mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Stacked PRs * **#31146 - [jit] Cleanup after moving language reference** * #31138 - [jit] Move TorchScript language reference to its own page Preview: https://driazati.github.io/pytorch_doc_previews/jit.html#torchscript-language Pull Request resolved: https://github.com/pytorch/pytorch/pull/31146 Pulled By: driazati Differential Revision: D19167390 fbshipit-source-id: f28daed36754a553264fc8ac142ed22c3e26d63e
716 lines
24 KiB
Python
716 lines
24 KiB
Python
"""
|
|
The weak_script annotation needs to be here instead of inside torch/jit/ so it
|
|
can be used in other places in torch/ (namely torch.nn) without running into
|
|
circular dependency problems
|
|
"""
|
|
|
|
import inspect
|
|
import weakref
|
|
import warnings
|
|
import torch
|
|
from torch._six import builtins
|
|
from torch._utils_internal import get_source_lines_and_file
|
|
|
|
# Wrapper functions that can call either of 2 functions depending on a boolean
|
|
# argument
|
|
boolean_dispatched = weakref.WeakKeyDictionary() # noqa: T484
|
|
|
|
|
|
def createResolutionCallbackFromFrame(frames_up=0):
|
|
"""
|
|
Creates a function which, given a string variable name,
|
|
returns the value of the variable in the scope of the caller of
|
|
the function which called createResolutionCallbackFromFrame (by default).
|
|
|
|
This is used to enable access in-scope Python variables inside
|
|
TorchScript fragments.
|
|
|
|
frames_up is number of additional frames to go up on the stack.
|
|
The default value is 0, which correspond to the frame of the caller
|
|
of createResolutionCallbackFromFrame. Also for example, if frames_up is set
|
|
to 1, then the frame of the caller's caller of createResolutionCallbackFromFrame
|
|
will be taken.
|
|
|
|
For example, the following program prints 2::
|
|
|
|
def bar():
|
|
cb = createResolutionCallbackFromFrame(1)
|
|
print(cb("foo"))
|
|
|
|
def baz():
|
|
foo = 2
|
|
bar()
|
|
|
|
baz()
|
|
"""
|
|
frame = inspect.currentframe()
|
|
i = 0
|
|
while i < frames_up + 1:
|
|
frame = frame.f_back
|
|
i += 1
|
|
|
|
f_locals = frame.f_locals
|
|
f_globals = frame.f_globals
|
|
|
|
def env(key):
|
|
if key in f_locals:
|
|
return f_locals[key]
|
|
elif key in f_globals:
|
|
return f_globals[key]
|
|
elif hasattr(builtins, key):
|
|
return getattr(builtins, key)
|
|
|
|
return env
|
|
|
|
|
|
def get_closure(fn):
|
|
"""
|
|
Get a dictionary of closed over variables from a function
|
|
"""
|
|
captures = {}
|
|
captures.update(fn.__globals__)
|
|
|
|
for index, captured_name in enumerate(fn.__code__.co_freevars):
