mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Signed-off-by: Edward Z. Yang <ezyang@meta.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/105928 Approved by: https://github.com/albanD
106 lines
2.5 KiB
Python
106 lines
2.5 KiB
Python
import torch
|
|
|
|
import operator_benchmark as op_bench
|
|
|
|
|
|
"""Microbenchmarks for binary operators."""
|
|
|
|
|
|
# Benchmark ops performance with broadcast
|
|
binary_ops_bcast_list = op_bench.op_list(
|
|
attr_names=["op_name", "op_func"],
|
|
attrs=[
|
|
["add", torch.add],
|
|
],
|
|
)
|
|
|
|
# Configs with broadcast
|
|
binary_configs_broadcast = op_bench.config_list(
|
|
attr_names=["in_one", "in_two"],
|
|
attrs=[
|
|
[[64, 1, 64], [1, 64, 1]],
|
|
],
|
|
cross_product_configs={
|
|
"device": ["cpu"],
|
|
"dtype": [torch.float],
|
|
},
|
|
tags=["short"],
|
|
)
|
|
|
|
|
|
class BinaryOpBcastBenchmark(op_bench.TorchBenchmarkBase):
|
|
def init(self, in_one, in_two, dtype, device, op_func):
|
|
self.inputs = {
|
|
"in_one": torch.randn(in_one, device=device).to(dtype=dtype),
|
|
"in_two": torch.randn(in_two, device=device).to(dtype=dtype),
|
|
}
|
|
self.op_func = op_func
|
|
|
|
def forward(self, in_one, in_two):
|
|
return self.op_func(in_one, in_two)
|
|
|
|
|
|
op_bench.generate_pt_tests_from_op_list(
|
|
binary_ops_bcast_list, binary_configs_broadcast, BinaryOpBcastBenchmark
|
|
)
|
|
|
|
|
|
def copy(in1, in2):
|
|
return in1.copy_(in2)
|
|
|
|
|
|
# Benchmark ops performance without broadcast
|
|
binary_ops_list = op_bench.op_list(
|
|
attr_names=["op_name", "op_func"],
|
|
attrs=[
|
|
["add", torch.add],
|
|
["copy_", copy],
|
|
],
|
|
)
|
|
|
|
binary_short_configs = op_bench.config_list(
|
|
attr_names=["M", "N", "K"],
|
|
attrs=[
|
|
[1, 1, 1],
|
|
[64, 64, 64],
|
|
[64, 64, 128],
|
|
],
|
|
cross_product_configs={
|
|
"device": ["cpu", "cuda"],
|
|
"dtype_one": [torch.int32],
|
|
"dtype_two": [torch.int32],
|
|
},
|
|
tags=["short"],
|
|
)
|
|
|
|
binary_long_configs = op_bench.cross_product_configs(
|
|
M=[8, 128],
|
|
N=[32, 64],
|
|
K=[256, 512],
|
|
device=["cpu", "cuda"],
|
|
dtype_one=[torch.int8, torch.int32],
|
|
dtype_two=[torch.int8, torch.int32],
|
|
tags=["long"],
|
|
)
|
|
|
|
|
|
class BinaryOpBenchmark(op_bench.TorchBenchmarkBase):
|
|
def init(self, M, N, K, device, dtype_one, dtype_two, op_func):
|
|
self.inputs = {
|
|
"input_one": torch.randn(M, N, K, device=device).to(dtype=dtype_one),
|
|
"input_two": torch.randn(M, N, K, device=device).to(dtype=dtype_two),
|
|
}
|
|
self.op_func = op_func
|
|
|
|
def forward(self, input_one, input_two):
|
|
return self.op_func(input_one, input_two)
|
|
|
|
|
|
op_bench.generate_pt_tests_from_op_list(
|
|
binary_ops_list, binary_short_configs + binary_long_configs, BinaryOpBenchmark
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
op_bench.benchmark_runner.main()
|