mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: These changes in D76442012 got reverted after the PR landed due to aps_models/ads/launchers/pearl/tests/ne/e2e_deterministic_tests:pearl_e2e_ne_tests failing with `Config not loaded due to no timely response from configerator. Likely configerator_proxy or falcon_proxy are not healthy`, but that test failing is definitely transient and unrelated to my changes, so re-creating the diff Test Plan: ensure tests pass Rollback Plan: Differential Revision: D77871099 Pull Request resolved: https://github.com/pytorch/pytorch/pull/157715 Approved by: https://github.com/meetv18
107 lines
2.8 KiB
Python
107 lines
2.8 KiB
Python
import io
|
|
import json
|
|
import struct
|
|
from dataclasses import dataclass
|
|
from typing import Any, Optional
|
|
|
|
import torch
|
|
|
|
|
|
_metadata_fn: str = "model.safetensors.index.json"
|
|
|
|
FILE_NAME = "model-{cpt_idx}-of-{num_files}"
|
|
SHARDED_FILE_NAME = "shard-{shard_idx}-model-{cpt_idx}-of-{num_files}"
|
|
SUFFIX = ".safetensors"
|
|
|
|
# metadata keys
|
|
CUSTOM_METADATA_KEY = "DCP_SHARDING_INFO"
|
|
DEFAULT_EXTRA_METADATA_KEY = "__metadata__"
|
|
SAVED_OFFSETS_KEY = "saved_offsets"
|
|
SHAPE_KEY = "shape"
|
|
DATA_KEY = "data"
|
|
DTYPE_KEY = "dtype"
|
|
DATA_OFFSETS_KEY = "data_offsets"
|
|
|
|
DTYPE_MAP = {
|
|
"F16": torch.float16,
|
|
"F32": torch.float32,
|
|
"F64": torch.float64,
|
|
"I8": torch.int8,
|
|
"U8": torch.uint8,
|
|
"I16": torch.int16,
|
|
"I32": torch.int32,
|
|
"I64": torch.int64,
|
|
"BF16": torch.bfloat16,
|
|
}
|
|
|
|
HF_DCP_VERSION: float = 1.0
|
|
DCP_VERSION_KEY = "DCP_VERSION"
|
|
DCP_SHARDING_INFO_KEY = "DCP_SHARDING_INFO"
|
|
|
|
FORMAT_KEY = "format"
|
|
FORMAT_VALUE = "pt"
|
|
|
|
NUM_BYTES_FOR_HEADER_LEN = 8
|
|
|
|
|
|
@dataclass
|
|
class _HFStorageInfo:
|
|
"""This is the per entry storage info."""
|
|
|
|
relative_path: str
|
|
offset: int
|
|
length: int
|
|
shape: torch.Size
|
|
dtype: torch.dtype
|
|
|
|
|
|
def _gen_file_name(
|
|
index: int, largest_index: int, shard_index: Optional[int] = None
|
|
) -> str:
|
|
if shard_index is not None:
|
|
return (
|
|
SHARDED_FILE_NAME.format(
|
|
shard_idx=f"{shard_index}".zfill(5),
|
|
cpt_idx=f"{index}".zfill(5),
|
|
num_files=f"{largest_index}".zfill(5),
|
|
)
|
|
+ SUFFIX
|
|
)
|
|
else:
|
|
return (
|
|
FILE_NAME.format(
|
|
cpt_idx=f"{index}".zfill(5), num_files=f"{largest_index}".zfill(5)
|
|
)
|
|
+ SUFFIX
|
|
)
|
|
|
|
|
|
def _get_safetensors_file_metadata(file_bytes: io.IOBase) -> tuple[Any, int]:
|
|
# this uses the same logic that's done in HF code base
|
|
# https://github.com/2404589803/huggingface_hub/blob/main/src/huggingface_hub/hf_api.py#L5308
|
|
# and follows their documentation on how their files are serialized
|
|
# https://huggingface.co/docs/safetensors/index#format
|
|
|
|
header_len_bytes = file_bytes.read(NUM_BYTES_FOR_HEADER_LEN)
|
|
header_len = struct.unpack("<Q", header_len_bytes)[0]
|
|
header_json = file_bytes.read(header_len)
|
|
metadata = json.loads(header_json)
|
|
return (metadata, header_len + NUM_BYTES_FOR_HEADER_LEN)
|
|
|
|
|
|
def _get_dtype(dtype_str: str) -> torch.dtype:
|
|
try:
|
|
dtype = DTYPE_MAP[dtype_str]
|
|
except KeyError:
|
|
dtype = torch.get_default_dtype()
|
|
|
|
return dtype
|
|
|
|
|
|
def _get_dcp_custom_metadata(metadata: Any) -> Optional[Any]:
|
|
if DEFAULT_EXTRA_METADATA_KEY in metadata:
|
|
custom_metadata = metadata[DEFAULT_EXTRA_METADATA_KEY]
|
|
if CUSTOM_METADATA_KEY in custom_metadata:
|
|
return json.loads(custom_metadata[CUSTOM_METADATA_KEY])
|
|
return None
|