|
|
captures[captured_name] = fn.__closure__[index].cell_contents
|
|
|
|
return captures
|
|
|
|
# [local resolution in python]
|
|
# Depending on where a variable is defined, and where it is used, we may
|
|
# or may not be able to recover its value when recursively compiling a
|
|
# script function. Remember in the general case, a module or function is
|
|
# first defined and then later scripted. This means we do not have a
|
|
# chance to capture the active frames when the function is defined. Hence any
|
|
# name resolution has to happen later on the created closure. The way
|
|
# python captures type annotations restricts what we can recover. The
|
|
# follow example illustrates the different cases:
|
|
#
|
|
# class MyGlobalClass:
|
|
# ...
|
|
# def my_local_scope():
|
|
# @torch.jit.script
|
|
# class MyClass:
|
|
# ...
|
|
# @torch.jit.script
|
|
# class MyClassUsedAsVar:
|
|
# ...
|
|
# def eg(x: MyClass, y: MyGlobalClass):
|
|
# a_local_capture : Foo
|
|
# return MyClassUsedAsVar(x)
|
|
#
|
|
# MyGlobalClass is defined in the __globals__ dictionary of function
|
|
# 'eg', so it is always recoverable. my_local_scope introduces a new local
|
|
# variable scope in the function. Classes defined here are only visible as
|
|
# local variables. For the case of MyClassUsedAsVar, it is captured
|
|
# because it is used as a variable inside the body of the function, and we
|
|
# can resolve it using the captures returned from `get_closure`. However,
|
|
# the type annotations are not captured by the closure. In Python
|
|
# 3.0--3.9, the _value_ of MyClass and MyGlobalClass will be available as
|
|
# annotations on `eg``, but starting in Python 4.0, they will represented as
|
|
# strings and no longer present. Furthermore, since the body of `eg` does
|
|
# not reference those names, they do not appear in the list of closed over
|
|
# variables. In Python 2.x, type annotations are in comments, leading to a
|
|
# similar situation where their definitions are not available. We anticipate
|
|
# that most users will not run into this issue because their modules and
|
|
# functions will be defined at a global scope like MyGlobalClass. In cases
|
|
# where they are not, it is possible to work around issues by declaring the
|
|
# values global in the function.
|
|
|
|
|
|
|
|
def createResolutionCallbackFromClosure(fn):
|
|
"""
|
|
Create a resolutionCallback by introspecting the function instead of
|
|
looking up the stack for the enclosing scope
|
|
"""
|
|
closure = get_closure(fn)
|
|
|
|
def env(key):
|
|
if key in closure:
|
|
return closure[key]
|
|
elif hasattr(builtins, key):
|
|
return getattr(builtins, key)
|
|
return None
|
|
|
|
return env
|
|
|
|
|
|
def can_compile_class(cls):
|
|
# If any of the functions on a type don't have a code object, this type can't
|
|
# be compiled and is probably a builtin / bound from C
|
|
if is_ignored_fn(cls):
|
|
return False
|
|
names = cls.__dict__
|
|
fns = [getattr(cls, name) for name in names if inspect.isroutine(getattr(cls, name, None))]
|
|
has_code = [hasattr(fn, '__code__') for fn in fns]
|
|
return all(has_code)
|
|
|
|
|
|
def createResolutionCallbackForClassMethods(cls):
|
|
"""
|
|
This looks at all the methods defined in a class and pulls their closed-over
|
|
variables into a dictionary and uses that to resolve variables.
|
|
"""
|
|
# cls is a type here, so `ismethod` is false since the methods on the type
|
|
# aren't bound to anything, so Python treats them as regular functions
|
|
fns = [getattr(cls, name) for name in cls.__dict__ if inspect.isroutine(getattr(cls, name))]
|
|
captures = {}
|
|
|
|
for fn in fns:
|
|
captures.update(get_closure(fn))
|
|
|
|
return lambda key: captures.get(key, None)
|
|
|
|
|
|
def boolean_dispatch(arg_name, arg_index, default, if_true, if_false, module_name, func_name):
|
|
"""
|
|
Dispatches to either of 2 script functions based on a boolean argument.
|
|
In TorchScript, the boolean argument must be constant so that the correct
|
|
function to use can be determined at compile time.
|
|
"""
|
|
def fn(*args, **kwargs):
|
|
dispatch_flag = False
|
|
if arg_name in kwargs:
|
|
dispatch_flag = kwargs[arg_name]
|
|
elif arg_index < len(args):
|
|
dispatch_flag = args[arg_index]
|
|
|
|
if dispatch_flag:
|
|
return if_true(*args, **kwargs)
|
|
else:
|
|
return if_false(*args, **kwargs)
|
|
|
|
if if_true.__doc__ is None and if_false.__doc__ is not None:
|
|
doc = if_false.__doc__
|
|
if_true.__doc__ = doc
|
|
elif if_false.__doc__ is None and if_true.__doc__ is not None:
|
|
doc = if_true.__doc__
|
|
if_false.__doc__ = doc
|
|
elif if_false.__doc__ is None and if_true.__doc__ is None:
|
|
# neither function has a docstring
|
|
doc = None
|
|
else:
|
|
raise RuntimeError("only one function can have a docstring")
|
|
fn.__doc__ = doc
|
|
|
|
if module_name is not None:
|
|
fn.__module__ = module_name
|
|
if func_name is not None:
|
|
fn.__name__ = func_name
|
|
|
|
boolean_dispatched[fn] = {
|
|
"if_true": if_true,
|
|
"if_false": if_false,
|
|
"index": arg_index,
|
|
"default": default,
|
|
"arg_name": arg_name
|
|
}
|
|
return fn
|
|
|
|
|
|
class FunctionModifiers(object):
|
|
"""
|
|
Used to denote the behavior of a function in TorchScript. See export() and
|
|
ignore() for details.
