mirror of
				https://github.com/pytorch/pytorch.git
				synced 2025-10-25 08:11:06 +08:00 
			
		
		
		
	Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/13377 * Enable junk fill for the default CPU allocator. The first diff only enables this for the tests. A second diff will change the default of zero-fill to false. * Fix tests to use 64-bit counters that IterOp and LearningRateOp demands. * Fix kernels that uses uninitialized memory. Reviewed By: salexspb Differential Revision: D10866512 fbshipit-source-id: 17860e77e63a203edf46d0da0335608f77884821
		
			
				
	
	
		
			64 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			64 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| ## @package test_util
 | |
| # Module caffe2.python.test_util
 | |
| from __future__ import absolute_import
 | |
| from __future__ import division
 | |
| from __future__ import print_function
 | |
| from __future__ import unicode_literals
 | |
| import numpy as np
 | |
| from caffe2.python import core, workspace
 | |
| 
 | |
| import unittest
 | |
| import os
 | |
| 
 | |
| def rand_array(*dims):
 | |
|     # np.random.rand() returns float instead of 0-dim array, that's why need to
 | |
|     # do some tricks
 | |
|     return np.array(np.random.rand(*dims) - 0.5).astype(np.float32)
 | |
| 
 | |
| 
 | |
| def randBlob(name, type, *dims, **kwargs):
 | |
|     offset = kwargs['offset'] if 'offset' in kwargs else 0.0
 | |
|     workspace.FeedBlob(name, np.random.rand(*dims).astype(type) + offset)
 | |
| 
 | |
| 
 | |
| def randBlobFloat32(name, *dims, **kwargs):
 | |
|     randBlob(name, np.float32, *dims, **kwargs)
 | |
| 
 | |
| 
 | |
| def randBlobsFloat32(names, *dims, **kwargs):
 | |
|     for name in names:
 | |
|         randBlobFloat32(name, *dims, **kwargs)
 | |
| 
 | |
| 
 | |
| def numOps(net):
 | |
|     return len(net.Proto().op)
 | |
| 
 | |
| 
 | |
| def str_compare(a, b, encoding="utf8"):
 | |
|     if isinstance(a, bytes):
 | |
|         a = a.decode(encoding)
 | |
|     if isinstance(b, bytes):
 | |
|         b = b.decode(encoding)
 | |
|     return a == b
 | |
| 
 | |
| 
 | |
| class TestCase(unittest.TestCase):
 | |
|     @classmethod
 | |
|     def setUpClass(cls):
 | |
|         workspace.GlobalInit([
 | |
|             'caffe2',
 | |
|             '--caffe2_log_level=0',
 | |
|             '--caffe2_cpu_allocator_do_zero_fill=0',
 | |
|             '--caffe2_cpu_allocator_do_junk_fill=1',
 | |
|         ])
 | |
|         # clear the default engines settings to separate out its
 | |
|         # affect from the ops tests
 | |
|         core.SetEnginePref({}, {})
 | |
| 
 | |
|     def setUp(self):
 | |
|         self.ws = workspace.C.Workspace()
 | |
|         workspace.ResetWorkspace()
 | |
| 
 | |
|     def tearDown(self):
 | |
|         workspace.ResetWorkspace()
 |