mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Summary: This PR fixes docstrings of fusing functions. Pull Request resolved: https://github.com/pytorch/pytorch/pull/58638 Reviewed By: H-Huang Differential Revision: D28584501 Pulled By: jerryzh168 fbshipit-source-id: 77a53a709d968df8ba8f5b613ad7cf225ba2826a
134 lines
5.2 KiB
Python
134 lines
5.2 KiB
Python
import torch.nn as nn
|
|
import torch.nn.intrinsic as nni
|
|
|
|
from typing import Union, Callable, Tuple, Dict, Optional, Type
|
|
|
|
from .utils import get_combined_dict
|
|
|
|
def fuse_conv_bn(conv, bn):
|
|
r"""Given the conv and bn modules, fuses them and returns the fused module
|
|
|
|
Args:
|
|
conv: Module instance of type conv2d/conv3d
|
|
bn: Spatial BN instance that needs to be fused with the conv
|
|
|
|
Examples::
|
|
|
|
>>> m1 = nn.Conv2d(10, 20, 3)
|
|
>>> b1 = nn.BatchNorm2d(20)
|
|
>>> m2 = fuse_conv_bn(m1, b1)
|
|
"""
|
|
assert(conv.training == bn.training),\
|
|
"Conv and BN both must be in the same mode (train or eval)."
|
|
|
|
fused_module_class_map = {
|
|
nn.Conv1d: nni.ConvBn1d,
|
|
nn.Conv2d: nni.ConvBn2d,
|
|
nn.Conv3d: nni.ConvBn3d,
|
|
}
|
|
|
|
if conv.training:
|
|
assert bn.num_features == conv.out_channels, 'Output channel of Conv2d must match num_features of BatchNorm2d'
|
|
assert bn.affine, 'Only support fusing BatchNorm2d with affine set to True'
|
|
assert bn.track_running_stats, 'Only support fusing BatchNorm2d with tracking_running_stats set to True'
|
|
fused_module_class = fused_module_class_map.get((type(conv)), None)
|
|
if fused_module_class is not None:
|
|
return fused_module_class(conv, bn)
|
|
else:
|
|
raise NotImplementedError("Cannot fuse train modules: {}".format((conv, bn)))
|
|
else:
|
|
return nn.utils.fuse_conv_bn_eval(conv, bn)
|
|
|
|
def fuse_conv_bn_relu(conv, bn, relu):
|
|
r"""Given the conv and bn modules, fuses them and returns the fused module
|
|
|
|
Args:
|
|
conv: Module instance of type conv2d/conv3d
|
|
bn: Spatial BN instance that needs to be fused with the conv
|
|
|
|
Examples::
|
|
|
|
>>> m1 = nn.Conv2d(10, 20, 3)
|
|
>>> b1 = nn.BatchNorm2d(20)
|
|
>>> r1 = nn.ReLU(inplace=False)
|
|
>>> m2 = fuse_conv_bn_relu(m1, b1, r1)
|
|
"""
|
|
assert(conv.training == bn.training == relu.training),\
|
|
"Conv and BN both must be in the same mode (train or eval)."
|
|
fused_module : Optional[Type[nn.Sequential]] = None
|
|
if conv.training:
|
|
map_to_fused_module_train = {
|
|
nn.Conv1d: nni.ConvBnReLU1d,
|
|
nn.Conv2d: nni.ConvBnReLU2d,
|
|
nn.Conv3d: nni.ConvBnReLU3d,
|
|
}
|
|
assert bn.num_features == conv.out_channels, 'Output channel of Conv must match num_features of BatchNorm'
|
|
assert bn.affine, 'Only support fusing BatchNorm with affine set to True'
|
|
assert bn.track_running_stats, 'Only support fusing BatchNorm with tracking_running_stats set to True'
|
|
fused_module = map_to_fused_module_train.get(type(conv), None)
|
|
if fused_module is not None:
|
|
return fused_module(conv, bn, relu)
|
|
else:
|
|
raise NotImplementedError("Cannot fuse train modules: {}".format((conv, bn, relu)))
|
|
else:
|
|
map_to_fused_module_eval = {
|
|
nn.Conv1d: nni.ConvReLU1d,
|
|
nn.Conv2d: nni.ConvReLU2d,
|
|
nn.Conv3d: nni.ConvReLU3d,
|
|
}
|
|
fused_module = map_to_fused_module_eval.get(type(conv), None)
|
|
if fused_module is not None:
|
|
fused_conv = nn.utils.fusion.fuse_conv_bn_eval(conv, bn)
|
|
return fused_module(fused_conv, relu)
|
|
else:
|
|
raise NotImplementedError("Cannot fuse eval modules: {}".format((conv, bn, relu)))
|
|
|
|
def fuse_linear_bn(linear, bn):
|
|
r"""Given the linear and bn modules, fuses them and returns the fused module
|
|
|
|
Args:
|
|
linear: Module instance of type Linear
|
|
bn: BatchNorm1d instance that needs to be fused with the linear layer
|
|
|
|
Examples::
|
|
|
|
>>> m1 = nn.Linear(20, 10)
|
|
>>> b1 = nn.BatchNorm1d(10)
|
|
>>> m2 = fuse_linear_bn(m1, b1)
|
|
"""
|
|
assert(linear.training == bn.training),\
|
|
"Linear and BN both must be in the same mode (train or eval)."
|
|
|
|
if linear.training:
|
|
raise Exception("Fusing Linear+BatchNorm not yet supported in training.")
|
|
else:
|
|
return nn.utils.fusion.fuse_linear_bn_eval(linear, bn)
|
|
|
|
DEFAULT_OP_LIST_TO_FUSER_METHOD : Dict[Tuple, Union[nn.Sequential, Callable]] = {
|
|
(nn.Conv1d, nn.BatchNorm1d): fuse_conv_bn,
|
|
(nn.Conv1d, nn.BatchNorm1d, nn.ReLU): fuse_conv_bn_relu,
|
|
(nn.Conv2d, nn.BatchNorm2d): fuse_conv_bn,
|
|
(nn.Conv2d, nn.BatchNorm2d, nn.ReLU): fuse_conv_bn_relu,
|
|
(nn.Conv3d, nn.BatchNorm3d): fuse_conv_bn,
|
|
(nn.Conv3d, nn.BatchNorm3d, nn.ReLU): fuse_conv_bn_relu,
|
|
(nn.Conv1d, nn.ReLU): nni.ConvReLU1d,
|
|
(nn.Conv2d, nn.ReLU): nni.ConvReLU2d,
|
|
(nn.Conv3d, nn.ReLU): nni.ConvReLU3d,
|
|
(nn.Linear, nn.BatchNorm1d): fuse_linear_bn,
|
|
(nn.Linear, nn.ReLU): nni.LinearReLU,
|
|
(nn.BatchNorm2d, nn.ReLU): nni.BNReLU2d,
|
|
(nn.BatchNorm3d, nn.ReLU): nni.BNReLU3d,
|
|
}
|
|
|
|
def get_fuser_method(op_list, additional_fuser_method_mapping=None):
|
|
''' Get fuser method for the given list of module types,
|
|
return None if fuser method does not exist
|
|
'''
|
|
if additional_fuser_method_mapping is None:
|
|
additional_fuser_method_mapping = dict()
|
|
all_mappings = get_combined_dict(DEFAULT_OP_LIST_TO_FUSER_METHOD,
|
|
additional_fuser_method_mapping)
|
|
fuser_method = all_mappings.get(op_list, None)
|
|
assert fuser_method is not None, "did not find fuser method for: {} ".format(op_list)
|
|
return fuser_method
|