|
|
"""
|
|
UNUSED = "unused (ignored and replaced with raising of an exception)"
|
|
IGNORE = "ignore (leave as a call to Python, cannot be torch.jit.save'd)"
|
|
EXPORT = "export (compile this function even if nothing calls it)"
|
|
DEFAULT = "default (compile if called from a exported function / forward)"
|
|
COPY_TO_SCRIPT_WRAPPER = \
|
|
"if this method is not scripted, copy the python method onto the scripted model"
|
|
|
|
|
|
def export(fn):
|
|
"""
|
|
This decorator indicates that a method on an ``nn.Module`` is used as an entry point into a
|
|
:class:`ScriptModule` and should be compiled.
|
|
|
|
``forward`` implicitly is assumed to be an entry point, so it does not need this decorator.
|
|
Functions and methods called from ``forward`` are compiled as they are seen
|
|
by the compiler, so they do not need this decorator either.
|
|
|
|
Example (using ``@torch.jit.export`` on a method):
|
|
|
|
.. testcode::
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
class MyModule(nn.Module):
|
|
def implicitly_compiled_method(self, x):
|
|
return x + 99
|
|
|
|
# `forward` is implicitly decorated with `@torch.jit.export`,
|
|
# so adding it here would have no effect
|
|
def forward(self, x):
|
|
return x + 10
|
|
|
|
@torch.jit.export
|
|
def another_forward(self, x):
|
|
# When the compiler sees this call, it will compile
|
|
# `implicitly_compiled_method`
|
|
return self.implicitly_compiled_method(x)
|
|
|
|
def unused_method(self, x):
|
|
return x - 20
|
|
|
|
# `m` will contain compiled methods:
|
|
# `forward`
|
|
# `another_forward`
|
|
# `implicitly_compiled_method`
|
|
# `unused_method` will not be compiled since it was not called from
|
|
# any compiled methods and wasn't decorated with `@torch.jit.export`
|
|
m = torch.jit.script(MyModule())
|
|
"""
|
|
fn._torchscript_modifier = FunctionModifiers.EXPORT
|
|
return fn
|
|
|
|
|
|
def unused(fn):
|
|
"""
|
|
This decorator indicates to the compiler that a function or method should
|
|
be ignored and replaced with the raising of an exception. This allows you
|
|
to leave code in your model that is not yet TorchScript compatible and still
|
|
export your model.
|
|
|
|
Example (using ``@torch.jit.unused`` on a method)::
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
class MyModule(nn.Module):
|
|
def __init__(self, use_memory_efficent):
|
|
super(MyModule, self).__init__()
|
|
self.use_memory_efficent = use_memory_efficent
|
|
|
|
@torch.jit.unused
|
|
def memory_efficient(self, x):
|
|
import pdb
|
|
pdb.set_trace()
|
|
return x + 10
|
|
|
|
def forward(self, x):
|
|
# Use not-yet-scriptable memory efficient mode
|
|
if self.use_memory_efficient:
|
|
return self.memory_efficient(x)
|
|
else:
|
|
return x + 10
|
|
|
|
m = torch.jit.script(MyModule(use_memory_efficent=False))
|
|
m.save("m.pt")
|
|
|
|
m = torch.jit.script(MyModule(use_memory_efficient=True))
|
|
# exception raised
|
|
m(torch.rand(100))
|
|
"""
|
|
fn._torchscript_modifier = FunctionModifiers.UNUSED
|
|
return fn
|
|
|
|
def ignore(drop=False, **kwargs):
|
|
"""
|
|
This decorator indicates to the compiler that a function or method should
|
|
be ignored and left as a Python function. This allows you to leave code in
|
|
your model that is not yet TorchScript compatible. If called from TorchScript,
|
|
ignored functions will dispatch the call to the Python interpreter. Models with ignored
|
|
functions cannot be exported; use :func:`@torch.jit.unused <torch.jit.unused>` instead.
