be 0 dim but"):
|
|
torch._foreach_mul(tensors, torch.tensor([1.0, 1.0], device="cuda"))
|
|
with self.assertRaisesRegex(RuntimeError, "scalar tensor expected to be 0 dim but"):
|
|
torch._foreach_add(tensors, torch.tensor([1.0, 1.0], device="cuda"))
|
|
|
|
@onlyCUDA
|
|
@ops(filter(lambda op: op.name == "_foreach_copy", foreach_binary_op_db))
|
|
def test_foreach_copy_with_multi_device_inputs(self, device, dtype, op):
|
|
foreach_copy_ = op.inplace_variant
|
|
copy_ = op.ref_inplace
|
|
for non_blocking in (False, True):
|
|
for sample in op.sample_inputs(device, dtype, noncontiguous=False):
|
|
with torch.no_grad():
|
|
ref_input = [t.clone().detach() for t in sample.input]
|
|
foreach_copy_(sample.input, sample.args[0], non_blocking)
|
|
for t, s in zip(ref_input, sample.args[0]):
|
|
copy_(t, s, non_blocking)
|
|
self.assertEqual(sample.input, ref_input)
|
|
if torch.cuda.device_count() > 1:
|
|
device = torch.device("cuda", 1)
|
|
rhs_tensors = [t.to(device) for t in sample.args[0]]
|
|
foreach_copy_(sample.input, rhs_tensors, non_blocking)
|
|
for t, s in zip(ref_input, rhs_tensors):
|
|
copy_(t, s, non_blocking)
|
|
self.assertEqual(ref_input, sample.input)
|
|
|
|
# Test reverse-mode & forward-mode AD if supported.
|
|
@onlyCUDA
|
|
@ops(
|
|
foreach_unary_op_db + foreach_binary_op_db + foreach_pointwise_op_db + foreach_reduce_op_db + foreach_other_op_db,
|
|
dtypes=OpDTypes.supported,
|
|
allowed_dtypes=(torch.float64, torch.complex128),
|
|
)
|
|
@parametrize("inplace", (False, True), name_fn=lambda x: "inplace" if x else "outplace")
|
|
def test_autodiff(self, device, dtype, op, inplace):
|
|
if not (op.supports_autograd or op.supports_forward_ad):
|
|
self.skipTest("neither reverse mode nor forward mode supported")
|
|
if (not inplace) and op.has_no_out_of_place:
|
|
self.skipTest("out-of-place not implemented")
|
|
if inplace and op.has_no_in_place:
|
|
self.skipTest("in-place not implemented")
|
|
|
|
# note(crcrpar): without this, some unary functions fail, unlike inplace and/or complex.
|
|
if (not inplace) and dtype == torch.float64 and op.name in (
|
|
"_foreach_acos", "_foreach_asin", "_foreach_log10", "_foreach_log1p", "_foreach_log2",
|
|
"_foreach_log", "_foreach_pow", "_foreach_sqrt",
|
|
):
|
|
value_range = {"low": 0.5, "high": 1.0}
|
|
else:
|
|
value_range = {}
|
|
for sample in op.sample_inputs(
|
|
device, dtype, requires_grad=True, num_input_tensors=[5], **value_range,
|
|
):
|
|
# Skip `_foreach_pow.ScalarAndTensor(Scalar, Tensor[])`
|
|
if op.name == "_foreach_pow" and isinstance(sample.input, Number):
|
|
continue
|
|
|
|
func = None
|
|
if inplace:
|
|
# Call `clone` to avoid inplace modifications likewise
|
|
# `torch.testing._internal.common_utils.TestGradients._get_safe_inplace`
|
|
def inplace_func(*tensorlist):
|
|
kwargs = {"alpha": sample.kwargs["alpha"]} if "alpha" in sample.kwargs else {}
|
|
op.inplace_variant(tuple(t.clone() for t in tensorlist), *sample.args, **kwargs)
|
|
return tensorlist
|
|
func = inplace_func
|
|
else:
|
|
def outplace_func(*tensorlist):
|
|
kwargs = {"alpha": sample.kwargs["alpha"]} if "alpha" in sample.kwargs else {}
|
|
return op.method_variant(tensorlist, *sample.args, **kwargs)
|
|
func = outplace_func
|
|
|
|
working_sample, err_msg_pattern = check_autodiff_sample(op, sample, dtype, inplace)
|
|
|
|
def call_gradcheck():
|
|
gradcheck(
|
|
func,
|
|
sample.input,
|
|
raise_exception=True,
|
|
check_forward_ad=op.supports_forward_ad,
|
|
check_batched_forward_grad=False,
|
|
check_backward_ad=op.supports_autograd,
|
|
check_batched_grad=False,
|
|
)
|
|
|
|
if not working_sample:
|
|
if not err_msg_pattern:
|
|
# lhs of float64 and rhs of complex.
|
|
continue
|
|
with self.assertRaisesRegex(RuntimeError, re.escape(err_msg_pattern)):
|
|
call_gradcheck()
|
|
continue
|
|
call_gradcheck()
|
|
|
|
# Test per-tensor `grad_fn` behavior.
|
|
if inplace and op.supports_inplace_autograd:
|
|
# per-tensor `grad_fn` check.
|
|
hook_buffer = []
|
|
|
|
def get_grad_fn_hook(i):
|
|
|
|
def hook(grad_inputs, grad_outputs) -> None:
|
|
hook_buffer.append(i)
|
|
|
|
return hook
|
|
|
|
_inputs = [t.clone().detach().requires_grad_() for t in sample.input]
|
|
inputs = [t.clone() for t in _inputs]
|
|
kwargs = {"alpha": sample.kwargs["alpha"]} if "alpha" in sample.kwargs else {}
|
|
op.inplace_variant(inputs, *sample.args, **kwargs)
|
|
|
|
self.assertEqual(len({t.grad_fn for t in inputs}), len(inputs))
|
|
|
|
for i, t in enumerate(inputs):
|
|
t.grad_fn.register_hook(get_grad_fn_hook(i))
|
|
|
|
torch.autograd.grad(
|
|
inputs[0],
|
|
inputs=(_inputs[0],),
|
|
grad_outputs=(torch.rand_like(inputs[0]),),
|
|
retain_graph=True,
|
|
)
|
|
self.assertEqual(hook_buffer, [0])
|
|
hook_buffer.clear()
|
|
|
|
# tensors have different shapes.
|
|
sum_of_cloned_tensors = torch.cat([t.view(-1) for t in inputs]).sum()
|
|
grad_output = torch.rand_like(sum_of_cloned_tensors)
|
|
torch.autograd.grad(
|
|
sum_of_cloned_tensors,
|
|
inputs=tuple(_inputs),
|
|
grad_outputs=(grad_output,),
|
|
retain_graph=False,
|
|
)
|
|
self.assertEqual(hook_buffer, list(reversed(range(len(inputs)))))
|
|
|
|
|
|
# TODO(crcrpar): Hide this inside torch/testing/_internal.
|
|
# would end up adding another layer to `foreach_inputs_sample_func.__call__`
|
|
# so that we can use this function as something like the first argument of `filter` function.
|
|
# Even after moving this function to testing, I personally think it'd be better to check the error message.
|
|
def check_autodiff_sample(op, sample, dtype, is_inplace):
|
|
if op.name == "_foreach_abs" and is_inplace and dtype == torch.complex128:
|
|
return False, "In-place abs is not supported for complex tensors."
|
|
if (
|
|
op.name == "_foreach_sub"
|
|
and (
|
|
(isinstance(sample.args[0], list) and any(isinstance(a, bool) for a in sample.args[0]))
|
|
or isinstance(sample.args[0], bool)
|
|
)
|
|
):
|
|
return False, _BOOL_SUB_ERR_MSG
|
|
if op.name == "_foreach_norm" and (not is_inplace):
|
|
return (
|
|
False,
|
|
"Trying to set a forward gradient that has a different size than that of the original Tensor, "
|
|
"this is not supported. Tensor is of size [] while the given forward gradient is of size [1, 1]."
|
|
)
|
|
rhs_arg_has_complex_number = sample.args and ((
|
|
isinstance(sample.args[0], list)
|
|
and any(isinstance(a, complex) for a in sample.args[0])
|
|
) or (
|
|
isinstance(sample.args[0], complex)
|
|
))
|
|
if rhs_arg_has_complex_number and dtype == torch.float64:
|
|
if op.name in ("_foreach_clamp_max", "_foreach_clamp_min", "_foreach_maximum", "_foreach_minimum"):
|
|
return False, "clamp is not supported for complex types"
|
|
if not is_inplace:
|
|
return False, ""
|
|
else:
|
|
if op.name == "_foreach_pow":
|
|
return False, "Found dtype Double but expected ComplexDouble"
|
|
if op.name in ("_foreach_add", "_foreach_sub", "_foreach_mul", "_foreach_div"):
|
|
return False, "result type ComplexDouble can't be cast to the desired output type Double"
|
|
return True, ""
|
|
|
|
|
|
instantiate_device_type_tests(TestForeach, globals())
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|