|
|
|
|
Example (using ``@torch.jit.ignore`` on a method)::
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
class MyModule(nn.Module):
|
|
@torch.jit.ignore
|
|
def debugger(self, x):
|
|
import pdb
|
|
pdb.set_trace()
|
|
|
|
def forward(self, x):
|
|
x += 10
|
|
# The compiler would normally try to compile `debugger`,
|
|
# but since it is `@ignore`d, it will be left as a call
|
|
# to Python
|
|
self.debugger(x)
|
|
return x
|
|
|
|
m = torch.jit.script(MyModule())
|
|
|
|
# Error! The call `debugger` cannot be saved since it calls into Python
|
|
m.save("m.pt")
|
|
|
|
Example (using ``@torch.jit.ignore(drop=True)`` on a method):
|
|
|
|
.. testcode::
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
class MyModule(nn.Module):
|
|
@torch.jit.ignore(drop=True)
|
|
def training_method(self, x):
|
|
import pdb
|
|
pdb.set_trace()
|
|
|
|
def forward(self, x):
|
|
if self.training:
|
|
self.training_method(x)
|
|
return x
|
|
|
|
m = torch.jit.script(MyModule())
|
|
|
|
# This is OK since `training_method` is not saved, the call is replaced
|
|
# with a `raise`.
|
|
m.save("m.pt")
|
|
|
|
.. testcleanup::
|
|
|
|
import os
|
|
os.remove('m.pt')
|
|
"""
|
|
|
|
if callable(drop):
|
|
# used without any args, so drop is actually a function
|
|
# @torch.jit.ignore
|
|
# def fn(...):
|
|
fn = drop
|
|
fn._torchscript_modifier = FunctionModifiers.IGNORE
|
|
return fn
|
|
|
|
if not isinstance(drop, bool):
|
|
raise RuntimeError("Argument to @torch.jit.ignore must be a bool or "
|
|
"a function but got {}".format(drop))
|
|
|
|
# for backwards compat
|
|
drop_on_export = kwargs.pop("drop_on_export", None)
|
|
if drop_on_export:
|
|
warnings.warn("ignore(drop_on_export=True) has been deprecated. TorchScript will now drop the function "
|
|
"call on compilation. Use torch.jit.unused now. {}", category=FutureWarning)
|
|
|
|
drop = drop_on_export
|
|
elif drop:
|
|
warnings.warn("ignore(True) has been deprecated. TorchScript will now drop the function "
|
|
"call on compilation. Use torch.jit.unused now. {}", category=FutureWarning)
|
|
|
|
def decorator(fn):
|
|
if drop:
|
|
fn._torchscript_modifier = FunctionModifiers.UNUSED
|
|
else:
|
|
fn._torchscript_modifier = FunctionModifiers.IGNORE
|
|
return fn
|
|
return decorator
|
|
|
|
|
|
def _copy_to_script_wrapper(fn):
|
|
fn._torchscript_modifier = FunctionModifiers.COPY_TO_SCRIPT_WRAPPER
|
|
return fn
|
|
|
|
def module_has_exports(mod):
|
|
for name in dir(mod):
|
|
item = getattr(mod, name)
|
|
if callable(item):
|
|
if get_torchscript_modifier(item) is FunctionModifiers.EXPORT:
|
|
return True
|
|
return False
|
|
|
|
def should_drop(fn):
|
|
attr = get_torchscript_modifier(fn)
|
|
if attr is None:
|
|
return False
|
|
return attr is FunctionModifiers.UNUSED
|
|
|
|
|
|
def is_ignored_fn(fn):
|
|
mod = get_torchscript_modifier(fn)
|
|
return mod is FunctionModifiers.UNUSED or mod is FunctionModifiers.IGNORE
|
|
|
|
def get_torchscript_modifier(fn):
|
|
if not callable(fn):
|
|
return None
|
|
if hasattr(fn, '__func__'):
|
|
fn = fn.__func__
|
|
return getattr(fn, '_torchscript_modifier', FunctionModifiers.DEFAULT)
|
|
|
|
def copy_torchscript_modifier(orig, new):
|
|
attr = get_torchscript_modifier(orig)
|
|
if attr is None:
|
|
return
|
|
new._torchscript_modifier = attr
|
|
|
|
# overloading registration
|
|
# overloads get registered in this file, and compiled in torch/jit/__init__.py
|
|
# so that they can be imported in nn/functional.py without an import cycle
|
|
|
|
# qualified_name => list[overload_functions]
|
|
_overloaded_fns = {} # noqa: T484
|
|
|
|
def _overload(func):
|
|
qual_name = _qualified_name(func)
|
|
global _overloaded_fns
|
|
fn_overload_list = _overloaded_fns.get(qual_name)
|
|
if fn_overload_list is None:
|
|
fn_overload_list = []
|
|
_overloaded_fns[qual_name] = fn_overload_list
|
|
fn_overload_list.append(func)
|
|
return func
|
|
|
|
def _get_fn_overloads(qual_name):
|
|
return _overloaded_fns.get(qual_name)
|
|
|
|
def _clear_fn_overloads(qual_name):
|
|
del _overloaded_fns[qual_name]
|
|
|
|
def get_class_name_lineno(method):
|
|
current_frame = inspect.currentframe()
|
|
|
|
# one for the get_class_name call, one for _overload_method call
|
|
for i in range(2):
|
|
current_frame = current_frame.f_back
|
|
class_name = current_frame.f_code.co_name
|
|
line_no = current_frame.f_code.co_firstlineno
|
|
return class_name, line_no
|
|
|
|
# At the the point the decorator is applied to class methods the method
|
|
# has no reference to its owning class. _qualified_name would not include
|
|
# the class it is defined in, so any methods with the same name in the same file
|
|
# would have the same _qualified_name, even if they were defined in different
|
|
# classes. This problem only exists in python 2.
|
|
# We get around this problem by looking at the stack frame and identifying
|
|
# the class name, and throwing an error whenever overloads are used
|
|
# when modules of the same name are in the same file
|
|
|
|
# qualified_name => class name => list[overload_functions]
|
|
_overloaded_methods = {} # noqa: T484
|
|
|
|
|
|
# (qualified_name, class name) => class_fileno
|
|
_overloaded_method_class_fileno = {}
|
|
|
|
def _overload_method(func):
|
|
qual_name = _qualified_name(func)
|
|
global _overloaded_methods
|
|
class_name_map = _overloaded_methods.get(qual_name, None)
|
|
if class_name_map is None:
|
|
class_name_map = {}
|
|
_overloaded_methods[qual_name] = class_name_map
|
|
|
|
class_name, line_no = get_class_name_lineno(func)
|
|
method_overloads = class_name_map.get(class_name, None)
|
|
if method_overloads is None:
|
|
method_overloads = []
|
|
class_name_map[class_name] = method_overloads
|
|
_overloaded_method_class_fileno[(qual_name, class_name)] = line_no
|
|
else:
|
|
existing_lineno = _overloaded_method_class_fileno[(qual_name, class_name)]
|
|
if existing_lineno != line_no:
|
|
raise RuntimeError("Cannot currently overload the same method name in two different"
|
|
" classes with the same name in the same module")
|
|
|
|
method_overloads.append(func)
|
|
return func
|
|
|
|
def _get_overloaded_methods(method, mod_class):
|
|
# TODO: __name__ not set for submodules in recursive script
|
|
if not hasattr(method, "__name__"):
|
|
return None
|
|
qual_name = _qualified_name(method)
|
|
class_name_map = _overloaded_methods.get(qual_name, None)
|
|
if class_name_map is None:
|
|
return None
|
|
overloads = class_name_map.get(mod_class.__name__, None)
|
|
if overloads is None:
|
|
return None
|
|
|
|
method_line_no = get_source_lines_and_file(method)[1]
|
|
mod_class_fileno = get_source_lines_and_file(mod_class)[1]
|
|
mod_end_fileno = mod_class_fileno + len(get_source_lines_and_file(mod_class)[0])
|
|
if not (method_line_no >= mod_class_fileno and method_line_no <= mod_end_fileno):
|
|
raise Exception("Overloads are not useable when a module is redeclared within the same file: " + str(method))
|
|
return overloads
|
|
|
|
try:
|
|
import typing
|
|
from typing import Tuple, List, Dict, Optional, Any
|
|
|
|
def is_tuple(ann):
|
|
# For some reason Python 3.7 violates the Type[A, B].__origin__ == Type rule
|
|
return ann.__module__ == 'typing' and \
|
|
(getattr(ann, '__origin__', None) is typing.Tuple or
|
|
getattr(ann, '__origin__', None) is tuple)
|
|
|
|
def is_list(ann):
|
|
return ann.__module__ == 'typing' and \
|
|
(getattr(ann, '__origin__', None) is typing.List or
|
|
getattr(ann, '__origin__', None) is list)
|
|
|
|
def is_dict(ann):
|
|
return ann.__module__ == 'typing' and \
|
|
(getattr(ann, '__origin__', None) is typing.Dict or
|
|
getattr(ann, '__origin__', None) is dict)
|
|
|
|
def is_optional(ann):
|
|
# Optional[T] is just shorthand for Union[T, None], so check for both
|
|
def safe_is_subclass(the_type, super_type):
|
|
# Don't throw if `the_type` isn't a class type (e.g. if it is
|
|
# another type annotation instance)
|
|
if not inspect.isclass(the_type):
|
|
return False
|
|
return issubclass(the_type, super_type)
|
|
|
|
union_optional = False
|
|
if ann.__module__ == 'typing' and \
|
|
(getattr(ann, '__origin__', None) is typing.Union):
|
|
args = getattr(ann, '__args__', ())
|
|
if len(args) == 2:
|
|
union_optional = (safe_is_subclass(args[1], type(None)) and not safe_is_subclass(args[0], type(None))) \
|
|
or (safe_is_subclass(args[0], type(None)) and not safe_is_subclass(args[1], type(None)))
|
|
|
|
optional = ann.__module__ == 'typing' and \
|
|
(getattr(ann, '__origin__', None) is typing.Optional)
|
|
|
|
return optional or union_optional
|
|
|
|
except ImportError:
|
|
# A minimal polyfill for versions of Python that don't have typing.
|
|
# Note that this means that they also don't support the fancy annotation syntax, so
|
|
# those instances will only be used in our tiny `type: ` comment interpreter.
|
|
|
|
# The __getitem__ in typing is implemented using metaclasses, but I'm too lazy for that.
|
|
class TupleCls(object):
|
|
def __getitem__(self, types):
|
|
return TupleInstance(types)
|
|
|
|
class TupleInstance(object):
|
|
__slots__ = ['__args__']
|
|
|
|
def __init__(self, types):
|
|
self.__args__ = types
|
|
|
|
class ListInstance(object):
|
|
__slots__ = ['__args__']
|
|
|
|
def __init__(self, types):
|
|
self.__args__ = types
|
|
|
|
class ListCls(object):
|
|
def __getitem__(self, types):
|
|
return TupleInstance(types)
|
|
|
|
class DictInstance(object):
|
|
__slots__ = ['__args__']
|
|
|
|
def __init__(self, types):
|
|
self.__args__ = types
|
|
|
|
class DictCls(object):
|
|
def __getitem__(self, types):
|
|
return DictInstance(types)
|
|
|
|
class OptionalInstance(object):
|
|
__slots__ = ['__args__']
|
|
|
|
def __init__(self, types):
|
|
self.__args__ = types
|
|
|
|
class OptionalCls(object):
|
|
def __getitem__(self, types):
|
|
return OptionalInstance(types)
|
|
|
|
class AnyCls(object):
|
|
pass
|
|
|
|
Tuple = TupleCls() # noqa: T484
|
|
List = ListCls() # noqa: T484
|
|
Dict = DictCls() # noqa: T484
|
|
Optional = DictCls() # noqa: T484
|
|
Any = AnyCls() # noqa: T484
|
|
|
|
def is_tuple(ann):
|
|
return isinstance(ann, TupleInstance)
|
|
|
|
def is_list(ann):
|
|
return isinstance(ann, ListInstance)
|
|
|
|
def is_dict(ann):
|
|
return isinstance(ann, DictInstance)
|
|
|
|
def is_optional(ann):
|
|
return isinstance(ann, OptionalInstance)
|
|
|
|
|
|
try:
|
|
import typing_extensions
|
|
from typing_extensions import Final
|
|
|
|
def is_final(ann):
|
|
return ann.__module__ == 'typing_extensions' and \
|
|
(getattr(ann, '__origin__', None) is typing_extensions.Final)
|
|
except ImportError:
|
|
# Same as above, this polyfill is only for `typing_extensions`
|
|
class FinalInstance(object):
|
|
__slots__ = ['__args__']
|
|
|
|
def __init__(self, types):
|
|
self.__args__ = types
|
|
|
|
class FinalCls(object):
|
|
def __getitem__(self, types):
|
|
return FinalInstance(types)
|
|
|
|
Final = FinalCls() # noqa: T484
|
|
|
|
def is_final(ann):
|
|
return isinstance(ann, FinalInstance)
|
|
|
|
|
|
# allows BroadcastingList instance to be subscriptable
|
|
class BroadcastingListCls(object):
|
|
def __getitem__(self, types):
|
|
return
|
|
|
|
# mypy doesn't support parameters on types, so we have to explicitly type each
|
|
# list size
|
|
BroadcastingList1 = BroadcastingListCls()
|
|
for i in range(2, 7):
|
|
globals()["BroadcastingList{}".format(i)] = BroadcastingList1
|
|
|
|
# Retrieves a fully-qualified name (module hierarchy + classname) for a given obj.
|
|
def _qualified_name(obj):
|
|
# short-circuit in cases where the object already has a known qualified name
|
|
if isinstance(obj, torch._C.ScriptFunction):
|
|
return obj.qualified_name
|
|
|
|
name = obj.__name__
|
|
if name == '<lambda>':
|
|
name = '_lambda' # make name a valid identifier
|
|
|
|
module_name = obj.__module__
|
|
|
|
# If the module is actually a torchbind module, then we should short circuit
|
|
if module_name == "torch._classes":
|
|
return obj.qualified_name
|
|
|
|
# The Python docs are very clear that `__module__` can be None, but I can't
|
|
# figure out when it actually would be.
|
|
if module_name is None:
|
|
raise RuntimeError("Could not get qualified name for class '{}': "
|
|
"__module__ can't be None.".format(name))
|
|
|
|
# if getattr(sys.modules[module_name], name) is not obj:
|
|
# raise RuntimeError("Could not get qualified name for class '{}': "
|
|
# "the attr {} on module {} is not the the class".format(name, name, module_name))
|
|
|
|
# __main__ is a builtin module, so rewrite it to "__torch__".
|
|
if module_name == "__main__":
|
|
module_name = "__torch__"
|
|
else:
|
|
# Everything else gets a "__torch__" prefix to avoid name collisions
|
|
# with the names of user values.
|
|
module_name = "__torch__." + module_name
|
|
|
|
if "." in name:
|
|
raise RuntimeError("Could not get qualified name for class '{}': "
|
|
"'{}' is not a valid identifier".format(name, name))
|
|
|
|
return module_name + "." + name
|